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Abstract 

Let H be a hexagonal system. The Z-transformation graph Z(H) is the graph where the 
vertices are the perfect matchings of H and where two perfect matchings are joined by an edge 
provided their symmetric difference is a hexagon of H (Z. Fu-ji et al., 1988). In this paper we 
prove that Z(H) has a Hamilton path if H is a catacondensed hexagonal system. 

A hexagonal system [ll], also called honeycomb system or hexanimal (see, eg. 

[lo]) is a finite connected plane graph with no cut-vertices, in which every interior 

region is surrounded by a regular hexagon of side length 1. Hexagonal systems are of 

chemical significance since a hexagonal system with perfect matchings is the skeleton 

of a benzenoid hydrocarbon molecule [9]. Recall that a perfect matching of a graph 

G is a set of disjoint edges of G covering all the vertices of G. In the following 

discussion we confine our considerations to those hexagonal systems with at least one 

perfect matching. 

Let H be a hexagonal system. The Z-transformation graph Z(H) [3,4] is the graph 

where the vertices are the perfect matchings of H and where two perfect matchings 

Ml and M2 are joined by an edge provided their symmetric difference Ml A MZ, i.e. 

(M, u M,) - (M, n M,), is a hexagon of H. Z-transformation graphs have some 

interesting properties. Z(H) is either a path or a bipartite graph with girth 4, and the 

connectivity of Z(H) is equal to the minimum degree of the vertices of Z(H) [3,4]. 

Furthermore, Z(H) has at most two vertices of degree one [3]. The construction 

feature for the class of hexagonal systems whose Z-transformation graphs have at 

least one vertex of degree one was reported in [S]. Z-transformation graphs are useful 
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Fig. 1. A catacondensed hexagonal system H with two turning hexagons s1 and s2, and the Z-transforma- 
tion graph Z(H). 
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in certain enumeration techniques for hexagonal systems 163. By using the concept of 
Z-transformation graphs, a class of hexagonal systems with forcing edges is also 
characterized [7]. In the present paper we prove that for a catacondensed hexagonal 
system H, Z(H) has a Hamilton path. 

Recall that a catacondensed hexagonal system is a hexagonal system whose vertices 
are all on the perimeter [9]. A hexagon of a catacondensed hexagonal system is said to 
be a turning hexagon if it has two or three non-parallel edges which are common 
edges with other hexagons (cf. Fig. 1). 

Lemma 1. Let G be a catacondensed hexagonal system without turning hexagon. Then 

Z(G) is a path. 

Proof. Since G has no turning hexagon, the centres of the hexagons of G all lie on the 
line L (see Fig. 2). It is not difficult to check that G has exactly h + 1 perfect matchings 
(cf. [2, p. 38]), each of which has exactly one edge intersected by the line L. Therefore, 
Z(G) is a path P, the ith vertex of P corresponds to the perfect matching Ni of 
G containing the edge ai (i = 1,2, . . . , h + 1) (see Fig. 2). 

Definition 2 (J. A. Bondy and U. S. R. Murty Cl]). Let Gi = (V(Gi),E(Gi)) be a graph 
(i = 1,2). The product G1 x Gz is the graph with vertex set V(G, x G,) = 

{(u, 4 I u E v(G,L 0 E I’(G))> in which (u,u) is adjacent to (u’,~‘) if and only if 
either u = u’ and W’ E E(G,) or v = Y’ and UU’ E E(G,). 
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Fig. 3. A catacondensed hexagonal system G and the perfect matching N (its edges are identified by double 

lines) with all its edges on the perimeter of G. 

Lemma 3. Let Gi = (I/(Gi),E(Gi)) (i = 1,2) be a graph with a Hamilton path Pi. Then 

G1 x G2 has a Hamilton path. 

Proof. suppose that IV(G,)l = m, IV(G,)l = n; and P1 = ulu2 . ..u., P2 = v1u2 . ..v.. 

