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1. Introduction

In this paper,we investigate the following nonlinear boundary value problem for fractional functional integro-differential
equation:cDα

0+x(t) = f (t, x(t), x(θ(t)), Tx(t), Sx(t)), t ∈ J = [0, T ],
g(x(0), x(T )) = 0, (1.1)

where f ∈ C(J × R4, R), θ ∈ C(J, J) and

(Tx)(t) =

 t

0
k(t, s)x(s)ds, (Sx)(t) =

 T

0
h(t, s)x(s)ds,

k(t, s) ∈ C[D, R+
], h(t, s) ∈ C[J× J, R+

],D = {(t, s) ∈ R2
|0 ≤ s ≤ t ≤ T }, R+

= [0, +∞], k0 = max{k(t, s)|(t, s) ∈ D},and
h0 = max{h(t, s)|(t, s) ∈ J × J}, cDα

0+ is the Caputo fractional derivative of order 0 < α ≤ 1.
Differential equations with fractional order are generalizations of ordinary differential equations to non-integer order.

These generalizations are not mere mathematical curiosities but rather they have interesting applications in many areas
of science and engineering such as electrochemistry, control, porous media, electromagnetic, etc. (see [1–24]). For two
noteworthy papers dealing with the integral operator and the arbitrary fractional order differential operator (see [3,4]),
there has been a significant development in fractional differential equations in recent years.

Recently, many people have paid attention to the existence of solutions to nonlinear boundary value problems of
fractional differential equations. In [19], Zhang and Su investigated the existence of a solution of the linear fractional
differential equation with nonlinear boundary conditions:cDα

0+u(t) − du(t) = h(t), t ∈ (0, T ], 0 < α < 1,
g(u(0)) = u(T ),
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where d ≥ 0, h ∈ C([0, T ], R), and cDα
0+ is the Caputo fractional derivative. Using the method of upper and lower solutions

in reverse order, some results on the existence of a solution are obtained for the above fractional boundary value problems.
And in [20], Zhang considered the existence of a solution of the nonlinear fractional differential equation with nonlinear

boundary conditions:cDα
0+u(t) = f (t, u(t)), t ∈ (0, T ], 0 < α < 1,

g(u(0), u(T )) = 0,

where cDα
0+ is the Caputo fractional derivative, f ∈ C((0, T ] × R, R). Using the method of upper and lower solutions and its

associated monotone iterative, some results on the existence of a solution are obtained for the above fractional boundary
value problems.

Motivated by [19,20], we will investigate the existence of solutions of fractional functional integral-differential
equation (1.1) by means of the method of lower and upper solutions combined with the monotone iterative technique
in this paper.

This paper is organized as follows. In Section 2, we discuss the uniqueness of the generalized solutions to linear functional
integro-differential equations and establish a new comparison principle. In Section 3, we obtain the existence of extremal
generalized solutions for (1.1) by utilizing themonotone iterative technique and themethod of lower and upper generalized
solutions.

2. Linear problem and comparison principle

Let C(J, R) be the Banach space of all continuous functions defined on J with the norm ∥ x ∥= max{| x(t) |: t ∈ J}.
For the readers’ convenience, we first present some useful definitions and fundamental facts of fractional calculus theory,

which can be found in [8,15].

Definition 2.1. Caputo’s derivative for a function f ∈ Cn([0, ∞), R) can be written as

cDs
0+f (x) =

1
Γ (n − s)

 x

0

f (n)(t)dt
(x − t)s+1−n

, n = [s] + 1 (2.1)

where [s] denotes the integer part of real number s > 0.

Definition 2.2. For s > 0, the integral

Is0+f (x) =
1

Γ (s)

 x

0

f (t)
(x − t)1−s

dt, (2.2)

is called the Riemann–Liouville fractional integral of order s.

