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1. Introduction

Ever since the classic result of Seiberg and Witten (sw) [1],
N = 2 gauge theories have occupied a prominent place in theoreti-
cal physics. The resulting low energy sw effective action is given in
terms of a Riemann surface, the sw curve, which encodes all the
perturbative and non-perturbative quantum effects of the gauge
theory. While all the perturbative corrections had been known
since [2–4], this solution gave a prediction for an infinite num-
ber of non-perturbative instanton corrections, the first few terms
of which could be checked by explicit computation [5,6].

Not long afterwards, M-theory was developed as an eleven-
dimensional non-perturbative completion of String Theory. In a
striking paper Witten showed how the sw curve could be naturally
obtained from the geometry of intersecting NS5 and D4-branes
lifted to M-theory where they become a single M5-brane [7].
Moreover the complete quantum sw effective action for N = 2 su-
persymmetric SU(N) Yang–Mills theory was obtained in [8] from
the classical dynamics of the M5-brane.

An alternative method to compute the sw solution from
first principles came with Nekrasov’s seminal paper using the
Ω-background [9]. This background deforms the gauge theory and
allows for localization techniques to be used to compute all the
instanton corrections and also reconstruct the curve and its associ-
ated quantities [10]. Since then the Ω-background has received a
lot of interest, most recently in the context of the correspondence
by Alday, Gaiotto and Tachikawa [11] and work related to it.

The so-called fluxtrap background [12,13] provides a string-
theoretical construction of the Euclidean Ω-background deter-
mined by a two-form ω = dU . In particular the bosonic Abelian
worldvolume action for D4-branes suspended between NS5-branes
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in this background was given in [14]. The generalization to non-
Abelian fields is given by (μ,ν = 0,1,2,3)

LD4 = 1
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]
, (1.1)

where a hat denotes the pullback to the brane and a bold-face
indicates a non-Abelian field. This action agrees with the first order
action obtained in [10]. The fluxtrap can be lifted to M-theory [14].
At order ε it is given by (M, N = 0,1,2, . . . ,10)

gMN = δMN +O
(
ε2), (1.2a)

G4 = (dz + dz̄) ∧ (ds + ds̄) ∧ ω, (1.2b)

where s = x6 + ix10, z = x8 + ix9, and

ω = ε1 dx0 ∧ dx1 + ε2 dx2 ∧ dx3 + ε3 dx4 ∧ dx5. (1.3)

The background has 8 Killing spinors if ε1 + ε2 + ε3 = 0, and 16
Killing spinors in the special case ε1 = −ε2 and ε3 = 0.2

In this Letter we will derive the corrections to first order in
ε to the Ω-deformed sw action. We do this by employing the
M-theory lift of the fluxtrap background. As we will see, the clas-
sical M-theory calculation has the invaluable benefit of giving a
quantum result in gauge theory since in this case, the result is in-
dependent of the effective coupling in the gauge theory. We embed
the M5-brane in the Ω-background and study the most supersym-
metric configuration which to first order in ε is still of the form
R4 ×Σ with an additional self-dual three-form. This is the ground

2 The ε3 component, although generically non-vanishing, will not play a role in
this Letter as the M5-brane will be held fixed in the x4, x5 plane.
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state of a six-dimensional theory on top of which we have fluctu-
ations fulfilling some assumptions detailed in the following. These
fluctuations obey scalar and vector equations of motion that arise
from the six-dimensional theory, where the scalar equation en-
codes the fact that the M5-brane is a (generalized) minimal surface
and the vector equation posits that the self-dual three-form on the
brane is the (generalized) pullback of the three-form field in the bulk.
To arrive at the four-dimensional gauge theory, we must integrate
these equations over the Riemann surface Σ using an appropriate
measure. The integration results in one vector equation and two
scalar equations in four dimensions, which are the Euler–Lagrange
equations for a four-dimensional action, which in the case ε = 0
reproduces the undeformed sw action. We explicitly treat the case
of SU(2) without matter, however there is a natural generalization
of our result to any gauge group and matter content.

The plan of this Letter is as follows. In Section 2 we describe
the embedding of the M5-brane, the six-dimensional equations of
motion and their reduction to four dimensions. We also give an
action that captures these equations of motion. This action can
be extrapolated to second order in ε and generalized to arbitrary
gauge group and matter content. In Section 3 we give our con-
clusions. We also provide an appendix that gives some technical
steps in the evaluation of various non-holomorphic integrals over
the Riemann surface that arise.

