
MATHEMATICS Proceedings A 86 (l), March 28, 1983 

Some results on Hankel invariant distribution spaces 

by S.J.L. van Eijndhoven and J. de Graaf 

T.H. Eindhoven, Onderafd. Wiskunde. Postbus 513, 5600 MB Eindhoven, the Netherlands 

Communicated by Prof. J. Korevaar at the meeting of June 21, 1982 

ABSTRACT 

Three Hankel invariant test function spaces and the associated generalized function spaces are 
introduced. The elements of the respective test function spaces are described both in functional 
analytic and in classical analytic terms. It is shown that one of the test function spaces equals the 
space HP of Zemanian. 

A.M.S. Subject Classification 46F12, 46FO5, 46FlO. 

INTRODUCTION 

Formally the Hankel transform of order a is defined by 

Here J, is the Bessel function of the first kind and order a. We consider the case 
a> - 1 in this paper. The Hankel transform IH, is treated as a linear operator in 
L2(0, 00). IH, can be extended to a unitary operator on Lz(0, 00). It can be shown 
that for each f E L2(0, 00) the integral (0.1) converges in L2-sense. 

In this paper we construct three Hankel invariant test function spaces. (In 
fact infinitely many can be constructed.) The constructions are based on the 
two theories of generalized functions given in [G] and [El. Since these theories 
may not be known to the reader we review them in Section 1. 
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The distribution theories [G] and [E] are described in functional analytic 
terms. Such a description contributes to the generality of the theories but it does 
not make them directly applicable in analysis. Therefore we devote three 
sections to the characterization in classical analytic terms of the elements in the 
respective test function spaces. 

Besides the usual aspects of distribution theory such as the definition of the 
test function space, the definition of the generalized function space, their topo- 
logical structures and the pairing, [G] and [E] also contain a detailed charac- 
terization of continuous linear mappings on these spaces, the introduction of 
topological tensor product spaces and four Kernel theorems. Since the Hankel 
invariant test function space HP of Zemanian [Z] equals one of our test function 
spaces, all results of [G] and [E] carry over to this space. The present paper is 
partly an excerpt of a university report [El]. Many technicalities in that report 
are not reproduced here, but we indicate the main lines of the argument. 

(1) The general theory 
In the first part of this section we review the distribution theory in [G]; in the 

second part the distribution theory in [El. 
In a Hilbert space X consider the evolution equation 

(1.1) $= -9% 

where d is a positive, self-adjoint operator which is unbounded in order that 
the semigroup (e-fd),rO is smoothing. A solution u of (1 .l) is called a trajectory 
if 24 satisfies 

(1.2.i) Vt,O : u(t) E X 

(1.2.ii) V~,OV,,O : e-‘%(t)= u(t+ r). 

We emphasize that only t > 0 is considered, and lim,lc u(t) does not necessarily 
exist in X-sense. The complex vector space of all trajectories is denoted by TX,,. 
The elements of TX,, are called generalized functions. The test function space 
S,,, is defined to be the dense linear subspace of X consisting of smooth 
elements of the form e- fdh, where h E X and t>O; we have Sx,, = U,>O e-‘&(X). 
The densely defined inverse of emfdis denoted by e? For each V)E Sxd, there 
exists 7~ 0 such that eT”‘u, makes sense. The pairing between Sx,, and Tx,d is 
defined by 

(1.3) (bo,F) =W%,F(M, PESX,~, FE TX,&. 

Here (- , .) denotes the inner product in X. Definition (1.3) makes sense for 7 > 0 
sufficiently small and due to the trajectory property (1.2.ii) it does not depend 
on the specific choice of 7. For a detailed discussion of the spaces Sx, d and TX, d 
we refer to [G]. 

In [El, we start with the evolution equation 
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where d is a positive self-adjoint operator in a Hilbert space X. A solution cp of 
(1.4) is called a trajectory, if it satisfies 

(1.5.i) VtEC: cp(t)EX 

(1.5.ii) VtECVrEC: fp(t+7)=erdq2(t). 

The complex vector space of all trajectories is denoted by r(X, JZ’). Each tra- 
jectory c~ is uniquely determined by its value (p(O), where ~(0) E D((e”)“) = 
= n;=, D(ek”). The space r(X, d) is the test function space in this theory. The 
generalized function space a(X, &) consists of elements F for which there exists 
t>O such that e-‘&FEX. We have a(X,&= Ut,,, (X,), where Xt is the com- 
pletion of X with respect to the norm 11 . 11 t, 

llfll t = II e-fdfl19 f~ X. 