Lemma 2.1. Let u ∈ Cm
[0, 1] and q ∈ (m − 1,m],m ∈ N. Then for t ∈ [0, 1],

IqcDq
0+u(t) = u(t) −

m−1
k=0

tk

k!
u(k)(0). (2.3)

By virtue of Lemma 2.1, we easily get the following

Lemma 2.2 (J,R). Let σ ∈ C(J, R), if u ∈ C1 is a solution of the following fractional differential equations:cDα
0+u(t) − Mu(t) − M1u(θ(t)) − M2Tu(t) − M3Su(t) = σ(t), t ∈ J, 0 < α ≤ 1,

u(0) = k, k ∈ R, (2.4)

then u(t) is a solution of the following integral equation:

u(t) = k +
1

Γ (α)

 t

0
(t − s)α−1

[σ(s) + Mu(s) + M1u(θ(s)) + M2Tu(s) + M3Su(s)]ds, t ∈ J, (2.5)

where M,M1,M2,M3 ∈ R are constants.

Definition 2.3. We say that u ∈ C(J, R) is a generalized solution of the initial value problem (2.4) of fractional differential
equations if u(t) is a solution of (2.5).

Remark. If u ∈ C1(J, R) is a solution of (2.4), we easily get u(t) is a generalized solution of (2.4). However, by the following
simple example, a generalized solution of (2.4) is not a solution of (2.4) in general.
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Example. In (2.4), we let σ(t) = a (a is a constant),M = M1 = M2 = M3 = 0, T = 1, α =
1
3 . According to (2.5), we get

u(t) = k +
a

Γ
 1
3

  t

0
(t − s)−

2
3 ds = k +

3a
Γ

 1
3

 t 1
3 , ∀t ∈ [0, 1],

which implies that u ∉ C1([0, 1], R). According to the definition of Caupto derivative, we could not define Caupto derivative
for u(t).

Lemma 2.3. Assume that M,M1,M2,M3 ≥ 0 are constants and the following inequality holds

M + M1 + (M2k0 + M3h0)T
Γ (α + 1)

Tα < 1, (2.6)

then (2.4) has a unique generalized solution.

Proof. We firstly define an operator A : C(J, R) → C(J, R) by

(Au)(t) = k +
1

Γ (α)

 t

0
(t − s)α−1

[σ(s) + Mu(s) + M1u(θ(s)) + M2Tu(s) + M3Su(s)]ds.

Then, we have

∥ (Au)(t) − (Av)(t) ∥C =
1

Γ (α)

 t

0
(t − s)α−1

[M(u(s) − v(s)) + M1(u(θ(s) − v(θ(s))))

+ M2(Tu(s) − Tv(s)) + M3(Su(s) − Su(s))]ds

C

≤
M + M1 + (M2k0 + M3h0)T

Γ (α)
max
t∈[0,T ]

 t

0
(t − s)α−1ds ∥ u − v ∥C

≤
M + M1 + (M2k0 + M3h0)T

Γ (α + 1)
Tα

∥ u − v ∥C .

According to (2.6) and the Banach fixed point theorem, (2.4) has a unique generalized solution u ∈ C(J, R). The proof is
completed. �

Lemma 2.4 (A Comparison Result). Suppose that M,M1,M2,M3 ≥ 0 are constants and the inequality (2.6) holds. If u ∈ C(J, R)
and satisfiesu(t) ≤ u(0) +

1
Γ (α)

 t

0
(t − s)α−1

[Mu(s) + M1u(θ(s)) + M2Tu(s) + M3Su(s)]ds, t ∈ J,

u(0) ≤ 0,
(2.7)

then u(t) ≤ 0 for all t ∈ J .

Proof. Suppose that the inequality u(t) ≤ 0,t ∈ J is not true. It means that there exists at least a t∗ ∈ J such that u(t∗) > 0.
Without loss of generality, we assume u(t∗) = max{u(t) : t ∈ J} = ρ, ρ > 0. We obtain that

u(t) ≤ u(0) +
1

Γ (α)

 t

0
(t − s)α−1

[Mu(s) + M1u(θ(s)) + M2Tu(s) + M3Su(s)]ds

≤
1

Γ (α)

 t

0
(t − s)α−1

[Mu(s) + M1u(θ(s)) + M2Tu(s) + M3Su(s)]ds

≤ ρ
M + M1 + (M2k0 + M3h0)T

Γ (α)

 t

0
(t − s)α−1ds

= ρ
M + M1 + (M2k0 + M3h0)T

Γ (α + 1)
tα

≤ ρ
M + M1 + (M2k0 + M3h0)T

Γ (α + 1)
Tα.