2. M5-brane dynamics in the Ω-fluxtrap

The homogeneous embedding of the M5-brane. Due to the funda-
mentally Euclidean nature of the fluxtrap background, we will be
discussing the Euclidean version of sw-theory. For this reason, the
self-duality condition for the three-form h3 on the M5-brane turns
into

i ∗6 h3 = h3, (2.1)

which we will refer to as self-duality.
The embedding of the M5-brane in the fluxtrap background at

order ε has already been discussed in [14], where it was found
that the brane wraps a Riemann surface. Let us recall here the
argument. As discussed in [7], the M-theory lift of a NS5–D4 sys-
tem (extended respectively in x0, . . . , x3, x8, x9 and x0, . . . , x3, x6)
is a single M5-brane extended in x0, . . . , x3 and wrapping a two-
cycle in x6, x8, x9, x10. We use static gauge and assume that the
M5-brane has coordinates xμ , μ = 0,1,2,3 and z = x8 + ix9. We
also assume that the only non-vanishing scalar field is s = x6 + ix10.
The precise form of the embedding is found if we require this
brane to preserve the same supersymmetries of the original iia

system. Given the Killing spinors η0 of the bulk, the M5-brane pre-
serves those satisfying [15,16] (m,n = 0,1,2, . . . ,5)

Π
M5− η0 = 1

2
(1 − ΓM5)η0 = 0,

ΓM5 = −εm1···m6 Γ̂m1···m6

6!√ĝ

(
1 − 1

3
Γ̂ n1n2n3 hn1n2n3

)
, (2.2)

where Γ̂ and ĝ are the gamma matrices and the metric, pulled
back to the brane. Here h3 is the self-dual three-form on the
M5-brane worldvolume which satisfies

dH3 = −1

4
Ĝ4, (2.3)

where H3 = h3 +O(h3).
3
For ε = 0 we have h3 = 0 and the M5-brane is described by
a Riemann surface ∂̄s = 0 [7]. Let us now consider the first order
effect that arises when turning on ε . To this order we may simply
take H3 = h3 but in principle s may pick up a non-holomorphic
piece. However at O(ε) the pullback only depends holomorphically
on s(z) since ω̂ is by itself of order ε:

Ĝ4 = −(∂s − ∂̄ s̄)dz ∧ dz̄ ∧ ω̂ +O
(
ε2). (2.4)

Therefore we can take

h3 = 1

4

(
s̄ − z̄∂s + f (z)

)
dz ∧ ω̂− + 1

4

(
s − z∂̄ s̄ + f̄ (z̄)

)
dz̄ ∧ ω̂+,

(2.5)

where f is an arbitrary holomorphic function and we have decom-
posed the two-form ω̂ as

ω̂ = ε1 + ε2

2

(
dx0 ∧ dx1 + dx2 ∧ dx3)

+ ε1 − ε2

2

(
dx0 ∧ dx1 − dx2 ∧ dx3)

= ω̂+ + ω̂−. (2.6)

These are all the ingredients needed to write the supersymmetry
condition,

Π
M5− η = Π

M5− Π
NS5+ Π

D4+ η0 = 0, (2.7)

where the projectors ΠNS5 and ΠD4 refer to the M5-branes result-
ing from the lift of the NS5-brane and D4-brane introduced above
such that η = Π

NS5+ Π
D4+ η0 are the Killing spinors preserved by the

branes. Since the two M5-brane projectors commute, the full con-
figuration preserves two supercharges in the generic case and four
if ε1 = −ε2. An explicit calculation shows that the condition is sat-
isfied at O(ε) if{

∂̄s = 0,

f (z) = 0,
(2.8)

which completely fix the embedding of the M5-brane and the self-
dual field h3.

Thus even at order O(ε) the brane is embedded holomorphi-
cally in spacetime. For the simplest case corresponding to pure
SU(2) Yang–Mills, the precise form was found in [7] and is de-
termined implicitly by

t2 − 2B(z|u)t + Λ4 = 0, t = Λ2e−s/R , (2.9)

where B(z|u) = Λ4z2 − u, Λ is a mass scale and R the radius of
the x10-direction. This embedding defines a Riemann surface Σ

with modulus u,

Σ = {
(z, s)

∣∣ s = s(z|u)
}
. (2.10)

It is useful to observe that

∂s

∂u
dz = − 1

2Λ4z

∂s

∂z
dz = R dz√

Q (z|u)
= Rλ (2.11)

is the unique holomorphic one-form on Σ where Q (z|u) =
B(z|u)2 −Λ4. For most of this Letter we will simply set R = Λ = 1.
They are in principle needed on dimensional grounds, since both s
and z have dimensions of length whereas the modulus u is usually
taken to have mass-dimension two. We will briefly reinstate them
in the conclusions by simply rescaling z and s, when discussing
the quantum nature of our result.

