Omega-deformed Seiberg-Witten effective action from the M_{5}-brane

Neil Lambert ${ }^{1}$, Domenico Orlando*, Susanne Reffert
Theory Group, Physics Department, Organisation européenne pour la recherche nucléaire (CERN), CH-1211 Geneva 23, Switzerland

A R TICLE INFO

Article history:

Received 27 April 2013
Accepted 3 May 2013
Available online 6 May 2013
Editor: M. Cvetič

Abstract

We obtain the leading order corrections to the effective action of an M_{5}-brane wrapping a Riemann surface in the eleven-dimensional supergravity Ω-background. The result can be identified with the first order ϵ-deformation of the Seiberg-Witten effective action of pure $S U(2)$ gauge theory. We also comment on the second order corrections and the generalization to arbitrary gauge group and matter content.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ever since the classic result of Seiberg and Witten (sw) [1], $\mathcal{N}=2$ gauge theories have occupied a prominent place in theoretical physics. The resulting low energy sw effective action is given in terms of a Riemann surface, the sw curve, which encodes all the perturbative and non-perturbative quantum effects of the gauge theory. While all the perturbative corrections had been known since [2-4], this solution gave a prediction for an infinite number of non-perturbative instanton corrections, the first few terms of which could be checked by explicit computation [5,6].

Not long afterwards, M-theory was developed as an elevendimensional non-perturbative completion of String Theory. In a striking paper Witten showed how the sw curve could be naturally obtained from the geometry of intersecting NS_{5} and D_{4}-branes lifted to M-theory where they become a single M_{5}-brane [7]. Moreover the complete quantum sw effective action for $\mathcal{N}=2$ supersymmetric $S U(N)$ Yang-Mills theory was obtained in [8] from the classical dynamics of the M_{5}-brane.

An alternative method to compute the sw solution from first principles came with Nekrasov's seminal paper using the Ω-background [9]. This background deforms the gauge theory and allows for localization techniques to be used to compute all the instanton corrections and also reconstruct the curve and its associated quantities [10]. Since then the Ω-background has received a lot of interest, most recently in the context of the correspondence by Alday, Gaiotto and Tachikawa [11] and work related to it.

The so-called fluxtrap background $[12,13]$ provides a stringtheoretical construction of the Euclidean Ω-background determined by a two-form $\omega=\mathrm{d} U$. In particular the bosonic Abelian worldvolume action for D_{4}-branes suspended between NS_{5}-branes

[^0]in this background was given in [14]. The generalization to nonAbelian fields is given by ($\mu, \nu=0,1,2,3$)
\[

$$
\begin{align*}
\mathscr{L}_{\mathrm{D}_{4}}= & \frac{1}{g_{4}^{2}} \operatorname{Tr}\left[\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}_{\mu \nu}\right. \\
& +\frac{1}{2}\left(\mathbf{D}_{\mu} \boldsymbol{\varphi}+\frac{1}{2} \mathbf{F}_{\mu \lambda} \hat{U}^{\lambda}\right)\left(\mathbf{D}_{\mu} \overline{\boldsymbol{\varphi}}+\frac{1}{2} \mathbf{F}_{\mu \rho} \hat{U}^{\rho}\right) \\
& \left.-\frac{1}{4}[\boldsymbol{\varphi}, \overline{\boldsymbol{\varphi}}]^{2}+\frac{1}{8}\left(\hat{U}^{\mu} \mathbf{D}_{\mu}(\boldsymbol{\varphi}-\overline{\boldsymbol{\varphi}})\right)^{2}\right], \tag{1.1}
\end{align*}
$$
\]

where a hat denotes the pullback to the brane and a bold-face indicates a non-Abelian field. This action agrees with the first order action obtained in [10]. The fluxtrap can be lifted to M-theory [14]. At order ϵ it is given by $(M, N=0,1,2, \ldots, 10)$
$g_{M N}=\delta_{M N}+\mathcal{O}\left(\epsilon^{2}\right)$,
$G_{4}=(\mathrm{d} z+\mathrm{d} \bar{z}) \wedge(\mathrm{d} s+\mathrm{d} \bar{s}) \wedge \omega$,
where $s=x^{6}+\mathrm{i} x^{10}, z=x^{8}+\mathrm{i} x^{9}$, and
$\omega=\epsilon_{1} \mathrm{~d} x^{0} \wedge \mathrm{~d} x^{1}+\epsilon_{2} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+\epsilon_{3} \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{5}$.
The background has 8 Killing spinors if $\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0$, and 16 Killing spinors in the special case $\epsilon_{1}=-\epsilon_{2}$ and $\epsilon_{3}=0 .{ }^{2}$

In this Letter we will derive the corrections to first order in ϵ to the Ω-deformed sw action. We do this by employing the M-theory lift of the fluxtrap background. As we will see, the classical M-theory calculation has the invaluable benefit of giving a quantum result in gauge theory since in this case, the result is independent of the effective coupling in the gauge theory. We embed the M_{5}-brane in the Ω-background and study the most supersymmetric configuration which to first order in ϵ is still of the form $\mathbb{R}_{4} \times \Sigma$ with an additional self-dual three-form. This is the ground

[^1]state of a six-dimensional theory on top of which we have fluctuations fulfilling some assumptions detailed in the following. These fluctuations obey scalar and vector equations of motion that arise from the six-dimensional theory, where the scalar equation encodes the fact that the M5-brane is a (generalized) minimal surface and the vector equation posits that the self-dual three-form on the brane is the (generalized) pullback of the three-form field in the bulk. To arrive at the four-dimensional gauge theory, we must integrate these equations over the Riemann surface Σ using an appropriate measure. The integration results in one vector equation and two scalar equations in four dimensions, which are the Euler-Lagrange equations for a four-dimensional action, which in the case $\epsilon=0$ reproduces the undeformed sw action. We explicitly treat the case of $S U(2)$ without matter, however there is a natural generalization of our result to any gauge group and matter content.

The plan of this Letter is as follows. In Section 2 we describe the embedding of the M_{5}-brane, the six-dimensional equations of motion and their reduction to four dimensions. We also give an action that captures these equations of motion. This action can be extrapolated to second order in ϵ and generalized to arbitrary gauge group and matter content. In Section 3 we give our conclusions. We also provide an appendix that gives some technical steps in the evaluation of various non-holomorphic integrals over the Riemann surface that arise.