Let t = t∗, we have

ρ ≤ ρ
M + M1 + (M2k0 + M3h0)T

Γ (α + 1)
Tα.
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So
M + M1 + (M2k0 + M3h0)T

Γ (α + 1)
Tα

≥ 1,

which is a contradiction. Hence u(t) ≤ 0 for all t ∈ J . The proof is completed. �

3. Main results

In this section, wemainly prove the existence of extremal generalized solutions of problem (1.1) by the method of lower
and upper generalized solutions and the monotone iterative technique.

To begin with, we need the following definitions.

Definition 3.1. A function α0 ∈ C(J, R) is called a lower generalized solution of (1.1) ifα0(t) ≤ α0(0) +
1

Γ (α)

 t

0
(t − s)α−1f (s, α0(s), α0(θ(s)), Tα0(s), Sα0(s))ds, t ∈ J,

g(α0(0), α0(T )) ≤ 0.

Analogously, β0 ∈ C(J, R) is called an upper generalized solution of (1.1) ifβ0(t) ≥ β0(0) +
1

Γ (α)

 t

0
(t − s)α−1f (s, β0(s), β0(θ(s)), Tβ0(s), Sβ0(s))ds, t ∈ J,

g(β0(0), β0(T )) ≥ 0.

We need the following assumptions.

(H1) Functions α0, β0 are lower and upper generalized solutions of (1.1), respectively, such that α0(t) ≤ β0(t), t ∈ J.
(H2) There exist constantsM,M1,M2,M3 ≥ 0 such that

f (t, x, y, z, w) − f (t, x̄, ȳ, z̄, w̄) ≥ M(x − x̄) + M1(y − ȳ) + M2(z − z̄) + M3(w − w̄),

where α0(t) ≤ x̄ ≤ x ≤ β0(t), α0(θ(t)) ≤ ȳ ≤ y ≤ β0(θ(t)), Tα0(t) ≤ z̄ ≤ z ≤ Tβ0(t), Sα0(t) ≤ w̄ ≤ w ≤

Sβ0(t), t ∈ J .
(H3) There exist constants L1 > 0, L2 ≥ 0, such that

g(x, y) − g(x̄, ȳ) ≤ L1(x − x̄) − L2(y − ȳ),

where α0(0) ≤ x̄ ≤ x ≤ β0(0) and α0(T ) ≤ ȳ ≤ y ≤ β0(T ).
Let [α0, β0] = {x ∈ C(J, R) : α0(t) ≤ x(t) ≤ β0(t), t ∈ J}.
Now we are in the position to establish the main results of this paper.

Theorem 3.1. Let inequality (2.6) and (H1)–(H3) hold. Assume that
y(t) = y(0) +

1
Γ (α)

 t

0
(t − s)α−1 [f (s, α0(s), α0(θ(s)), Tα0(s), Sα0(s)) − M(α0(s) − y(s))

−M1(α0(θ(s)) − y(θ(s))) − M2(Tα0(s) − Ty(s)) − M3(Sα0(s) − Sy(s))] ds, t ∈ J,

y(0) = α0(0) −
1
L1

g(α0(0), α0(T )),
z(t) = z(0) +

1
Γ (α)

 t

0
(t − s)α−1 [f (s, β0(s), β0(θ(s)), Tβ0(s), Sβ0(s)) − M(β0(s) − z(s))

−M1(β0(θ(s)) − z(θ(s))) − M2(Tβ0(s) − Tz(s)) − M3(Sβ0(s) − Sz(s))] ds, t ∈ J,

z(0) = β0(0) −
1
L1

g(β0(0), β0(T )).

Then α0(t) ≤ y(t) ≤ z(t) ≤ β0(t), t ∈ J and y(t), z(t) are lower and upper generalized solutions of (1.1), respectively.

Proof. Let p(t) = α0(t) − y(t), then

p(t) ≤ α0(0) − y(0) +
1

Γ (α)

 t

0
(t − s)α−1

[M(α0(s) − y(s)) + M1(α0(θ(s)) − y(θ(s)))

+M2(Tα0(s) − Ty(s)) + M3(Sα0(s) − Sy(s))]ds

= p(0) +
1

Γ (α)

 t

0
(t − s)α−1

[Mp(s) + M1p(θ(s)) + M2Tp(s) + M3Sp(s)]ds, t ∈ J, (1)

p(0) = α0(0) − y(0) =
1
L1
g(α0(0), α0(T )) ≤ 0.