Equations of motion in 6d. Having found the embedding of the
M5-brane we want to describe the low energy dynamics of the
fluctuations around the equilibrium. In fact, since we are interested
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in the effective four-dimensional theory living on x0, . . . , x3 which
results from integrating the M5 equations of motion over the Rie-
mann surface Σ , we will assume that:

1. the geometry of the five-brane is still a fibration of a Riemann
surface over R

4;
2. for each point in R

4 we have the same Riemann surface as
above, but with a different value of the modulus u.

In other words, the modulus u of Σ is a function of the worldvol-
ume coordinates and the embedding is still formally defined by the
same equation, but now s = s(z|u(xμ)) so that the xμ-dependence
is entirely captured by

∂μs
(
z
∣∣u(

xμ
)) = ∂μu

∂s

∂u
. (2.12)

For ease of notation we will drop in the following the explicit de-
pendence of s on u(xμ) and write directly s = s(z, xμ). Much of
our discussion follows the undeformed case considered in detail
in [8,17,18].

The dynamics can be obtained by evaluating the M5-brane
equations of motion. Here we will only focus on the bosonic fields.
Covariant equations of motion for the M5-brane were obtained
in [15,16]. In general these are rather complicated equations, par-
ticularly with regard to the three-form. However in this Letter we
only wish to work to linear order in ε and quadratic order in
spatial derivatives ∂μ . In particular we can take H3 = h3 and the
equations of motion reduce to3

(
ĝmn − 16hmpqhn

pq
)∇m∇n X I = −2

3
Ĝ I

mnphmnp, (2.13)

dh3 = −1

4
Ĝ4, (2.14)

where I = 6, . . . ,10 and the geometrical quantities are defined
with respect to the pullback of the spacetime metric to the brane
ĝmn .

As a first step we need to write the three-form field on the
brane. In full generality, h3 can be decomposed as

h3 = −1

4
(Ĉ3 + i ∗6 Ĉ3 − Φ), (2.15)

where Ĉ3 is the pullback of the three-form in the bulk, and Φ

is a self-dual three-form that will encode the fluctuations of the
four-dimensional gauge field.

Since we ultimately want to discuss the gauge theory living
on the worldvolume coordinates x0, . . . , x3, we make the follow-
ing self-dual (i ∗6 Φ = Φ) ansatz for Φ:

Φ = κ

2
Fμν dxμ ∧ dxν ∧ dz + κ̄

2
F̃μν dxμ ∧ dxν ∧ dz̄

+ 1

1 + |∂s|2
1

3!εμνρσ

(
∂τ s∂̄ s̄κFστ − ∂τ s̄∂sκ̄F̃στ

)
dxμ

∧ dxν ∧ dxρ. (2.16)

The two-form F is anti-self-dual in four dimensions, while F̃ is
self-dual:

∗4F = −F, ∗4F̃ = F̃ . (2.17)

Here ∗4 is the flat space Hodge star and κ(z) is a holomorphic
function given by [17]

3 Note that we have chosen the opposite sign to the rhs of the scalar equation
as compared to what is given in [16]. This corresponds to a choice of brane or
anti-brane.
κ = ds

da
=

(
da

du

)−1

λz. (2.18)

Here λ = λzdz is the holomorphic one-form on Σ and a is the
scalar field used in the Seiberg–Witten solution and related to λ

by

da

du
=

∮
A

λ, (2.19)

where A is the a-cycle of Σ . In the following, F and F̃ will be
related to the four-dimensional gauge field strength, thus justifying
our ansatz.