Thus for all FE a(X, .d) there exists t > 0 and h E X such that F= e’“‘(h). The 
pairing between r(X, d) and 0(X, &‘) is defined by 

(1.6) (~3) = (v(7), eerdO, VDE 7(X, 4, FE 0(X, 4. 

Here (. , .) denotes the inner product of X. Definition (1.6) makes sense for 7 > 0 
sufficiently large and due to the trajectory property (1.5.ii) it does not depend 
on the specific choice of 7. For a detailed discussion of this theory we refer to 
WI. 

(2) Introduction of Hankel invariant test function spaces and generalized 
function spaces 

Throughout the whole paper we take (YE IR, a> - 1, fixed. The following 
equality can be derived from [MOS], p. 244: 

(2.1) L:‘(x) = (- 1)” $ Lp)Cy)fi J,(xy)dy. 

Here 

and I$) is the n-th generalized Laguerre polynomial of type (x, 

(e-Xx”+a), x>O. 

The functions r?’ are eigenfunctions of the operator 

(3-l 
(2.2) 4:-$+x2+-y-2a, 

and their respective eigenvalues are 4n + 2, n = 0, 1,2, . . . . The operator & is 
positive and self-adjoint in X = r,(O, 00) and its eigenfunctions rp) establish a 
complete orthonormal basis in X. By (2.1), the Hankel transform of r?) is 
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equal to(-1) L, . R @) So the following definition of the Hankel transform would 
seem natural. 

(2.3) DEFINITION 

IH f= (2 i (- l)“(@))r;‘, 9 n fEX . 
n=o 

Here (e , -) denotes the inner product in X. 

It is obvious that IH, is a self-adjoint, unitary operator in X. The relation with 
the classical Hankel integral transform is expressed by the following Plancherel- 
type formula. 

(2.4) THEOREM. 

Let f E X. Then for all x>O 

U-&f )(N = ‘2:~. ifQ)fi J&Y)& 

i.e. 

PROOF. The proof follows from the validity of the formula (0.1) for very well 
behaved functions and the fact that IH, is continuous on X. Cf. [El], section 1. 

0 

Since the operator SQ, is positive and self-adjoint, the test function space Sx,,/, 
is well-defined and so are the test function spaces r(X, log da) and r(X, .&). We 
give a short functional analytic characterization. 

(2.5) Characterization of test function spaces 
(a) f E Sxd, 
(b) 

@GO : U$? = OW”‘) 
f E r(X log J&I* vke N : CAL: I= O((n + Wk) 

w f E tix, 42) e, Vr,o : V;fjp’) = O(e-“‘). 

PROOF. We shall show equivalence (a). The proof of(b) and (c) runs similarly. 
So let f E SxdU. Then there is T > 0 and w E X such that f = e-%v. Hence 

1 cf, flp)) 1 = e-(4n+2)r 1 (w, flp)) 1 5 11 w 11 e-4nr. 

On the other hand, suppose f E X satisfies 

)Cf,f?))I cKewnT, no N, 
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for some K> 0, r> 0. Then for t = $7 

<K2& i eenr<co. 
n=a 

This implies fe Sx Jpu, Cl 

The Hankel transform IH, is well-defined on these spaces. We have 

(2.6) THEOREM. 

IH, is a continuous bijection on Sxd,. The same holds true for the spaces 
z-(X, log 4) and tix, ~4). 

PROOF. The proof is very simple. If for f E X, the order estimate (2.5.a) is 
satisfied by cf, f F’) then (IH,f, Lg)) = ( - l)“cf, LF’) satisfies the same one. So IH, 
is a continuous injection on Sx, sr,. IH, is surjective because IHfJ=f. The proofs 
for the other spaces run similarly. q 

We shall also characterize the spaces of generalized functions Tx,da, a(X, log .&pa) 
and a(X, .c9,). From (2.5) one has the following. 

(2.7) Characterization of generalized function spaces 
(a) FE Tx,~~ @ b’t,o : (ff), F) = O(e”‘) 
(b) FEG(X, log s9,)oZkkeN : (ff’,F)=O(nk) 
(c) FEU(X,&) +5& : (@,F) =O(e”‘). 
As a corollary of Theorem (2.6) we have 

(2.8) COROLLARY. 

The Hankel transform IH, can be extended to a continuous bijection on each 
of the spaces TX,+ a(X, log &) and a(X, JQ. 