3232 Z. Liu, J. Sun / Computers and Mathematics with Applications 64 (2012) 3228–3234

By Lemma 2.4, we get that p(t) ≤ 0, t ∈ J . That is, α0(t) ≤ y(t). Similarly, we can prove that z(t) ≤ β0(t), ∀t ∈ J.
Next we verify that y(t) ≤ z(t),t ∈ J . Let p(t) = y(t) − z(t), then

p(t) = y(0) − z(0) +
1

Γ (α)

 t

0
(t − s)α−1

[f (s, α0(s), α0(θ(s)), Tα0(s), Sα0(s)) − Mα0(s)

−M1α0(θ(s)) − M2Tα0(s) − M3Sα0(s) − f (s, α0(s), α0(θ(s)), Tα0(s), Sα0(s))
+Mα0(s) + M1α0(θ(s)) + M2Tα0(s) + M3Sα0(s) + M(y(s) − z(s))
+M1(y(θ(s)) − z(θ(s))) + M2(Ty(s) − Tz(s)) + M3(Sy(s) − Sz(s))]ds

≤ p(0) +
1

Γ (α)

 t

0
(t − s)α−1

[Mp(s) + M1p(θ(s)) + M2Tp(s) + M3Sp(s)]ds, t ∈ J,

p(0) = y(0) − z(0)

= α0(0) −
1
L1

g(α0(0), α0(T )) − β0(0) +
1
L1

g(β0(0), β0(T ))

≤ α0(0) − β0(0) +
1
L1

[L1(β0(0) − α0(0)) − L2(β0(T ) − α0(T ))]

= −
L2
L1

(β0(T ) − α0(T ))

≤ 0.

By Lemma 2.4, we get that p(t) ≤ 0 on J . That is y(t) ≤ z(t). So α0(t) ≤ y(t) ≤ z(t) ≤ β0(t), t ∈ J.
In the following,we need to prove y(t) is a lower generalized solution of (1.1).

y(t) = y(0) +
1

Γ (α)

 t

0
(t − s)α−1

[f (s, α0(s), α0(θ(s)), Tα0(s), Sα0(s)) − M(α0(s) − y(s))

−M1(α0(θ(s)) − y(θ(s))) − M2(Tα0(s) − Ty(s)) − M3(Sα0(s) − Sy(s))]ds

≤ y(0) +
1

Γ (α)

 t

0
(t − s)α−1f (s, y(s), y(θ(s)), Ty(s), Sy(s))ds, t ∈ J,

g(y(0), y(T )) ≤ g(α0(0), α0(T )) + L1(y(0) − α0(0)) − L2(y(T ) − α0(T ))
≤ g(α0(0), α0(T )) + L1(y(0) − α0(0))
= g(α0(0), α0(T )) − g(α0(0), α0(T ))
= 0.

So y(t) is a lower generalized solution of (1.1). Similarly, we can prove that z(t) is an upper generalized solution of (1.1). The
proof is completed. �

Theorem 3.2. Let inequality (2.6) and (H1)–(H3) hold. Then there exist monotone sequences {αn}, {βn} ⊂ [α0, β0] which
converge uniformly to the extremal generalized solutions of (1.1) in [α0, β0], respectively.

Proof. For n = 1, 2, . . . , we suppose that
cDα

0+αn(t) − Mαn(t) − M1αn(θ(t)) − M2Tαn(t) − M3Sαn(t)
= f (t, αn−1(t), αn−1(θ(t)), Tαn−1(t), Sαn−1(t)) − Mαn−1(t) − M1αn−1(θ(t))

−M2Tαn−1(t) − M3Sαn−1(t), t ∈ J,

αn(0) = αn−1(0) −
1
L1

g(αn−1(0), αn−1(T )),

(3.1)

and 
cDα

0+βn(t) − Mβn(t) − M1βn(θ(t)) − M2Tβn(t) − M3Sβn(t)
= f (t, βn−1(t), βn−1(θ(t)), Tβn−1(t), Sβn−1(t)) − Mβn−1(t) − M1βn−1(θ(t))

−M2Tβn−1(t) − M3Sβn−1(t), t ∈ J,

βn(0) = βn−1(0) −
1
L1

g(βn−1(0), βn−1(T )).