We also need to choose a gauge for the three-form potential C3
in the bulk:

C3 = −1

2
(s̄ dv − v̄ ds + s dv − v̄ ds̄) ∧ ω + c.c. (2.20)

Its pullback on the Riemann surface {v = z, s = s(z, xμ)} is given
by

Ĉ3 = −1

2

(
s̄ dz − z̄∂s dz − z̄∂μs dxμ + s dz − z̄∂̄ s̄ dz̄ − z̄∂μ s̄ dxμ

)
∧ ω̂ + c.c. (2.21)

We are only interested in terms up to second order in the space-
time derivatives ∂μ and in particular we observe that ω̂ is by itself
of first order. It follows that the six-dimensional Hodge dual is
given by

i ∗6 Ĉ3 = 1

2
(s̄ dz − z̄∂s dz + s dz + z̄∂̄s dz̄ − s dz̄

+ z∂̄ s̄ dz̄ − s̄ dz̄ − z∂s dz) ∧ ∗ω̂

+ 1

2 · 3!
(
1 + |∂s|2)εμνλρCμνλ dxρ ∧ dz ∧ dz̄

+ 1

1 + |∂s|2 εμνρσ

(
∂τ s∂̄ s̄Ĉστ z − ∂τ s̄∂sĈστ z̄

)
dxμ

∧ dxν ∧ dxρ, (2.22)

where ∗ω̂ = ∗4ω̂ = ω̂+ − ω̂− .
The vector equation. Consider now the vector equation dh3 =

− 1
4 Ĥ4. Given our expression for h3, the equation becomes

dΦ = id ∗6 Ĉ3, (2.23)

where we see explicitly the role of the bulk three-form as source
for the gauge field on the brane. At this point it is useful to quickly
discuss the issue of gauge covariance of the three-form equation.
The bulk three-form is defined up to the differential of a two-form
C3 �→ C ′

3 + dB2. Under this shift the vector equation becomes

dΦ = id ∗6 Ĉ ′
3 + id ∗6 dB̂2, (2.24)

which can be compensated for by an analogous shift in the fluctu-
ations:

Φ �→ Φ ′ + dB̂2 + i ∗6 dB̂2. (2.25)

Let us go back to our ansatz. The tensor Φ does not contribute
to the μνzz̄ component:

dΦ|μνzz̄ ≡ 0 (2.26)

so we only need to verify that

d ∗6 Ĉ |μνzz̄ = 0, (2.27)
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which is satisfied up to terms of order O(∂μ)3, taking into account
the fact that ω̂ is by itself of order O(∂μ). Similarly, also the μνλρ
component of the equation of motion is of higher order.

It is convenient to take the six-dimensional dual of the remain-
ing terms and decompose them in coordinates:

∗6d(Φ − i ∗6 Ĉ3) = 1

2
Eμz dxμ ∧ dz + 1

2
Eμz̄ dxμ ∧ dz̄ = 0, (2.28)

where explicitly

Eμz = ∂μ(κFμν − Ĉμνz) + ∂

[
∂̄ s̄∂ν s

1 + |∂s|2 (κFμν − Ĉμνz)

]
− ∂

[
∂s∂ν s̄

1 + |∂s|2 (κ̄F̃μν − Ĉμν z̄)

]
, (2.29a)

Eμz̄ = ∂μ(κ̄F̃μν − Ĉμν z̄) + ∂̄

[
∂s∂ν s̄

1 + |∂s|2 (κ̄F̃μν − Ĉμν z̄)

]
− ∂̄

[
∂̄ s̄∂ν s

1 + |∂s|2 (κFμν − Ĉμνz)

]
. (2.29b)

Note that because of the epsilon tensors in the definition of Eμz ,
the equations only depend on ω̂ and not on ∗ω̂.

To obtain the equations of motion of the vector zero-modes in
four dimensions we need to reduce these equations on the Rie-
mann surface. In order for the integral to be well-defined every-
where on Σ we have only two possible choices for the integrand,
depending on the (unique) one-form λ or its complex conjugate:∫
Σ

∗6d(Φ − id ∗ Ĉ3) ∧ λ̄ = dxμ ∧
∫
Σ

Eμz dz ∧ λ̄ = 0, (2.30a)

∫
Σ

∗6d(Φ − id ∗ Ĉ3) ∧ λ = dxμ ∧
∫
Σ

Eμz̄ dz̄ ∧ λ = 0. (2.30b)

The explicit integration is relatively straightforward using the tech-
niques explained in Appendix A. The only non-vanishing integrals
have been already evaluated in [8,18]:

I0 =
∫
Σ

λ ∧ λ̄ = da

du
(τ − τ̄ )

dā

dū
, (2.31)