2. M_{5}-brane dynamics in the Ω-fluxtrap

The homogeneous embedding of the M_{5}-brane. Due to the fundamentally Euclidean nature of the fluxtrap background, we will be discussing the Euclidean version of sw-theory. For this reason, the self-duality condition for the three-form h_{3} on the M_{5}-brane turns into
$\mathrm{i} *_{6} h_{3}=h_{3}$,
which we will refer to as self-duality.
The embedding of the M_{5}-brane in the fluxtrap background at order ϵ has already been discussed in [14], where it was found that the brane wraps a Riemann surface. Let us recall here the argument. As discussed in [7], the M-theory lift of a $\mathrm{NS}_{5}-\mathrm{D}_{4}$ system (extended respectively in $x^{0}, \ldots, x^{3}, x^{8}, x^{9}$ and $x^{0}, \ldots, x^{3}, x^{6}$) is a single M_{5}-brane extended in x^{0}, \ldots, x^{3} and wrapping a twocycle in $x^{6}, x^{8}, x^{9}, x^{10}$. We use static gauge and assume that the M_{5}-brane has coordinates $x^{\mu}, \mu=0,1,2,3$ and $z=x^{8}+\mathrm{i} x^{9}$. We also assume that the only non-vanishing scalar field is $s=x^{6}+\mathrm{i} x^{10}$. The precise form of the embedding is found if we require this brane to preserve the same supersymmetries of the original IIA system. Given the Killing spinors η_{0} of the bulk, the M_{5}-brane preserves those satisfying $[15,16](m, n=0,1,2, \ldots, 5)$
$\Pi_{-}^{\mathrm{M}_{5}} \eta_{0}=\frac{1}{2}\left(1-\Gamma_{\mathrm{M}_{5}}\right) \eta_{0}=0$,
$\Gamma_{\mathrm{M}_{5}}=-\frac{\epsilon^{m_{1} \cdots m_{6}} \hat{\Gamma}_{m_{1} \cdots m_{6}}}{6!\sqrt{\hat{g}}}\left(1-\frac{1}{3} \hat{\Gamma}^{n_{1} n_{2} n_{3}} h_{n_{1} n_{2} n_{3}}\right)$,
where $\hat{\Gamma}$ and \hat{g} are the gamma matrices and the metric, pulled back to the brane. Here h_{3} is the self-dual three-form on the M_{5}-brane worldvolume which satisfies
$\mathrm{d} H_{3}=-\frac{1}{4} \hat{G}_{4}$,
where $H_{3}=h_{3}+\mathcal{O}\left(h_{3}^{3}\right)$.

For $\epsilon=0$ we have $h_{3}=0$ and the M_{5}-brane is described by a Riemann surface $\bar{\partial} s=0$ [7]. Let us now consider the first order effect that arises when turning on ϵ. To this order we may simply take $H_{3}=h_{3}$ but in principle s may pick up a non-holomorphic piece. However at $\mathcal{O}(\epsilon)$ the pullback only depends holomorphically on $s(z)$ since $\hat{\omega}$ is by itself of order ϵ :
$\hat{G}_{4}=-(\partial s-\bar{\partial} \bar{s}) \mathrm{d} z \wedge \mathrm{~d} \bar{z} \wedge \hat{\omega}+\mathcal{O}\left(\epsilon^{2}\right)$.
Therefore we can take
$h_{3}=\frac{1}{4}(\bar{s}-\bar{z} \partial s+f(z)) \mathrm{d} z \wedge \hat{\omega}^{-}+\frac{1}{4}(s-z \overline{\mathrm{~s}} \bar{s}+\bar{f}(\bar{z})) \mathrm{d} \bar{z} \wedge \hat{\omega}^{+}$,
where f is an arbitrary holomorphic function and we have decomposed the two-form $\hat{\omega}$ as

$$
\begin{align*}
\hat{\omega}= & \frac{\epsilon_{1}+\epsilon_{2}}{2}\left(\mathrm{~d} x^{0} \wedge \mathrm{~d} x^{1}+\mathrm{d} x^{2} \wedge \mathrm{~d} x^{3}\right) \\
& +\frac{\epsilon_{1}-\epsilon_{2}}{2}\left(\mathrm{~d} x^{0} \wedge \mathrm{~d} x^{1}-\mathrm{d} x^{2} \wedge \mathrm{~d} x^{3}\right) \\
= & \hat{\omega}^{+}+\hat{\omega}^{-} \tag{2.6}
\end{align*}
$$

These are all the ingredients needed to write the supersymmetry condition,
$\Pi_{-}^{\mathrm{M}_{5}} \eta=\Pi_{-}^{\mathrm{M}_{5}} \Pi_{+}^{\mathrm{NS}_{5}} \Pi_{+}^{\mathrm{D}_{4}} \eta_{0}=0$,
where the projectors $\Pi^{\mathrm{NS}_{5}}$ and $\Pi^{\mathrm{D}_{4}}$ refer to the M_{5}-branes resulting from the lift of the NS_{5}-brane and D_{4}-brane introduced above such that $\eta=\Pi_{+}^{\mathrm{NS}_{5}} \Pi_{+}^{\mathrm{D}_{4}} \eta_{0}$ are the Killing spinors preserved by the branes. Since the two M_{5}-brane projectors commute, the full configuration preserves two supercharges in the generic case and four if $\epsilon_{1}=-\epsilon_{2}$. An explicit calculation shows that the condition is satisfied at $\mathcal{O}(\epsilon)$ if

$$
\left\{\begin{array}{l}
\bar{\partial} s=0 \tag{2.8}\\
f(z)=0
\end{array}\right.
$$

which completely fix the embedding of the M_{5}-brane and the selfdual field h_{3}.

Thus even at order $\mathcal{O}(\epsilon)$ the brane is embedded holomorphically in spacetime. For the simplest case corresponding to pure $S U(2)$ Yang-Mills, the precise form was found in [7] and is determined implicitly by
$t^{2}-2 B(z \mid u) t+\Lambda^{4}=0, \quad t=\Lambda^{2} e^{-s / R}$,
where $B(z \mid u)=\Lambda^{4} z^{2}-u, \Lambda$ is a mass scale and R the radius of the x^{10}-direction. This embedding defines a Riemann surface Σ with modulus u,
$\Sigma=\{(z, s) \mid s=s(z \mid u)\}$.
It is useful to observe that
$\frac{\partial s}{\partial u} \mathrm{~d} z=-\frac{1}{2 \Lambda^{4} z} \frac{\partial s}{\partial z} \mathrm{~d} z=\frac{R \mathrm{~d} z}{\sqrt{Q(z \mid u)}}=R \lambda$
is the unique holomorphic one-form on Σ where $Q(z \mid u)=$ $B(z \mid u)^{2}-\Lambda^{4}$. For most of this Letter we will simply set $R=\Lambda=1$. They are in principle needed on dimensional grounds, since both s and z have dimensions of length whereas the modulus u is usually taken to have mass-dimension two. We will briefly reinstate them in the conclusions by simply rescaling z and s, when discussing the quantum nature of our result.

Equations of motion in 6d. Having found the embedding of the M_{5}-brane we want to describe the low energy dynamics of the fluctuations around the equilibrium. In fact, since we are interested
in the effective four-dimensional theory living on x^{0}, \ldots, x^{3} which results from integrating the M_{5} equations of motion over the Riemann surface Σ, we will assume that:

1. the geometry of the five-brane is still a fibration of a Riemann surface over \mathbb{R}^{4};
2. for each point in \mathbb{R}^{4} we have the same Riemann surface as above, but with a different value of the modulus u.

In other words, the modulus u of Σ is a function of the worldvolume coordinates and the embedding is still formally defined by the same equation, but now $s=s\left(z \mid u\left(x^{\mu}\right)\right)$ so that the x^{μ}-dependence is entirely captured by
$\partial_{\mu} s\left(z \mid u\left(x^{\mu}\right)\right)=\partial_{\mu} u \frac{\partial s}{\partial u}$.
For ease of notation we will drop in the following the explicit dependence of s on $u\left(x^{\mu}\right)$ and write directly $s=s\left(z, x^{\mu}\right)$. Much of our discussion follows the undeformed case considered in detail in $[8,17,18]$.