(3.2)

Obviously, by Lemma 2.4, Eqs. (3.1) and (3.2) have the following generalized solutions, respectively.
αn(t) = αn(0) +

1
Γ (α)

 t

0
(t − s)α−1 [f (s, αn−1(s), αn−1(θ(s)), Tαn−1(s), Sαn−1(s)) − M(αn−1(s) − αn(s))

−M1(αn−1(θ(s)) − αn(θ(s))) − M2(Tαn−1(s) − Tαn(s)) − M3(Sαn−1(s) − Sαn(s))] ds, t ∈ J,

αn(0) = αn−1(0) −
1
L1

g(αn−1(0), αn−1(T )),
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βn(t) = βn(0) +

1
Γ (α)

 t

0
(t − s)α−1 [f (s, βn−1(s), βn−1(θ(s)), Tβn−1(s), Sβn−1(s)) − M(βn−1(s) − βn(s))

−M1(βn−1(θ(s)) − βn(θ(s))) − M2(Tβn−1(s) − Tβn(s)) − M3(Sβn−1(s) − Sβn(s))] ds, t ∈ J,

βi(0) = βn−1(0) −
1
L1

g(βn−1(0), βn−1(T )).

In view of Theorem 3.1, we have that

α0 ≤ α1 ≤ · · · αn ≤ · · · ≤ βn ≤ · · · ≤ β1 ≤ β0.

Obviously the sequences {αn}, {βn} are uniformly bounded and equicontinuous, one can employ the standard arguments,
namely the Ascoli–Arzela criterion to conclude that the sequences {αn}, {βn} converge uniformly on [0,T] with limn→∞ αn =

x∗, limn→∞ βn = x∗ uniformly on J . Moreover, x∗, x∗ are generalized solutions of (1.1) in [α0, β0].
To prove that x∗, x∗ are extremal generalized solutions of (1.1), let x ∈ [α0, β0] be any generalized solution of (1.1).

That is,x(t) = x(0) +
1

Γ (α)

 t

0
(t − s)α−1f (s, x(s), x(θ(s)), Tx(s), Sx(s))ds, t ∈ J,

g(x(0), x(T )) = 0.

Suppose that there exists a positive integer n such that αn(t) ≤ x(t) ≤ βn(t) on J . Let p(t) = αn+1(t) − x(t), we have

p(t) = αn+1(0) − x(0) +
1

Γ (α)

 t

0
(t − s)α−1

[f (s, αn(s), αn(θ(s)), Tαn(s), Sαn(s)) − Mαn(s)

−M1αn(θ(s)) − M2Tαn(s) − M3Sαn(s) − f (s, x(s), x(θ(s)), Tx(s), Sx(s))
+Mx(s) + M1x(θ(s)) + M2Tx(s) + M3Sx(s) + M(αn+1(s) − x(s))
+M1(αn+1(θ(s)) − x(θ(s))) + M2(Tαn+1(s) − Tx(s)) + M3(Sαn+1(s) − Sx(s))]ds

≤ p(0) +
1

Γ (α)

 t

0
(t − s)α−1

[Mp(s) + M1p(θ(s)) + M2Tp(s) + M3Sp(s)]ds, t ∈ J,

p(0) = αn+1(0) − x(0)

= αn(0) −
1
L1

g(αn(0), αn(T )) − x(0)

≤ −
L2
L1

(x(T ) − αn(T )) −
1
L1

g(x(0), x(T ))

≤ 0.

By Lemma 2.4, we know that p(t) ≤ 0 on J , i.e. αn+1(t) ≤ x(t) on J . Similarly we obtain that x(t) ≤ βn+1(t) on J. Since
α0(t) ≤ x(t) ≤ β0(t) on J , by induction we get that αn(t) ≤ x(t) ≤ βn(t) on J for every n. Therefore, x∗(t) ≤ x(t) ≤ x∗(t)
on J by taking n → ∞. Thus, we complete this proof. �
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