K =
∫
Σ

∂̄

[
λz∂̄ s̄

1 + |∂s|2
]

dz̄ ∧ λ = −
(

da

du

)2 dτ

du
, (2.32)

where one uses the following definitions:

a =
∮
A

λSW , aD =
∮
B

λSW ,

τ = daD

da
, λ = ∂λSW

∂u
, (2.33)

along with the Riemann bi-linear identity∫
λ ∧ λ̄ =

∮
B

λ

∮
A

λ̄ −
∮
A

λ

∮
B

λ̄. (2.34)

The two integrals in Eq. (2.30) become

(τ − τ̄ )(∂μFμν + ∂μaω̂μν) + ∂μτFμν − ∂μτ̄ F̃μν = 0, (2.35a)

(τ − τ̄ )(∂μF̃μν + ∂μāω̂μν) + ∂μτFμν − ∂μτ̄ F̃μν = 0. (2.35b)

Taking the difference of the two equations we find

∂μ(Fμν − F̃μν) = −∂μ(a − ā)ω̂μν, (2.36)
which is solved by writing{
F = (1 − ∗)F − (a − ā)ω̂−,

F̃ = (1 + ∗)F + (a − ā)ω̂+,
(2.37)

where F satisfies the standard Bianchi identity

d ∗ F = 0, (2.38)

and can be written as the differential of a one-form F = dA. In
the following we will identify F with the four-dimensional gauge
field and, in this sense, Eq. (2.36) represents the correction to the
Bianchi equations introduced by the Ω-deformation. Substituting
this condition into the first equation of (2.35), we derive the final
form of the four-dimensional vector equations:

(τ − τ̄ )

[
∂μFμν + 1

2
∂μ(a + ā)ω̂μν + 1

2
∂μ(a − ā)∗ω̂μν

]
+ ∂μ(τ − τ̄ )

[
Fμν + 1

2
(a − ā)∗ω̂μν

]
− ∂μ(τ + τ̄ )

[
∗ Fμν + 1

2
(a − ā)ω̂μν

]
= 0, (2.39)

where ∗ F = ∗4 F .
The scalar equation. Next we turn our attention to evaluating

the scalar equation. The main new ingredient with respect to the
calculation in the literature [17] is the presence of a rhs term in
Eq. (2.13), which reads

−2

3
Ĝ I

mnphmnp = 2

1 + |∂s|2 ω̂−
μνFμν

(
da

du

)−1

λz

+ 2

1 + |∂s|2 ω̂+
μνF̃μν

(
dā

dū

)−1

λ̄z̄, (2.40)

for both non-trivial cases X I = s and X I = s̄. The two correspond-
ing scalar equations take the form

E = ∂μ∂μs − ∂

[
∂ρ s∂ρ s∂̄ s̄

1 + |∂s|2
]

− 16∂2s

(1 + |∂s|2)2
hμν z̄hμν z̄

− 2ω̂−
μνFμν

(
da

du

)−1

λz + 2ω̂+
μνF̃μν

(
dā

dū

)−1

λ̄z̄ = 0, (2.41)

Ē = ∂μ∂μ s̄ − ∂̄

[
∂ρ s̄∂ρ s̄∂s

1 + |∂s|2
]

− 16∂̄2 s̄

(1 + |∂s|2)2
hμνzhμνz

− 2ω̂−
μνFμν

(
da

du

)−1

λz + 2ω̂+
μνF̃μν

(
dā

dū

)−1

λ̄z̄ = 0. (2.42)

In this case it is natural to integrate over the Riemann surface
using the form dz ∧ λ̄ and obtain the four-dimensional scalar equa-
tions of motion as∫
Σ

E dz ∧ λ̄ =
∫
Σ

Ē dz̄ ∧ λ = 0. (2.43)

The details of the calculation are similar to those of the vector
equation. The end result is

(τ − τ̄ )∂μ∂μa + ∂μa∂μτ + dτ̄

dā
F̃μνF̃μν − 2(τ − τ̄ )ω̂μνFμν

+ 2(L1 − L2)

(
dā

dū

)2

ω̂μνF̃μν = 0, (2.44)

(τ − τ̄ )∂μ∂μā − ∂μā∂μτ̄ − dτ

da
FμνFμν − 2(τ − τ̄ )ω̂μνF̃μν

+ 2(L̄1 − L̄2)