The dynamics can be obtained by evaluating the M_{5}-brane equations of motion. Here we will only focus on the bosonic fields. Covariant equations of motion for the M_{5}-brane were obtained in $[15,16]$. In general these are rather complicated equations, particularly with regard to the three-form. However in this Letter we only wish to work to linear order in ϵ and quadratic order in spatial derivatives ∂_{μ}. In particular we can take $H_{3}=h_{3}$ and the equations of motion reduce to ${ }^{3}$
$\left(\hat{g}^{m n}-16 h^{m p q} h_{p q}^{n}\right) \nabla_{m} \nabla_{n} X^{I}=-\frac{2}{3} \hat{G}^{I}{ }_{m n p} h^{m n p}$,
$\mathrm{d} h_{3}=-\frac{1}{4} \hat{G}_{4}$,
where $I=6, \ldots, 10$ and the geometrical quantities are defined with respect to the pullback of the spacetime metric to the brane $\hat{g}_{m n}$.

As a first step we need to write the three-form field on the brane. In full generality, h_{3} can be decomposed as
$h_{3}=-\frac{1}{4}\left(\hat{C}_{3}+\mathrm{i} *_{6} \hat{C}_{3}-\Phi\right)$,
where \hat{C}_{3} is the pullback of the three-form in the bulk, and Φ is a self-dual three-form that will encode the fluctuations of the four-dimensional gauge field.

Since we ultimately want to discuss the gauge theory living on the worldvolume coordinates x^{0}, \ldots, x^{3}, we make the following self-dual ($\mathrm{i} *_{6} \Phi=\Phi$) ansatz for Φ :

$$
\begin{align*}
\Phi= & \frac{\kappa}{2} \mathcal{F}_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} \wedge \mathrm{d} z+\frac{\bar{\kappa}}{2} \widetilde{\mathcal{F}}_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu} \wedge \mathrm{d} \bar{z} \\
& +\frac{1}{1+|\partial s|^{2}} \frac{1}{3!} \epsilon_{\mu \nu \rho \sigma}\left(\partial^{\tau} s \bar{\partial} \bar{s} \kappa \mathcal{F}_{\sigma \tau}-\partial^{\tau} \bar{s} \partial s \bar{\kappa} \widetilde{\mathcal{F}}_{\sigma \tau}\right) \mathrm{d} x^{\mu} \\
& \wedge \mathrm{d} x^{\nu} \wedge \mathrm{d} x^{\rho} \tag{2.16}
\end{align*}
$$

The two-form \mathcal{F} is anti-self-dual in four dimensions, while $\widetilde{\mathcal{F}}$ is self-dual:
$*_{4} \mathcal{F}=-\mathcal{F}, \quad *_{4} \tilde{\mathcal{F}}=\tilde{\mathcal{F}}$.
Here $*_{4}$ is the flat space Hodge star and $\kappa(z)$ is a holomorphic function given by [17]

[^2]$\kappa=\frac{\mathrm{d} s}{\mathrm{~d} a}=\left(\frac{\mathrm{d} a}{\mathrm{~d} u}\right)^{-1} \lambda_{z}$.
Here $\lambda=\lambda_{z} d z$ is the holomorphic one-form on Σ and a is the scalar field used in the Seiberg-Witten solution and related to λ by
$\frac{\mathrm{d} a}{\mathrm{~d} u}=\oint_{A} \lambda$,
where A is the a-cycle of Σ. In the following, \mathcal{F} and $\widetilde{\mathcal{F}}$ will be related to the four-dimensional gauge field strength, thus justifying our ansatz.

We also need to choose a gauge for the three-form potential C_{3} in the bulk:
$C_{3}=-\frac{1}{2}(\bar{s} \mathrm{~d} v-\bar{v} \mathrm{~d} s+s \mathrm{~d} v-\bar{v} \mathrm{~d} \bar{s}) \wedge \omega+$ c.c.
Its pullback on the Riemann surface $\left\{v=z, s=s\left(z, x^{\mu}\right)\right\}$ is given by

$$
\begin{align*}
\hat{C}_{3}= & -\frac{1}{2}\left(\bar{s} \mathrm{~d} z-\bar{z} \partial s \mathrm{~d} z-\bar{z} \partial_{\mu} s \mathrm{~d} x^{\mu}+s \mathrm{~d} z-\bar{z} \bar{\partial} \bar{s} \mathrm{~d} \bar{z}-\bar{z} \partial_{\mu} \bar{s} \mathrm{~d} x^{\mu}\right) \\
& \wedge \hat{\omega}+\text { c.c. } \tag{2.21}
\end{align*}
$$

We are only interested in terms up to second order in the spacetime derivatives ∂_{μ} and in particular we observe that $\hat{\omega}$ is by itself of first order. It follows that the six-dimensional Hodge dual is given by

$$
\begin{align*}
\mathrm{i} *_{6} \hat{C}_{3}= & \frac{1}{2}(\bar{s} \mathrm{~d} z-\bar{z} \partial s \mathrm{~d} z+s \mathrm{~d} z+\bar{z} \bar{\partial} s \mathrm{~d} \bar{z}-s \mathrm{~d} \bar{z} \\
& +z \bar{\partial} \bar{s} \mathrm{~d} \bar{z}-\bar{s} \mathrm{~d} \bar{z}-z \partial s \mathrm{~d} z) \wedge^{*} \hat{\omega} \\
& +\frac{1}{2 \cdot 3!}\left(1+|\partial s|^{2}\right) \epsilon_{\mu \nu \lambda \rho} C^{\mu \nu \lambda} \mathrm{d} x^{\rho} \wedge \mathrm{d} z \wedge \mathrm{~d} \bar{z} \\
& +\frac{1}{1+|\partial s|^{2}} \epsilon_{\mu \nu \rho \sigma}\left(\partial^{\tau} s \bar{\partial} \bar{s} \hat{C}_{\sigma \tau z}-\partial^{\tau} \bar{s} \partial s \hat{C}_{\sigma \tau \bar{z}}\right) \mathrm{d} x^{\mu} \\
& \wedge \mathrm{d} x^{\nu} \wedge \mathrm{d} x^{\rho} \tag{2.22}
\end{align*}
$$

where $* \hat{\omega}=*_{4} \hat{\omega}=\hat{\omega}^{+}-\hat{\omega}^{-}$.
The vector equation. Consider now the vector equation $\mathrm{d} h_{3}=$ $-\frac{1}{4} \hat{H}_{4}$. Given our expression for h_{3}, the equation becomes
$\mathrm{d} \Phi=\mathrm{id} *_{6} \hat{C}_{3}$,
where we see explicitly the role of the bulk three-form as source for the gauge field on the brane. At this point it is useful to quickly discuss the issue of gauge covariance of the three-form equation. The bulk three-form is defined up to the differential of a two-form $C_{3} \mapsto C_{3}^{\prime}+\mathrm{d} B_{2}$. Under this shift the vector equation becomes
$\mathrm{d} \Phi=\mathrm{id} *_{6} \hat{C}_{3}^{\prime}+\mathrm{id} *_{6} \mathrm{~d} \hat{B}_{2}$,
which can be compensated for by an analogous shift in the fluctuations:
$\Phi \mapsto \Phi^{\prime}+\mathrm{d} \hat{B}_{2}+\mathrm{i} *_{6} \mathrm{~d} \hat{B}_{2}$.
Let us go back to our ansatz. The tensor Φ does not contribute to the $\mu \nu z \bar{z}$ component:

$$
\begin{equation*}
\left.\mathrm{d} \Phi\right|_{\mu \nu z \bar{z}} \equiv 0 \tag{2.26}
\end{equation*}
$$

so we only need to verify that
$\left.\mathrm{d} *_{6} \hat{C}\right|_{\mu \nu z \bar{z}}=0$,
which is satisfied up to terms of order $\mathcal{O}\left(\partial_{\mu}\right)^{3}$, taking into account the fact that $\hat{\omega}$ is by itself of order $\mathcal{O}\left(\partial_{\mu}\right)$. Similarly, also the $\mu \nu \lambda \rho$ component of the equation of motion is of higher order.