Evidently, (~1,~1)(~2,~1)...(~m,u1)(u,,vz) (u,-~,v~)...(~~,~~)(~~,u~)...(~,,~~)... is 
a Hamilton path of Gi x G2, in which the last vertex is (ui, v,) if n is even or (u,, v,) if 
n is odd. 0 

Let G be a catacondensed hexagonal system, si, s2, . . . ,s, be hexagons of G, where 
si and si + i have the edge ai + 1 in common, and S, is a turning hexagon as shown in Fig. 
3. It is known that G has a perfect matching with all its edges on the perimeter of 
G since the perimeter of G is a Hamilton cycle of G [S] (cf. Fig. 3). Moreover, each 
perfect matching of G has exactly one edge intersected by the horizontal line L (see 

Fig. 3) (cf. [ 111). Therefore, we can divide the set of all perfect matchings of G into 
t + 1 disjoint subsets K,(G),K,(G), . . . , K,(G),&+ ,(G); where K,(G) is the set of 
perfect matchings of G containing the edge ai (i = 1,2, . . , t + 1) (cf. Fig. 4). It is not 
difficult to see that the perfect matchings of K<(G) have some other common edges 
besides the edge ai (i = 1,2, . . . , t + 1). We denote the set of the common edges of the 
perfect matchings of K,(G) by M,(G). For i = 1,2, . . . , t, the edges e and fas well as 
a, + i (see Fig. 4) do not belong to any perfect matching of K,(G). Let G1 and G2 be the 
components obtained from G by deleting the edges e, f and a,, r, where Gi (i = 1,2) 
contains the edge UT (see Fig. 4). Suppose that the numbers of perfect matchings of G, 
and G2 are p and q, respectively. Then we have IK,(G)j = pq for i = 1,2, . . . , t. 
Moreover, each perfect matching of K,(G) (i = 1,2, . . . , t) has the form M,(G) 

uNijuN2,., where Nij and N2* are perfect matchings of G1 and G2, respectively. 

Lemma 4. Let G be a catacondensed hexagonal system with exactly one turning 

hexagon. Then Z(G) has a Hamilton path P. Moreover, the first pq vertices of 

P correspond to the perfect matchings of K,(G). 
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Fig. 4. The common edges of the perfect matchings of K,(G). 

Proof. Since G has exactly one turning hexagon, G1 and G2 are both catacondensed 
hexagonal systems without turning hexagon, or one of them is an edge and the other is 
a catacondensed hexagonal system without turning hexagon. It suffices to prove the 
assertion for the former, and the latter can be dealt with fully analogously. 

By Lemma 1, Z(G,) is a Hamilton path Pf = NllN12 . . . N1,, where Nll is the 
perfect matching of G1 containing the edge UT (cf. Fig. 4). Similarly, Z(G,) is 
a Hamilton path Pf = N11Nz2 . . . Nzq, where N,, is the perfect matching of 
G2 containing the edge a;. By Lemma 3, Z(G,) x Z(G,) has a Hamilton path. Since 
the subgraph (K,(G)) of Z(G) induced by K,(G) is isomorphic to Z(G,) x Z(G,), 
(K,(G)) has a Hamilton path Pi fir i = 1,2, . . . , t. More precisely, thejth vertex Of pi 
(i = 1,2, . . . ,t)isMi(G)uNl,,+l_,uN2,h+l,whenhisodd;andMi(G)uN1,uN2,h+l 
when h is even; where i = hp + r, h and I are positive integers, 0 < h < q - 1, 
1 < r < p. Now consider the induced subgraph (K, + 1 (G)). Evidently, M, + 1(G) is the 
only member of K,+,(G). It is not difficult to see that M,+,(G) is adjacent to the 
first vertex of Pt, i.e. M,(G)uN~~uN~~, since Mt+l(G)A(Mt(G)uNlluN21) = 
st (cf. Fig. 4). Note that in Z(G), for each vertex of PI, say, Ml(G) u Nlju Nzk, there is a 

path (M,(G)uN,juN,,)(M,(G)uN~juN,k)(M3(G)uN,juN,,)...(M,(G)UNljUN2k), 
since (MJ(G)uN1juNzk)A (M,+l(G)~N,j~Nzk) = ss for f= 1, . . ..t. For brevity, 
we denote the jth vertex in Pi by B<j (i = 1,2, . . . , t; j = 1,2, . . . ,pq). NOW we find 
a Hamilton path in Z(G) as follows:B1,Blz . ..B1.,, B2,pqB2,pq_l . . . Bzl 
BJ1 . . . B3,pq . . . B,,P4B,,pq_1 . . . B,lMt+l(G) when t is even; or Bl,pqBl,pq-l . . . 