(
da

)2

ω̂μνFμν = 0, (2.45)

du
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where L1 and L2 are the integrals

L1 = −
∫
Σ

∂

(
∂s

1 + |∂s|2
)

(s̄ + s̄ − z∂̄ s̄ − z̄∂̄ s̄)λz̄ dz ∧ λ̄, (2.46)

L2 =
∫
Σ

λ̄z̄ dz ∧ λ̄. (2.47)

The second integral can be evaluated straightforwardly in terms of
u using the methods of Appendix A:

L2 =
∫
Σ

λ̄2
z̄ dz ∧ dz̄ = π i

(
u − 1

|u − 1| − u + 1

|u + 1|
)

. (2.48)

The evaluation of L1 is more involved but leads to L1 = L2 (see
Appendix A).

The scalar equations take the final form

(τ − τ̄ )∂μ∂μa + ∂μa∂μτ + 2
dτ̄

dā

(
Fμν Fμν + Fμν

∗ Fμν

)
+ 4

dτ̄

dā
(a − ā)ω̂+

μν Fμν − 4(τ − τ̄ )ω̂−
μν Fμν = 0, (2.49)

(τ − τ̄ )∂μ∂μā − ∂μā∂μτ̄ − 2
dτ

da

(
Fμν Fμν − Fμν

∗ Fμν

)
+ 4

dτ

da
(a − ā)ω̂−

μν Fμν − 4(τ − τ̄ )ω̂+
μν Fμν = 0. (2.50)

The four-dimensional action. It is well known that the equations
of motion for a generic M5 embedding do not stem from a six-
dimensional action. On the other hand our calculation results in
the four-dimensional equations of motion for the Ω-deformation
of the sw-theory, which we expect to have a Lagrangian descrip-
tion. In fact, a direct calculation shows that the vector equa-
tion (2.39) and the two scalar equations (2.49) and (2.50) are all
derived from the variation of the following Lagrangian:

iL = −(τ − τ̄ )

[
1

2
∂μa∂μā + Fμν Fμν + (a − ā)∗ω̂μν Fμν

− 2∂μ(a + ā)ω̂μν Aν

]
+ (τ + τ̄ )

[
Fμν

∗ Fμν

+ (a − ā)ω̂μν Fμν + 2∂μ(a − ā)ω̂μν Aν

]
. (2.51)

This is the main result of this Letter and represents the Ω-defor-
mation of the sw action. In this form the action is not manifestly
gauge invariant. An equivalent, gauge invariant, form is given by

iL = −(τ − τ̄ )

[
1

2
∂μa∂μā + Fμν Fμν + (a − ā)∗ω̂μν Fμν

− 2∂μ(a + ā)∗ Fμν
∗Ûν

]
+ (τ + τ̄ )

[
Fμν

∗ Fμν

+ (a − ā)ω̂μν Fμν + 2∂μ(a − ā)∗ Fμν
∗Ûν

]
, (2.52)

where ω = dU and ∗ω = d∗U . Note that in a slight abuse of nota-
tion ∗U is a one-form and not the Hodge dual of U .

Let us consider some generalizations of our calculation. It is
natural to write the action in a more supersymmetric form as a
sum of squares:

iL = −(τ − τ̄ )

[
1

2

(
∂μa + 2τ̄

τ − τ̄
∗ Fμν

∗Ûν

)
×

(
∂μā − 2τ

τ − τ̄
∗ Fμν

∗Ûν

)
+

(
Fμν + 1

2
(a − ā)∗ω̂μν

)
×

(
Fμν + 1

(a − ā)∗ω̂μν

)]

2

+ (τ + τ̄ )

(
Fμν + 1

2
(a − ā)∗ω̂μν

)
×

(
∗ Fμν + 1

2
(a − ā)ω̂μν

)
. (2.53)

This therefore leads to a prediction for the O(ε2) terms. Note how-
ever that there could also be additional O(ε2) terms which are
complete squares on their own, similar to the last term in (1.1).