It is convenient to take the six-dimensional dual of the remaining terms and decompose them in coordinates:
$*_{6} \mathrm{~d}\left(\Phi-\mathrm{i} *_{6} \hat{C}_{3}\right)=\frac{1}{2} E_{\mu z} \mathrm{~d} x^{\mu} \wedge \mathrm{d} z+\frac{1}{2} E_{\mu \bar{z}} \mathrm{~d} x^{\mu} \wedge \mathrm{d} \bar{z}=0$,
where explicitly

$$
\begin{align*}
E_{\mu z}= & \partial_{\mu}\left(\kappa \mathcal{F}_{\mu \nu}-\hat{C}_{\mu \nu z}\right)+\partial\left[\frac{\bar{\partial} \bar{s} \partial_{\nu} s}{1+|\partial s|^{2}}\left(\kappa \mathcal{F}_{\mu \nu}-\hat{C}_{\mu \nu z}\right)\right] \\
& -\partial\left[\frac{\partial s \partial_{\nu} \bar{s}}{1+|\partial s|^{2}}\left(\bar{\kappa} \widetilde{\mathcal{F}}_{\mu \nu}-\hat{C}_{\mu \nu \bar{z}}\right)\right], \tag{2.29a}\\
E_{\mu \bar{z}}= & \partial_{\mu}\left(\bar{\kappa} \widetilde{\mathcal{F}}_{\mu \nu}-\hat{C}_{\mu \nu \bar{z}}\right)+\bar{\partial}\left[\frac{\partial s \partial_{\nu} \bar{s}}{1+|\partial s|^{2}}\left(\bar{\kappa} \widetilde{\mathcal{F}}_{\mu \nu}-\hat{C}_{\mu \nu \bar{z}}\right)\right] \\
& -\bar{\partial}\left[\frac{\bar{\partial} \bar{s} \partial_{\nu} s}{1+|\partial s|^{2}}\left(\kappa \mathcal{F} \mathcal{F}_{\mu \nu}-\hat{C}_{\mu \nu z}\right)\right] . \tag{2.29b}
\end{align*}
$$

Note that because of the epsilon tensors in the definition of $E_{\mu z}$, the equations only depend on $\hat{\omega}$ and not on * $\hat{\omega}$.

To obtain the equations of motion of the vector zero-modes in four dimensions we need to reduce these equations on the Riemann surface. In order for the integral to be well-defined everywhere on Σ we have only two possible choices for the integrand, depending on the (unique) one-form λ or its complex conjugate:
$\int_{\Sigma} *_{6} \mathrm{~d}\left(\Phi-\mathrm{id} * \hat{C}_{3}\right) \wedge \bar{\lambda}=\mathrm{d} x^{\mu} \wedge \int_{\Sigma} E_{\mu z} \mathrm{~d} z \wedge \bar{\lambda}=0$,
$\int_{\Sigma} *_{6} \mathrm{~d}\left(\Phi-\mathrm{id} * \hat{C}_{3}\right) \wedge \lambda=\mathrm{d} x^{\mu} \wedge \int_{\Sigma} E_{\mu \bar{z}} \mathrm{~d} \bar{z} \wedge \lambda=0$.
The explicit integration is relatively straightforward using the techniques explained in Appendix A. The only non-vanishing integrals have been already evaluated in $[8,18]$:
$I_{0}=\int_{\Sigma} \lambda \wedge \bar{\lambda}=\frac{\mathrm{d} a}{\mathrm{~d} u}(\tau-\bar{\tau}) \frac{\mathrm{d} \bar{a}}{\mathrm{~d} \bar{u}}$,
$K=\int_{\Sigma} \bar{\partial}\left[\frac{\lambda_{z} \bar{\partial} \bar{s}}{1+|\partial s|^{2}}\right] \mathrm{d} \bar{z} \wedge \lambda=-\left(\frac{\mathrm{d} a}{\mathrm{~d} u}\right)^{2} \frac{\mathrm{~d} \tau}{\mathrm{~d} u}$,
where one uses the following definitions:
$a=\oint_{A} \lambda_{S W}, \quad a_{D}=\oint_{B} \lambda_{S W}$,
$\tau=\frac{\mathrm{d} a_{D}}{\mathrm{~d} a}, \quad \lambda=\frac{\partial \lambda_{S W}}{\partial u}$,
along with the Riemann bi-linear identity
$\int \lambda \wedge \bar{\lambda}=\oint_{B} \lambda \oint_{A} \bar{\lambda}-\oint_{A} \lambda \oint_{B} \bar{\lambda}$.
The two integrals in Eq. (2.30) become

$$
\begin{align*}
& (\tau-\bar{\tau})\left(\partial_{\mu} \mathcal{F}_{\mu \nu}+\partial_{\mu} a \hat{\omega}_{\mu \nu}\right)+\partial_{\mu} \tau \mathcal{F}_{\mu \nu}-\partial_{\mu} \bar{\tau} \tilde{\mathcal{F}}_{\mu \nu}=0 \tag{2.35a}\\
& (\tau-\bar{\tau})\left(\partial_{\mu} \widetilde{\mathcal{F}}_{\mu \nu}+\partial_{\mu} \bar{a} \hat{\omega}_{\mu \nu}\right)+\partial_{\mu} \tau \mathcal{F}_{\mu \nu}-\partial_{\mu} \bar{\tau} \widetilde{\mathcal{F}}_{\mu \nu}=0 . \tag{2.35b}
\end{align*}
$$

Taking the difference of the two equations we find
$\partial_{\mu}\left(\mathcal{F}_{\mu \nu}-\widetilde{\mathcal{F}}_{\mu \nu}\right)=-\partial_{\mu}(a-\bar{a}) \hat{\omega}_{\mu \nu}$,
which is solved by writing
$\left\{\begin{array}{l}\mathcal{F}=(1-*) F-(a-\bar{a}) \hat{\omega}^{-}, \\ \widetilde{\mathcal{F}}=(1+*) F+(a-\bar{a}) \hat{\omega}^{+},\end{array}\right.$
where F satisfies the standard Bianchi identity
$\mathrm{d} * F=0$,
and can be written as the differential of a one-form $F=\mathrm{d} A$. In the following we will identify F with the four-dimensional gauge field and, in this sense, Eq. (2.36) represents the correction to the Bianchi equations introduced by the Ω-deformation. Substituting this condition into the first equation of (2.35), we derive the final form of the four-dimensional vector equations:

$$
\begin{align*}
& (\tau-\bar{\tau})\left[\partial_{\mu} F_{\mu \nu}+\frac{1}{2} \partial_{\mu}(a+\bar{a}) \hat{\omega}_{\mu \nu}+\frac{1}{2} \partial_{\mu}(a-\bar{a})^{*} \hat{\omega}_{\mu \nu}\right] \\
& \quad+\partial_{\mu}(\tau-\bar{\tau})\left[F_{\mu \nu}+\frac{1}{2}(a-\bar{a})^{*} \hat{\omega}_{\mu \nu}\right] \\
& \quad-\partial_{\mu}(\tau+\bar{\tau})\left[{ }^{*} F_{\mu \nu}+\frac{1}{2}(a-\bar{a}) \hat{\omega}_{\mu \nu}\right]=0 \tag{2.39}
\end{align*}
$$