(3) Analytic characterization of the elements of Sx, du 
We start with the following equality 

(3.1) 
joe- (4n + 2”p(x)@(y) = 

e-2f(xy)+ 
= sinh 2t 

s (x2 + y2) /,(xy/sinh 2t) 1 
where /, is the modified Bessel function of the first kind and of the order a. 
Formula (3.1) follows from [MOS], p. 242. It is an expression for the Hilbert- 
Schmidt kernel of e-‘&a, t >O, which belongs to L2(Rf x II?+). 
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For fixed z, the @(z) satisfy the following inequality 

(3.2) 1 f?)(z) 1 s Ke*&, n E b.l U (0)) 

where K >0 and 6>0. This inequality follows from a straightforward estimate 
of the r$@(z*) for large n. Cf [El], section 4. So for each t>O the series 

.i/- 
(4n + *“p(z)p(w) 

converges uniformly on compacta in C*, and by (3.1) 

= e-2af(zw)j exp 
sinh 2t 

_ 3 cash 2t 
sinh (Z* + w 

If we take w =Z in (3.3) and keep in mind that L?)(Z) =Lp’(z), we derive for 
z=x+iy, larg 21 en, 

(3.4) 

(4n + *v 1 @‘(x + iy) 12 = 
eeZar(x2 +y*)+ = 

sinh 2t exp 

Now let grz X, and put f = e- ‘hg, t >O. Then 

If(x+WI = l.fe- (4n+2)r(g,fIP))LIP)(x+iy)I 5 

(4n+*)*t1~IP)(~+i~)l*}j= 

e-2af 

= lg ’ (sinh 4t)j exp 

where I arg (x + iy) I c K. Since we have the inequality 

((9 +u*)-“/,((x* +y*)/sinh 4t))*sK, exp (+(x2 +y*)/sinh 4t), 

we get for all z=x+iy 

(3.5) l~-(~+*)f(Z)l sK;exp -3 
sinh 2t 
-x*+3 
cash 2t 

Moreover, with the aid of (3.3) we can write for all z, I arg z I < x, 

(3.6) f(z) = $gW @* +Y*)]la(&))dY- 
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So it is obvious that Z-Z-@+*)f(Z) is an entire analytic and an even function of 
ZE C. Thus we proved 

(3.7) LEMMA. 

Let g E X and t >O. Put f = e-‘&g. Then 
(i) Z-Z-@+*)f(Z) is an entire analytic, even function. 

(ii) There are A, O<A < 1, B> 1 and C>O such that 

Iz-@+*)f(z)I 5Cexp (-+Ax2++By2) 

where z=x+iy, XE IR, YE iR. 

One can also prove the converse of Lemma (3.7). 
The proof is rather technical. We only point out the main arguments. In the 

Hilbert space X,=f2QR+,x 2a+ ‘dx) we introduce the positive,, selfadjoint 
operator & 

For a function f satisfying (3.7.i) and (3.7.ii) the function g defined by 

(3.9) g(z)=z-@+*)f(Z); ZE c 

is even and entire analytic. It is not difficult to verify that g E Sx,, ga iff f E S,, dm. 
We want to prove that g defined by (3.9) is an element of Sx,,&. Put 

3Ep=L*= d2 
-2+x2. 

Then by [B], Theorem 10.1 it follows that g E S,,, So there exists t > 0 such 
that e’“g E X. By a rather technical proof it was shown in [El], section 4, that 
given t > 0 and T, 0 < r < t, there exists r. > 0 such that the series 

converges uniformly in the Banach algebra of bounded operators on X. We 
conclude, that for T, 0 < r< t, fixed, there is r>O such that 

erdag = (e’<e- Gf )(e’JPs) E e-rJP(X). 

But then it follows from [B], Theorem 6.3 that e’4g satisfies 

1 (e’4g)(x+ iy) 1 5 Cl exp (- jA1x2 + jBly2), x,y E II? 

for some A, >O, Bi >O and Ci >O. Hence e’& gE X,. So we get gE Sx,& and 
therefore f c SX,~~. 

Thus we have derived 

(3.10) THEOREM 

f~ Sx,dQ if and only if the function z-z- @+*)flz) is even and belongs to the 
space Si . 

83 



REMARK. S: is an S-space of Gelfand and Shilov ([GS], ch. IV). We note that 
the function space S: equals Sr,(R), JLp where 

see [G]. 

(4) Analytic characterization of the elements of r(X, log s9,) 
The strong topology in r(X, log S) is generated by the seminorms p$,@ 

(4.1) d?U) = II dfll , f E tix, log 41, n E h--J. 

It can be shown that r(X, log &) is a FrCchet space with this topology (see [El). 
Let f E r(X, log sil&), and put 

g(x) =x-(a++)f(x), x>o. 

Then with the same notation as in section 3 

g E tiXa9 log 4). 

Define the operators Wand 9 on r(X,, log J&) by 

(4.2) 9flx)=+fyx), x>o, 
X 

(4.3) 22?x)=xf(x), x>o. 