B11B~1B22...B~,pqB~,pq...B31 . . . BfP4Bt,P4_1 . . . B,lMt+l(G) when t is odd. Evident- 
ly, the first pq vertices of the above Hamilton path correspond to the perfect 
matchings of K1 (G). 

We are now in a position to formulate our main theorem. 
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Theorem 5. Let G be a catacondensed hexagonal system. Then Z(G) has a Hamilton 
path with thejirst pq vertices corresponding to the perfect matchings ofK,(G). 

Proof. If G has no turning hexagon, Z(G) itself is a path (Lemma 1). Now suppose 

that G has at least one turning hexagon. We proceed by induction on the number of 

turning hexagons. 

If G has exactly one turning hexagon, by Lemma 4, the conclusion holds. Assume 

that G has more than one turning hexagon. As mentioned above, the vertex set of 

Z(G) is divided into t + 1 disjoint subsets K,(G), K,(G), . . . , K,(G), K,, 1 (G) (cf. Fig. 

4). Since Gi (i = 1,2) is a catacondensed hexagonal system with fewer turning hexa- 

gons than G, by induction hypothesis, Z(Gi) has a Hamilton path P: with the first 

ni vertices corresponding to the perfect matchings of K,(GJ (i.e. the perfect match- 

ings of Gi containing the edge a*, cf. Fig. 4), where ni = 1 K1 (Gi) (. Denote 

P* = NilNiz . . . Ni,, . . Ni,, (i = 1,2). By Lemma 3,Z(G,) x Z(G,) has a Hamilton path 

P’ = Tl T2 . . . T, (c = c1c2), where for j = ac, + b (0 < a < c2 - 1, 1 < b < cl). 

Tj = (N I,C, + 1 _*, N,,,, 1) when a is odd; and Tj = (Nl,b, Nzen+ 1) when a is even. Since 

the subgraph (K,(G)) of Z(G) induced by K,(G) is isomorphic to Z(G,) x Z(Gz), 

(K,(G)) has a Hamilton path Pi = DilDiz . . . Di, for i = 1,2, . . . , t; where 

Dij = Mi(G)uN1,,,+1~bUNz,.+, when a is odd; and Dij= Mi(G)UNi,buN2,a+l 

whenaiseven;j=acl+b,O<adc,- 1, 1 6 b B cl. One can check that for each 

vertex Dij of PI, there is a path in Z(G): DijDzj . . . D,j (,j = 1,2, . . . ,c) since 

DhjnD,+,,j=Mh(G)nM h+l==~h(cf.Fig.4),h=1 ,..., t-l. 

NOW consider (K,+,(G)). Let N~j = Nij - M,(G,), i = 1,2; j = 1,2, . . . ,ni; M,(Gi) 

is the set of common edges of the perfect matchings of K,(Gi). Evidently, 

{Nljlj= 1,2,...,ni}isth e set of perfect matchings of G! u G:. Hence Z(G! u Gf) has 

a Hamilton path PI = Nf, . Ni2 . . . NI,,, (i = 1,2). By Lemma 3,Z(G: u G:) x Z(G: u G:) 

has a Hamilton path p = JIJz . ..J.,,,,, where J1 = (N;,,N;,). Since (K,+,(G)) is 

isomorphic to Z(G: UC:) x Z(G:uGs), (K,+,(G)) has a Hamilton path 

P t+l = 0102...0nlnz, where O1 = M,+,(G)uN~,uN~,. One can check that 

O,ao,, =(M,+,(G)uN~,uN~,)A(M,(G)uN,,uN2,)=s,. This means that the 

first vertex of Pt+ 1 is adjacent to the first vertex of P,. Now we find a Hamilton path of 

Z(G) as follows: P = D11D12 ...DICDzCDz,C_l . ..DXIDjL . ..D., . ..D.,D,,,_, . . 

D,IOIOZ . On,,, when t is even; or P = D1,D1,,_ 1 . . . D11D21 . . . D2CD3C . . . 

DrcDt,c-I . ..D.IOIO, . . . O,,,, when t is odd. 

Remark 6. In the proof of the above theorem, if Gi or G! (i = 1,2; j = 1,2) is exactly an 

edge, it can be dealt with similarly. 

Remark 7. For a hexagonal system which is not catacondensed, its Z-transformation 

graph need not have a hamilton path. An example is given below. 

69 * 
G Z(G) 
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