where $* F={ }_{4} F$.
The scalar equation. Next we turn our attention to evaluating the scalar equation. The main new ingredient with respect to the calculation in the literature [17] is the presence of a rhs term in Eq. (2.13), which reads

$$
\begin{align*}
-\frac{2}{3} \hat{G}_{m n p}^{I} h^{m n p}= & \frac{2}{1+|\partial s|^{2}} \hat{\omega}_{\mu \nu}^{-} \mathcal{F}_{\mu \nu}\left(\frac{\mathrm{d} a}{\mathrm{~d} u}\right)^{-1} \lambda_{z} \\
& +\frac{2}{1+|\partial s|^{2}} \hat{\omega}_{\mu \nu}^{+} \widetilde{\mathcal{F}}_{\mu \nu}\left(\frac{\mathrm{d} \bar{a}}{\mathrm{~d} \bar{u}}\right)^{-1} \bar{\lambda}_{\bar{z}} \tag{2.40}
\end{align*}
$$

for both non-trivial cases $X^{I}=s$ and $X^{I}=\bar{s}$. The two corresponding scalar equations take the form

$$
\begin{align*}
E= & \partial_{\mu} \partial_{\mu} s-\partial\left[\frac{\partial_{\rho} s \partial_{\rho} s \bar{\partial} \bar{s}}{1+|\partial s|^{2}}\right]-\frac{16 \partial^{2} s}{\left(1+|\partial s|^{2}\right)^{2}} h_{\mu \nu \bar{z}} h_{\mu \nu \bar{z}} \\
& -2 \hat{\omega}_{\mu \nu}^{-} \mathcal{F}_{\mu \nu}\left(\frac{\mathrm{d} a}{\mathrm{~d} u}\right)^{-1} \lambda_{z}+2 \hat{\omega}_{\mu \nu}^{+} \widetilde{\mathcal{F}}_{\mu \nu}\left(\frac{\mathrm{d} \bar{a}}{\mathrm{~d} \bar{u}}\right)^{-1} \bar{\lambda}_{\bar{z}}=0, \tag{2.41}\\
\bar{E}= & \partial_{\mu} \partial_{\mu} \bar{s}-\bar{\partial}\left[\frac{\partial_{\rho} \bar{s} \partial_{\rho} \bar{s} \partial s}{1+|\partial s|^{2}}\right]-\frac{16 \bar{\partial}^{2} \bar{s}}{\left(1+|\partial s|^{2}\right)^{2}} h_{\mu \nu z} h_{\mu \nu z} \\
& -2 \hat{\omega}_{\mu \nu}^{-} \mathcal{F}_{\mu \nu}\left(\frac{\mathrm{d} a}{\mathrm{~d} u}\right)^{-1} \lambda_{z}+2 \hat{\omega}_{\mu \nu}^{+} \widetilde{\mathcal{F}}_{\mu \nu}\left(\frac{\mathrm{d} \bar{a}}{\mathrm{~d} \bar{u}}\right)^{-1} \bar{\lambda}_{\bar{z}}=0 . \tag{2.42}
\end{align*}
$$

In this case it is natural to integrate over the Riemann surface using the form $\mathrm{d} z \wedge \bar{\lambda}$ and obtain the four-dimensional scalar equations of motion as
$\int_{\Sigma} E \mathrm{~d} z \wedge \bar{\lambda}=\int_{\Sigma} \bar{E} \mathrm{~d} \bar{z} \wedge \lambda=0$.
The details of the calculation are similar to those of the vector equation. The end result is

$$
\begin{align*}
& (\tau-\bar{\tau}) \partial_{\mu} \partial_{\mu} a+\partial_{\mu} a \partial_{\mu} \tau+\frac{\mathrm{d} \bar{\tau}}{\mathrm{~d} \bar{a}} \widetilde{\mathcal{F}}_{\mu \nu} \widetilde{\mathcal{F}}_{\mu \nu}-2(\tau-\bar{\tau}) \hat{\omega}_{\mu \nu} \mathcal{F}_{\mu \nu} \\
& \quad+2\left(L_{1}-L_{2}\right)\left(\frac{\mathrm{d} \bar{a}}{\mathrm{~d} \bar{u}}\right)^{2} \hat{\omega}_{\mu \nu} \widetilde{\mathcal{F}}_{\mu \nu}=0 \tag{2.44}\\
& (\tau-\bar{\tau}) \partial_{\mu} \partial_{\mu} \bar{a}-\partial_{\mu} \bar{a} \partial_{\mu} \bar{\tau}-\frac{\mathrm{d} \tau}{\mathrm{~d} a} \mathcal{F}_{\mu \nu} \mathcal{F}_{\mu \nu}-2(\tau-\bar{\tau}) \hat{\omega}_{\mu \nu} \widetilde{\mathcal{F}}_{\mu \nu} \\
& \quad+2\left(\bar{L}_{1}-\bar{L}_{2}\right)\left(\frac{\mathrm{d} a}{\mathrm{~d} u}\right)^{2} \hat{\omega}_{\mu \nu} \mathcal{F}_{\mu \nu}=0 \tag{2.45}
\end{align*}
$$

where L_{1} and L_{2} are the integrals
$L_{1}=-\int_{\Sigma} \partial\left(\frac{\partial s}{1+|\partial s|^{2}}\right)(\bar{s}+\bar{s}-z \bar{\partial} \bar{s}-\bar{z} \bar{\partial} \bar{s}) \lambda_{\bar{z}} \mathrm{~d} z \wedge \bar{\lambda}$,
$L_{2}=\int_{\Sigma} \bar{\lambda}_{\bar{z}} \mathrm{~d} z \wedge \bar{\lambda}$.
The second integral can be evaluated straightforwardly in terms of u using the methods of Appendix A:

$$
\begin{equation*}
L_{2}=\int_{\Sigma} \bar{\lambda}_{\bar{z}}^{2} \mathrm{~d} z \wedge \mathrm{~d} \bar{z}=\pi \mathrm{i}\left(\frac{u-1}{|u-1|}-\frac{u+1}{|u+1|}\right) \tag{2.48}
\end{equation*}
$$

The evaluation of L_{1} is more involved but leads to $L_{1}=L_{2}$ (see Appendix A).