Finally, although our calculations were only performed in the
simplest case of an SU(2) gauge group with one modulus, it is
natural to propose that the generalization to arbitrary gauge group
and matter content is given by

iL = −(τi j − τ̄i j)

[
1

2

(
∂μai + 2

(
τ̄

τ − τ̄

)
ik

∗ F k
μν

∗Ûν

)
×

(
∂μā j − 2

(
τ

τ − τ̄

)
jl

∗ F l
μν

∗Ûν

)
+

(
F i
μν + 1

2

(
ai − āi)∗ω̂μν

)(
F j
μν + 1

2

(
a j − ā j)∗ω̂μν

)]
+ (τi j + τ̄i j)

(
F i
μν + 1

2

(
ai − āi)∗ω̂μν

)
×

(
∗ F j

μν + 1

2

(
a j − ā j)ω̂μν

)
, (2.54)

where we have used a suitable form for the inverse of (τ − τ̄ )i j
which is taken to act from the left.

3. Conclusions

In this Letter we have computed the corrections to first or-
der in ε to an M5-brane wrapping a Riemann surface in the
Ω-background of [12–14]. The result can be viewed as the leading
correction to the Seiberg–Witten effective action of N = 2 super-
Yang–Mills theory with an Ω-deformation.

The corrected effective action includes a shift in the gauge field
strength as well as a sort of generalized covariant derivative for
the scalar, including a non-minimal coupling to the gauge field.
A similar generalized covariant derivative already appears in (1.1)
and is reminiscent of the equivariant differential used in [9].

It is important to ask why the result we obtain, calculated as
the classical motion of a single M5-brane in M-theory, can cap-
ture quantum effects in four-dimensional gauge theory. To answer
this we should restore the factors of R and Λ into the Riemann
surface. This can be achieved by simply rescaling ∂s → Λ2 R∂s,
∂s/∂a → R∂s/∂a and ∂s/∂u → R∂s/∂u along with their complex
conjugates. However this replacement does not affect the final
equations. On the other hand R = gsls can be related to the gauge
coupling constant g4 in the string theory picture. Thus the clas-
sical M-theory calculation in fact captures all orders of the four-
dimensional gauge theory.
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Appendix A. Non-holomorphic integrals over Σ

Most of the integrals over the Riemann surface Σ that appear
in this note can be evaluated using the same strategy that con-
sists in reducing them to line integrals, as in [18]. As an example
consider one of the integrals appearing in the vector equation:
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Fig. 1. Numerical integration of L2. The histogram collects the frequency the values of 1 − |L1/L2| obtained by integrating for 103 random values of u. The continuous line is
a skew normal distribution with average −1.0 × 10−4 ± 1.7 × 10−4 (pink region). The result is consistent with L1 = L2. We have also performed similar three-dimensional
plots for the complex function 1 − L1/L2 which shows a clear peak around zero. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this Letter.)
I =
∫
Σ

∂

[
∂μ s̄∂s

1 + |∂s|2 z̄∂̄ s̄

]
dz ∧ λ̄. (A.1)

First we observe that λ̄ is an anti-holomorphic one-form, so we
can write

I =
∫
Σ

d

[
∂μ s̄∂s

1 + |∂s|2 z̄∂̄ s̄

]
∧ λ̄. (A.2)

From the explicit expression of s(z) one finds that the integrand
has singularities at the roots ēi of Q (z̄):

ēi = ±√
ū ± 1, i = 1, . . . ,4. (A.3)

For this reason we introduce a new surface Σδ by cutting holes
of radius δ in Σ around ei . Then I becomes an integral over the
boundary ∂Σδ :

I =
∮

∂Σδ

∂μ s̄∂̄ s̄

1 + |∂s|2 z̄∂sλ̄z̄ dz̄. (A.4)

Since we are interested in the behavior around ei we can expand
the integrand in powers of δ. Note that for z = ei + δ,

|∂s|2
1 + |∂s|2 = 1

1 + 1/|∂s|2 = 1

1 + |Q |/(4|z|2) = 1 +O(δ). (A.5)

Moreover, since s̄(z̄) depends on xμ only via the modulus ū
(Eq. (2.12)), ∂μ s̄ = ∂μūλ̄z̄ , and the integral takes the form

I = ∂ν ū
∑

i

∮
γi

ēi λ̄
2
z̄ dz̄ +O(δ), (A.6)

where γi is a circle of radius δ around ei , and ∂Σδ = ⋃
i γi . From

the explicit expression of s̄ we find that

λ̄2
z̄ = 1

Q̄ (z̄)
, (A.7)

so that each integral around γi can be evaluated using the residue
theorem:∮
γ

1

Q̄ (z̄)
dz̄ = − 2π i∏

j 
=i(ēi − ē j)
, (A.8)
i

and the whole integral is given by

I = −2π i∂μū
4∑

i=1

ēi∏
j 
=i(ēi − ē j)