Then one can prove that for each i, j E N, there exists d > 0 and k E N such that 

(4.4) [2?‘@hIIa~d~~~khIla. 

Cf [El], section 3. Here 11. [Ia denotes the norm on X,. Hence the seminorms 
@’ : h - II @dh ] a are continuous on r(X,, log di). Further, since 

d,= - 9’92-2a9+ 92-2o 

and since 

&??2- @w=2 

it follows that there exist constants cij 10 such that, 

(4.5) 11 Akh II a I zkc 
i,j= I, 1 

ciiq;‘(h), h E z-(X,, log &). 

So the q:) generate the strong topology in z-(X,, log J&). With the aid of 
Sobolev’s embedding theorem, and some straightforward estimates, it can be 
shown that II . II a in the definition of the q:‘, can be replaced by the supremum 
norm. Hence the seminorms p!P) rl , i,jc N, 

p;’ : h - sup I (9’ @h)(x) I , h E r(X,, log &), 
x>o 

are continuous and induce the strong topology on r(X,, log J&). 
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Going back to our original space I-(X, log 5) we have shown that the strong 
topology on r(X, log &) is also generated by the seminorms $‘: 

(4.6) $‘cf)= sup Ix’(~-‘~)jx-(~+~)f(x)I, i,jCNU{O}, 
X20 

f 6 r(X, log SQ,). Here 9 is the operator d/dx. 
For every f tz I-(X, log &) we have 

m 
f(x)= c Cf,fjp’)fjp’(x), x>o. 

n=O 

Since the functions x,x-@+ j)@(x) are functions of x2 it is obvious that 
x-x-@++)f(X is a function of x2 on IR. 

(4.7) THEOREM. 
Each element f E r(X, log &) satisfies 

for) =x”‘jql(x2), x>o, 

for some v, E S, i.e. Schwartz’s space of functions of rapid decrease. 

PROOF. Let f E r(X, log du). Then g defined by 

g(x) =x-@-+j)flx), x>o, 

is a function of x2. Thus g(x) = II( XE iR, for some function h on [0, 03). For 
all i, j E N U { 0} we have 

with the new variable c =x2 

sup @5@(r)\ ~00, i,j=O,1,2 ,.... 
520 

Since in r = 0 all derivatives on the right of h exist, there is an infinitely differ- 
entiable function hl on R of bounded support with (~$!h,)(0) = (@h)(O) for all 
mcN. 

Define bp on R by 

P(X) = I 
h(x), x10 
h(x), xc0 

Then q~ E S andf(x) =x@+%~~(x~), x>O. 0 

As a corollary of Theorem (4.2) we have 

(4.8) COROLLARY. 
f E r(X, log J&J if and only if the even extension of x~x-(~+ j)f(x) belongs to 

Schwartz’s space S. 
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For the sake of completeness, note that S= r&([R), log 3E”) with 

-d2 $k- 
dx2 

+x2+1 

(see PI). 
It follows that f o X is in r(X, log &) if and only if $cf) is finite for all 

i,j=O, I,2 ,.... Comparing this result with the definition of the space .$ in [Z] 
we have 

$=1(X, log L.$) 

both set-theoretically and topologically. 

(5) Analytic characterization of the elements of r(X, d’) 
For convenience we introduce the function classes @g. 

(5.1) DEFINITION. 

f E SiL if and only if 
(i) z- ~-(~+j)f(Z) is entire analytic and even. 

(ii) There is C> 0 such that for all x, y E IR 

I(x+iy)-@+j)f(x+iy)I ICexp(-+A$++By2). 

The following inclusions hold true 

(5.2) e-‘~(X)cSo,ce-“d~(X) 

where 0 c A < 1 and B > 1 and t, t’> 0 depend on the choice of A, B. Since 

(5.3) t-(X, da) = n e-‘&(X) 
I>0 

(see [El), it follows that 

(5.4) s(x, 4x)= ,<Y<, S’AS’B. 
B>l 

In other words 

(5.5) THEOREM. 

f rz z-(X, J&) if and only if 
(i) Z-z-@+j)f(Z) is even and entire. 

(ii) for each A, 0 <A < 1 and B, B > 1 there exists C> 0 such that for all x, y E II? 

1(x+&)-(“+j)f(x+iy)I ~Cexp(-+A$++By2). 

As a corollary of Theorem 5.5 we have 

(5.6) COROLLARY. 

f E r(X, -4)+~-z-(~+*)f(Z) is even and belongs to r(L,(lR), 2’). Here 
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PROOF. See [El, ch. VIII. 

REMARK: The dual space o(&(lR), fl of 5(&(R), X) is the Hermite pansion 
space introduced by Korevaar [K]. 
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