The scalar equations take the final form

$$
\begin{align*}
& (\tau-\bar{\tau}) \partial_{\mu} \partial_{\mu} a+\partial_{\mu} a \partial_{\mu} \tau+2 \frac{\mathrm{~d} \bar{\tau}}{\mathrm{~d} \bar{a}}\left(F_{\mu \nu} F_{\mu \nu}+F_{\mu \nu}^{*} F_{\mu \nu}\right) \\
& \quad+4 \frac{\mathrm{~d} \bar{\tau}}{\mathrm{~d} \bar{a}}(a-\bar{a}) \hat{\omega}_{\mu \nu}^{+} F_{\mu \nu}-4(\tau-\bar{\tau}) \hat{\omega}_{\mu \nu}^{-} F_{\mu \nu}=0 \tag{2.49}\\
& (\tau-\bar{\tau}) \partial_{\mu} \partial_{\mu} \bar{a}-\partial_{\mu} \bar{a} \partial_{\mu} \bar{\tau}-2 \frac{\mathrm{~d} \tau}{\mathrm{~d} a}\left(F_{\mu \nu} F_{\mu \nu}-F_{\mu \nu}^{*} F_{\mu \nu}\right) \\
& \quad+4 \frac{\mathrm{~d} \tau}{\mathrm{~d} a}(a-\bar{a}) \hat{\omega}_{\mu \nu}^{-} F_{\mu \nu}-4(\tau-\bar{\tau}) \hat{\omega}_{\mu \nu}^{+} F_{\mu \nu}=0 \tag{2.50}
\end{align*}
$$

The four-dimensional action. It is well known that the equations of motion for a generic M_{5} embedding do not stem from a sixdimensional action. On the other hand our calculation results in the four-dimensional equations of motion for the Ω-deformation of the sw-theory, which we expect to have a Lagrangian description. In fact, a direct calculation shows that the vector equation (2.39) and the two scalar equations (2.49) and (2.50) are all derived from the variation of the following Lagrangian:

$$
\begin{align*}
\mathrm{i} \mathscr{L}= & -(\tau-\bar{\tau})\left[\frac{1}{2} \partial_{\mu} a \partial_{\mu} \bar{a}+F_{\mu \nu} F_{\mu \nu}+(a-\bar{a})^{*} \hat{\omega}_{\mu \nu} F_{\mu \nu}\right. \\
& \left.-2 \partial_{\mu}(a+\bar{a}) \hat{\omega}_{\mu \nu} A_{\nu}\right]+(\tau+\bar{\tau})\left[F_{\mu \nu}{ }^{*} F_{\mu \nu}\right. \\
& \left.+(a-\bar{a}) \hat{\omega}_{\mu \nu} F_{\mu \nu}+2 \partial_{\mu}(a-\bar{a}) \hat{\omega}_{\mu \nu} A_{\nu}\right] \tag{2.51}
\end{align*}
$$

This is the main result of this Letter and represents the Ω-deformation of the sw action. In this form the action is not manifestly gauge invariant. An equivalent, gauge invariant, form is given by

$$
\begin{align*}
\mathrm{i} \mathscr{L}= & -(\tau-\bar{\tau})\left[\frac{1}{2} \partial_{\mu} a \partial_{\mu} \bar{a}+F_{\mu \nu} F_{\mu \nu}+(a-\bar{a})^{*} \hat{\omega}_{\mu \nu} F_{\mu \nu}\right. \\
& \left.-2 \partial_{\mu}(a+\bar{a})^{*} F_{\mu \nu}^{*} \hat{U}_{\nu}\right]+(\tau+\bar{\tau})\left[F_{\mu \nu}^{*} F_{\mu \nu}\right. \\
& \left.+(a-\bar{a}) \hat{\omega}_{\mu \nu} F_{\mu \nu}+2 \partial_{\mu}(a-\bar{a})^{*} F_{\mu \nu}^{*} \hat{U}_{\nu}\right] \tag{2.52}
\end{align*}
$$

where $\omega=\mathrm{d} U$ and ${ }^{*} \omega=\mathrm{d}^{*} U$. Note that in a slight abuse of notation ${ }^{*} U$ is a one-form and not the Hodge dual of U.

Let us consider some generalizations of our calculation. It is natural to write the action in a more supersymmetric form as a sum of squares:

$$
\begin{aligned}
\mathrm{i} \mathscr{L}= & -(\tau-\bar{\tau})\left[\frac{1}{2}\left(\partial_{\mu} a+\frac{2 \bar{\tau}}{\tau-\bar{\tau}} * F_{\mu \nu}^{*} \hat{U}_{\nu}\right)\right. \\
& \times\left(\partial_{\mu} \bar{a}-\frac{2 \tau}{\tau-\bar{\tau}} * F_{\mu \nu}{ }^{*} \hat{U}_{\nu}\right)+\left(F_{\mu \nu}+\frac{1}{2}(a-\bar{a})^{*} \hat{\omega}_{\mu \nu}\right) \\
& \left.\times\left(F_{\mu \nu}+\frac{1}{2}(a-\bar{a})^{*} \hat{\omega}_{\mu \nu}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& +(\tau+\bar{\tau})\left(F_{\mu \nu}+\frac{1}{2}(a-\bar{a})^{*} \hat{\omega}_{\mu \nu}\right) \\
& \times\left({ }^{*} F_{\mu \nu}+\frac{1}{2}(a-\bar{a}) \hat{\omega}_{\mu \nu}\right) \tag{2.53}
\end{align*}
$$

This therefore leads to a prediction for the $\mathcal{O}\left(\epsilon^{2}\right)$ terms. Note however that there could also be additional $\mathcal{O}\left(\epsilon^{2}\right)$ terms which are complete squares on their own, similar to the last term in (1.1).

Finally, although our calculations were only performed in the simplest case of an $S U(2)$ gauge group with one modulus, it is natural to propose that the generalization to arbitrary gauge group and matter content is given by

$$
\begin{align*}
\mathrm{i} \mathscr{L}= & -\left(\tau_{i j}-\bar{\tau}_{i j}\right)\left[\frac{1}{2}\left(\partial_{\mu} a^{i}+2\left(\frac{\bar{\tau}}{\tau-\bar{\tau}}\right)_{i k}^{*} F_{\mu \nu}^{k}{ }^{*} \hat{U}_{\nu}\right)\right. \\
& \times\left(\partial_{\mu} \bar{a}^{j}-2\left(\frac{\tau}{\tau-\bar{\tau}}\right)_{j l}{ }^{*} F_{\mu \nu}^{l}{ }^{*} \hat{U}_{\nu}\right) \\
& \left.+\left(F_{\mu \nu}^{i}+\frac{1}{2}\left(a^{i}-\bar{a}^{i}\right)^{*} \hat{\omega}_{\mu \nu}\right)\left(F_{\mu \nu}^{j}+\frac{1}{2}\left(a^{j}-\bar{a}^{j}\right)^{*} \hat{\omega}_{\mu \nu}\right)\right] \\
& +\left(\tau_{i j}+\bar{\tau}_{i j}\right)\left(F_{\mu \nu}^{i}+\frac{1}{2}\left(a^{i}-\bar{a}^{i}\right)^{*} \hat{\omega}_{\mu \nu}\right) \\
& \times\left({ }^{*} F_{\mu \nu}^{j}+\frac{1}{2}\left(a^{j}-\bar{a}^{j}\right) \hat{\omega}_{\mu \nu}\right), \tag{2.54}
\end{align*}
$$

where we have used a suitable form for the inverse of $(\tau-\bar{\tau})_{i j}$ which is taken to act from the left.

3. Conclusions

In this Letter we have computed the corrections to first order in ϵ to an M_{5}-brane wrapping a Riemann surface in the Ω-background of [12-14]. The result can be viewed as the leading correction to the Seiberg-Witten effective action of $\mathcal{N}=2$ super-Yang-Mills theory with an Ω-deformation.

The corrected effective action includes a shift in the gauge field strength as well as a sort of generalized covariant derivative for the scalar, including a non-minimal coupling to the gauge field. A similar generalized covariant derivative already appears in (1.1) and is reminiscent of the equivariant differential used in [9].