. (A.9)

By using the explicit values of ei we finally find that I vanishes.
Let us now examine the L1 integral that appeared in the scalar

equation. First we integrate by parts:

L1 = −
∫
Σ

d

(
∂s

1 + |∂s|2
)

(s + s̄ − z∂̄ s̄ − z̄∂̄ s̄)λz̄ ∧ λ̄

= −
∮

∂Σδ

∂s(s̄ + s̄ − z∂̄ s̄ − z̄∂̄ s̄)

1 + |∂s|2 λ2
z̄ dz̄

+
∫
Σ

(∂s)2 − |∂s|2
1 + |∂s|2 λ2

z̄ dz ∧ dz̄. (A.10)

Using similar techniques to the I integral above one finds that the
boundary term is

−
∮

∂Σδ

∂s(s̄ + s̄ − z∂̄ s̄ − z̄∂̄ s̄)

1 + |∂s|2 λ2
z̄ dz̄

= −2π i
4∑

i=1

ei∏
j 
=i(ēi − ē j)

= π i

(
u − 1

|u − 1| − u + 1

|u + 1|
)

= L2. (A.11)

Let us now look at the last term of (A.10). Rewriting the integrand
in terms of Q we find∫
Σ

(∂s)2 − |∂s|2
1 + |∂s|2 λ2

z̄ dz ∧ dz̄

=
∫
Σ

|z|2
1
4 |Q | + |z|2

(
z

z̄
−

√
Q

Q̄

)
dz√

Q
∧ dz̄√

Q̄

= 1

4

∫
1

1 + |z′/z|2
z

z̄
dy ∧ d ȳ
Σ
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− 1

4

∫
Σ

1

1 + |z/z′|2
z′

z̄′ dy ∧ d ȳ, (A.12)

where we changed variables to dy = 2 dz/
√

Q so that z is now
a holomorphic function of y with z′ = dz/dy. We will now show
that both terms on the rhs vanish separately. Consider the first
term on the rhs and expand in a power series of |z′/z|:∫
Σ

1

1 + |z′/z|2
z

z̄
dy ∧ d ȳ =

∞∑
n=0

∫
Σ

(−1)n

∣∣∣∣ z′

z

∣∣∣∣2n z

z̄
dy ∧ d ȳ. (A.13)

Unfortunately the rhs here is not well-defined, even though the lhs
is. To correct this we can introduce two-step regulator with pa-
rameters a and b which we will later set to zero. Thus we instead
consider∫
Σ

e−|z′/z|2a2
e−b2(|z|2+1/|z|2)

1 + |z′/z|2
z

z̄
dy ∧ d ȳ

=
∞∑

n=0

∫
Σ

(−1)n

∣∣∣∣ z′

z

∣∣∣∣2n

e−|z′/z|2a2
e−b2(|z|2+1/|z|2) z

z̄
dy ∧ d ȳ

=
∞∑

n=0

(−1)n
∫
Σ

z

z̄
e−|z′/z|2a2

e−b2(|z|2+1/|z|2) dyn ∧ d ȳn, (A.14)

where we have changed variables again to dyn = (z′/z)n dy. Let us
now set a = 0 to deduce that∫
Σ

e−b2(|z|2+1/|z|2)

1 + |z′/z|2
z

z̄
dy ∧ d ȳ

=
∞∑

n=0

(−1)n
∫
Σ

z

z̄
e−b2(|z|2+1/|z|2) dyn ∧ d ȳn. (A.15)
In each of the terms of the sum z is a holomorphic function of
yn and therefore z(yn) covers the whole complex plane (with the
exception of one point) and hence the integral of the phases z/z̄
must vanish since the b-regulator is independent of the phase.
We can now set b = 0 to see that each term in the sum van-
ishes and hence the first term on the rhs of (A.12) vanishes. Finally
we can repeat a similar argument for the second term on the
rhs of (A.12) only in this case the b-regulator should be taken to
be e−b2(|z′|2+1/|z′|2) . Thus we see that (A.12) vanishes and hence
L1 = L2. The above proof that L1 = L2 is a little suspect since we
required two regulators and needed to set a = 0 first and then
b = 0. As a check we performed a numerical integration for ran-
dom values of u which clearly supports our claim (see Fig. 1).
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