It is important to ask why the result we obtain, calculated as the classical motion of a single M_{5}-brane in M-theory, can capture quantum effects in four-dimensional gauge theory. To answer this we should restore the factors of R and Λ into the Riemann surface. This can be achieved by simply rescaling $\partial s \rightarrow \Lambda^{2} R \partial s$, $\partial s / \partial a \rightarrow R \partial s / \partial a$ and $\partial s / \partial u \rightarrow R \partial s / \partial u$ along with their complex conjugates. However this replacement does not affect the final equations. On the other hand $R=g_{s} l_{s}$ can be related to the gauge coupling constant g_{4} in the string theory picture. Thus the classical M-theory calculation in fact captures all orders of the fourdimensional gauge theory.

Acknowledgement

We would like to thank Paul Howe for helpful correspondence.

Appendix A. Non-holomorphic integrals over Σ

Most of the integrals over the Riemann surface Σ that appear in this note can be evaluated using the same strategy that consists in reducing them to line integrals, as in [18]. As an example consider one of the integrals appearing in the vector equation:

Fig. 1. Numerical integration of L_{2}. The histogram collects the frequency the values of $1-\left|L_{1} / L_{2}\right|$ obtained by integrating for 10^{3} random values of u. The continuous line is a skew normal distribution with average $-1.0 \times 10^{-4} \pm 1.7 \times 10^{-4}$ (pink region). The result is consistent with $L_{1}=L_{2}$. We have also performed similar three-dimensional plots for the complex function $1-L_{1} / L_{2}$ which shows a clear peak around zero. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
$I=\int_{\Sigma} \partial\left[\frac{\partial_{\mu} \bar{s} \partial s}{1+|\partial s|^{2}} \bar{z} \bar{\partial} \bar{s}\right] \mathrm{d} z \wedge \bar{\lambda}$.
First we observe that $\bar{\lambda}$ is an anti-holomorphic one-form, so we can write
$I=\int_{\Sigma} \mathrm{d}\left[\frac{\partial_{\mu} \bar{s} \partial s}{1+|\partial s|^{2}} \bar{z} \bar{\partial} \bar{s}\right] \wedge \bar{\lambda}$.
From the explicit expression of $s(z)$ one finds that the integrand has singularities at the roots \bar{e}_{i} of $Q(\bar{z})$:
$\bar{e}_{i}= \pm \sqrt{\bar{u} \pm 1}, \quad i=1, \ldots, 4$.
For this reason we introduce a new surface Σ_{δ} by cutting holes of radius δ in Σ around e_{i}. Then I becomes an integral over the boundary $\partial \Sigma_{\delta}$:
$I=\oint_{\partial \Sigma_{\delta}} \frac{\partial_{\mu} \bar{s} \bar{\partial} \bar{s}}{1+|\partial s|^{2}} \bar{z} \partial s \bar{\lambda}_{\bar{z}} \mathrm{~d} \bar{z}$.
Since we are interested in the behavior around e_{i} we can expand the integrand in powers of δ. Note that for $z=e_{i}+\delta$,
$\frac{|\partial s|^{2}}{1+|\partial s|^{2}}=\frac{1}{1+1 /|\partial s|^{2}}=\frac{1}{1+|Q| /\left(4|z|^{2}\right)}=1+\mathcal{O}(\delta)$.
Moreover, since $\bar{s}(\bar{z})$ depends on x^{μ} only via the modulus \bar{u} (Eq. (2.12)), $\partial_{\mu} \bar{s}=\partial_{\mu} \bar{u} \bar{\lambda}_{\bar{z}}$, and the integral takes the form
$I=\partial_{\nu} \bar{u} \sum_{i} \oint_{\gamma_{i}} \bar{e}_{i} \bar{\lambda}_{\bar{z}}^{2} \mathrm{~d} \bar{z}+\mathcal{O}(\delta)$,
where γ_{i} is a circle of radius δ around e_{i}, and $\partial \Sigma_{\delta}=\bigcup_{i} \gamma_{i}$. From the explicit expression of \bar{s} we find that
$\bar{\lambda}_{\bar{z}}^{2}=\frac{1}{\bar{Q}(\bar{z})}$,
so that each integral around γ_{i} can be evaluated using the residue theorem:
$\oint_{\gamma_{i}} \frac{1}{\bar{Q}(\bar{z})} \mathrm{d} \bar{z}=-\frac{2 \pi \mathrm{i}}{\prod_{j \neq i}\left(\bar{e}_{i}-\bar{e}_{j}\right)}$,
and the whole integral is given by
$I=-2 \pi \mathrm{i} \partial_{\mu} \bar{u} \sum_{i=1}^{4} \frac{\bar{e}_{i}}{\prod_{j \neq i}\left(\bar{e}_{i}-\bar{e}_{j}\right)}$.
By using the explicit values of e_{i} we finally find that I vanishes.
Let us now examine the L_{1} integral that appeared in the scalar equation. First we integrate by parts:

$$
\begin{align*}
L_{1}= & -\int_{\Sigma} \mathrm{d}\left(\frac{\partial s}{1+|\partial s|^{2}}\right)(s+\bar{s}-z \bar{\partial} \bar{s}-\bar{z} \bar{\partial} \bar{s}) \lambda_{\bar{z}} \wedge \bar{\lambda} \\
= & -\oint_{\partial \Sigma_{\delta}} \frac{\partial s(\bar{s}+\bar{s}-z \bar{\partial} \bar{s}-\bar{z} \bar{\partial} \bar{s})}{1+|\partial s|^{2}} \lambda_{\bar{z}}^{2} \mathrm{~d} \bar{z} \\
& +\int_{\Sigma} \frac{(\partial s)^{2}-|\partial s|^{2}}{1+|\partial s|^{2}} \lambda_{\bar{z}}^{2} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} . \tag{A.10}
\end{align*}
$$

Using similar techniques to the I integral above one finds that the boundary term is

$$
\begin{align*}
& -\oint_{\partial \Sigma_{\delta}} \frac{\partial s(\bar{s}+\bar{s}-z \bar{\partial} \bar{s}-\bar{z} \bar{\partial} \bar{s})}{1+|\partial s|^{2}} \lambda_{\bar{z}}^{2} \mathrm{~d} \bar{z} \\
& \quad=-2 \pi \mathrm{i} \sum_{i=1}^{4} \frac{e_{i}}{\prod_{j \neq i}\left(\bar{e}_{i}-\bar{e}_{j}\right)} \\
& \quad=\pi \mathrm{i}\left(\frac{u-1}{|u-1|}-\frac{u+1}{|u+1|}\right)=L_{2} \tag{A.11}
\end{align*}
$$

Let us now look at the last term of (A.10). Rewriting the integrand in terms of Q we find

$$
\begin{aligned}
& \int_{\Sigma} \frac{(\partial s)^{2}-|\partial s|^{2}}{1+|\partial s|^{2}} \lambda \frac{2}{\bar{z}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} \\
& \quad=\int_{\Sigma} \frac{|z|^{2}}{\frac{1}{4}|Q|+|z|^{2}}\left(\frac{z}{\bar{z}}-\sqrt{\left.\frac{Q}{\bar{Q}}\right) \frac{\mathrm{d} z}{\sqrt{Q}} \wedge \frac{\mathrm{~d} \bar{z}}{\sqrt{\bar{Q}}}}\right. \\
& \quad=\frac{1}{4} \int_{\Sigma} \frac{1}{1+\left|z^{\prime} / z\right|^{2}} \frac{z}{\bar{z}} \mathrm{~d} y \wedge \mathrm{~d} \bar{y}
\end{aligned}
$$

$$
\begin{equation*}
-\frac{1}{4} \int_{\Sigma} \frac{1}{1+\left|z / z^{\prime}\right|^{2}} \frac{z^{\prime}}{\overline{\bar{z}^{\prime}}} \mathrm{d} y \wedge \mathrm{~d} \bar{y} \tag{A.12}
\end{equation*}
$$

where we changed variables to $\mathrm{d} y=2 \mathrm{~d} z / \sqrt{Q}$ so that z is now a holomorphic function of y with $z^{\prime}=\mathrm{d} z / \mathrm{d} y$. We will now show that both terms on the rhs vanish separately. Consider the first term on the rhs and expand in a power series of $\left|z^{\prime} / z\right|$:
$\int_{\Sigma} \frac{1}{1+\left|z^{\prime} / z\right|^{2}} \frac{z}{\bar{z}} \mathrm{~d} y \wedge \mathrm{~d} \bar{y}=\sum_{n=0}^{\infty} \int_{\Sigma}(-1)^{n}\left|\frac{z^{\prime}}{z}\right|^{2 n} \frac{z}{\bar{z}} \mathrm{~d} y \wedge \mathrm{~d} \bar{y}$.
Unfortunately the rhs here is not well-defined, even though the lhs is. To correct this we can introduce two-step regulator with parameters a and b which we will later set to zero. Thus we instead consider

$$
\begin{align*}
& \int_{\Sigma} \frac{\mathrm{e}^{-\left|z^{\prime} / z\right|^{2} a^{2}} \mathrm{e}^{-b^{2}\left(|z|^{2}+1 /|z|^{2}\right)}}{1+\left|z^{\prime} / z\right|^{2}} \frac{z}{\bar{z}} \mathrm{~d} y \wedge \mathrm{~d} \bar{y} \\
& \quad=\sum_{n=0}^{\infty} \int_{\Sigma}(-1)^{n}\left|\frac{z^{\prime}}{z}\right|^{2 n} \mathrm{e}^{-\left|z^{\prime} / z\right|^{2} a^{2}} \mathrm{e}^{-b^{2}\left(|z|^{2}+1 /|z|^{2}\right)} \frac{z}{\bar{z}} \mathrm{~d} y \wedge \mathrm{~d} \bar{y} \\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \int_{\Sigma} \frac{z}{\bar{z}} \mathrm{e}^{-\left|z^{\prime} / z\right|^{2} a^{2}} \mathrm{e}^{-b^{2}\left(|z|^{2}+1 /|z|^{2}\right)} \mathrm{d} y_{n} \wedge \mathrm{~d} \bar{y}_{n} \tag{A.14}
\end{align*}
$$

where we have changed variables again to $\mathrm{d} y_{n}=\left(z^{\prime} / z\right)^{n} \mathrm{~d} y$. Let us now set $a=0$ to deduce that

$$
\begin{align*}
& \int_{\Sigma} \frac{\mathrm{e}^{-b^{2}\left(|z|^{2}+1 /|z|^{2}\right)}}{1+\left|z^{\prime} / z\right|^{2}} \frac{\bar{z}}{\bar{z}} \mathrm{~d} y \wedge \mathrm{~d} \bar{y} \\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \int_{\Sigma} \frac{z}{\bar{z}} \mathrm{e}^{-b^{2}\left(|z|^{2}+1 /|z|^{2}\right)} \mathrm{d} y_{n} \wedge \mathrm{~d} \bar{y}_{n} \tag{A.15}
\end{align*}
$$

In each of the terms of the sum z is a holomorphic function of y_{n} and therefore $z\left(y_{n}\right)$ covers the whole complex plane (with the exception of one point) and hence the integral of the phases z / \bar{z} must vanish since the b-regulator is independent of the phase. We can now set $b=0$ to see that each term in the sum vanishes and hence the first term on the rhs of (A.12) vanishes. Finally we can repeat a similar argument for the second term on the rhs of (A.12) only in this case the b-regulator should be taken to be $\mathrm{e}^{-b^{2}\left(\left|z^{\prime}\right|^{2}+1 /\left|z^{\prime}\right|^{2}\right)}$. Thus we see that (A.12) vanishes and hence $L_{1}=L_{2}$. The above proof that $L_{1}=L_{2}$ is a little suspect since we required two regulators and needed to set $a=0$ first and then $b=0$. As a check we performed a numerical integration for random values of u which clearly supports our claim (see Fig. 1).

References

[1] N. Seiberg, E. Witten, Nucl. Phys. B 426 (1994) 19, arXiv:hep-th/9407087.
[2] S.J. Gates Jr., M.T. Grisaru, W. Siegel, Nucl. Phys. B 203 (1982) 189.
[3] P.S. Howe, K. Stelle, P.C. West, Phys. Lett. B 124 (1983) 55.
[4] N. Seiberg, Phys. Lett. B 206 (1988) 75.
[5] N. Dorey, V.V. Khoze, M.P. Mattis, Phys. Rev. D 54 (1996) 2921, arXiv:hepth/9603136.
[6] N. Dorey, V.V. Khoze, M.P. Mattis, Phys. Rev. D 54 (1996) 7832, arXiv:hepth/9607202.
[7] E. Witten, Nucl. Phys. B 500 (1997) 3, arXiv:hep-th/9703166.
[8] P.S. Howe, N. Lambert, P.C. West, Phys. Lett. B 418 (1998) 85, arXiv:hepth/9710034.
[9] N.A. Nekrasov, Adv. Theor. Math. Phys. 7 (2004) 831, arXiv:hep-th/0206161, to Arkady Vainshtein on his 60th anniversary.
[10] N. Nekrasov, A. Okounkov, Seiberg-Witten theory and random partitions, arXiv: hep-th/0306238.
[11] L.F. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys. 91 (2010) 167, arXiv: 0906.3219.
[12] S. Hellerman, D. Orlando, S. Reffert, JHEP 1201 (2012) 148, arXiv:1106.0279.
[13] S. Reffert, JHEP 1204 (2012) 059, arXiv:1108.0644.
[14] S. Hellerman, D. Orlando, S. Reffert, JHEP 1207 (2012) 061, arXiv:1204.4192.
[15] P.S. Howe, E. Sezgin, Phys. Lett. B 394 (1997) 62, arXiv:hep-th/9611008.
[16] P.S. Howe, E. Sezgin, P.C. West, Phys. Lett. B 399 (1997) 49, arXiv:hep-th/ 9702008.
[17] N. Lambert, P.C. West, Nucl. Phys. B 524 (1998) 141, arXiv:hep-th/9712040.
[18] N. Lambert, P.C. West, Phys. Lett. B 424 (1998) 281, arXiv:hep-th/9801104.

[^0]: * Corresponding author.

 E-mail address: domenico.orlando@cern.ch (D. Orlando).
 ${ }^{1}$ On leave from King's College London.

[^1]: ${ }^{2}$ The ϵ_{3} component, although generically non-vanishing, will not play a role in this Letter as the M_{5}-brane will be held fixed in the x^{4}, x^{5} plane.

[^2]: ${ }^{3}$ Note that we have chosen the opposite sign to the rhs of the scalar equation as compared to what is given in [16]. This corresponds to a choice of brane or anti-brane.

