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Abstract

Let H be a hexagonal system. The Z-transformation graph Z(H) is the graph where the
vertices are the perfect matchings of H and where two perfect matchings are joined by an edge
provided their symmetric difference is a hexagon of H (Z. Fu-ji et al., 1988). In this paper we
prove that Z(H) has a Hamilton path if H is a catacondensed hexagonal system.

A hexagonal system [11], also called honeycomb system or hexanimal (see, eg.
[10]) is a finite connected plane graph with no cut-vertices, in which every interior
region is surrounded by a regular hexagon of side length 1. Hexagonal systems are of
chemical significance since a hexagonal system with perfect matchings is the skeleton
of a benzenoid hydrocarbon molecule [9]. Recall that a perfect matching of a graph
G is a set of disjoint edges of G covering all the vertices of G. In the following
discussion we confine our considerations to those hexagonal systems with at least one
perfect matching.

Let H be a hexagonal system. The Z-transformation graph Z(H) [3, 4] is the graph
where the vertices are the perfect matchings of H and where two perfect matchings
M, and M, are joined by an edge provided their symmetric difference M; A M,, i.e.
(M, UM,) —(M;nM,), is a hexagon of H. Z-transformation graphs have some
interesting properties. Z(H) is either a path or a bipartite graph with girth 4, and the
connectivity of Z(H) is equal to the minimum degree of the vertices of Z(H) [3,4].
Furthermore, Z(H) has at most two vertices of degree one [3]. The construction
feature for the class of hexagonal systems whose Z-transformation graphs have at
least one vertex of degree one was reported in [5]. Z-transformation graphs are useful

*Corresponding author.

0166-218X/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
PII S0166-218X(96)00033-9


https://core.ac.uk/display/81138386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

192 C. Rong-si, Z. Fu-ji | Discrete Applied Mathematics 74 (1997) 191196

Fig. 1. A catacondensed hexagonal system H with two turning hexagons s, and s,, and the Z-transforma-
tion graph Z(H).
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Fig. 2.

in certain enumeration techniques for hexagonal systems | 6]. By using the concept of
Z-transformation graphs, a class of hexagonal systems with forcing edges is also
characterized [7]. In the present paper we prove that for a catacondensed hexagonal
system H, Z(H) has a Hamilton path.

Recall that a catacondensed hexagonal system is a hexagonal system whose vertices
are all on the perimeter [9]. A hexagon of a catacondensed hexagonal system is said to
be a turning hexagon if it has two or three non-parallel edges which are common
edges with other hexagons (cf. Fig. 1).

Lemma 1. Let G be a catacondensed hexagonal system without turning hexagon. Then
Z(G) is a path.

Proof. Since G has no turning hexagon, the centres of the hexagons of G all lie on the
line L (see Fig. 2). It is not difficult to check that G has exactly h + 1 perfect matchings
(cf. [2, p. 38]), each of which has exactly one edge intersected by the line L. Therefore,
Z(G) is a path P, the ith vertex of P corresponds to the perfect matching N; of
G containing the edge a; (i = 1,2, ..., h + 1) (see Fig. 2).

Definition 2 (J. A. Bondy and U. S. R. Murty [1]). Let G; = (V(G;), E(G;)) be a graph
(i=1,2). The product G,xG, is the graph with vertex set V(G;xG,)=
{(w,v)|lue V(Gy),ve V(G,)}, in which (u,v) is adjacent to (u,v') if and only if
either # = ' and vo' € E(G,)} or v = ¢’ and uu’ € E(G,).
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Fig. 3. A catacondensed hexagonal system G and the perfect matching N (its edges are identified by double
lines) with all its edges on the perimeter of G.

Lemma 3. Let G; = (V(G;), E(G;)) (i = 1,2) be a graph with a Hamilton path P;. Then
G X G, has a Hamilton path.

Proof. suppose that |V (G,)| = m, |V(G,)| = n;, and P; = ujuy ... Uy, P, = 010, ... 0,.
Evidently, (uy,01)(t2,01) ... (Ums 01) (Ums 02) (Um—1,02) ... (1, 02)(1,03) - (s D3) .. 1S
a Hamilton path of G, x G,, in which the last vertex is (uy, v,) if n is even or (u,,, v,) if
nisodd. O

Let G be a catacondensed hexagonal system, sy, S5, ... ,s, be hexagons of G, where
s;and s; 4 have the edge ;. ; in common, and s, is a turning hexagon as shown in Fig.
3. It is known that G has a perfect matching with all its edges on the perimeter of
G since the perimeter of G is a Hamilton cycle of G [8] (cf. Fig. 3). Moreover, each
perfect matching of G has exactly one edge intersected by the horizontal line L (see
Fig. 3) (cf. [11]). Therefore, we can divide the set of all perfect matchings of G into
t + 1 disjoint subsets K((G), K,(G),...,K,(G),K,.(G); where K;(G) is the set of
perfect matchings of G containing the edge a; (i = 1,2,...,t + 1) (cf. Fig. 4). It is not
difficult to see that the perfect matchings of K;(G) have some other common edges
besides the edge a; (i = 1,2, ...,t + 1). We denote the set of the common edges of the
perfect matchings of K;(G) by M;(G). For i = 1,2,...,t, the edges e and f as well as
a,+1 (see Fig. 4) do not belong to any perfect matching of K;(G). Let G, and G, be the
components obtained from G by deleting the edges e, f and a, ., where G; (i = 1,2)
contains the edge af (see Fig. 4). Suppose that the numbers of perfect matchings of G,
and G, are p and g, respectively. Then we have |K;(G)|=pq for i=1,2,...,t.
Moreover, each perfect matching of K;(G) (i=1,2,...,t) has the form M;(G)
UN;;UN,,, where Ny; and N,, are perfect matchings of G, and G,, respectively.

Lemma 4. Let G be a catacondensed hexagonal system with exactly one turning
hexagon. Then Z(G) has a Hamilton path P. Moreover, the first pq vertices of
P correspond to the perfect matchings of K{(G).
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Fig. 4. The common edges of the perfect matchings of K;(G).

Proof. Since G has exactly one turning hexagon, G; and G, are both catacondensed
hexagonal systems without turning hexagon, or one of them is an edge and the other is
a catacondensed hexagonal system without turning hexagon. It suffices to prove the
assertion for the former, and the latter can be dealt with fully analogously.

By Lemma 1, Z(G,) is a Hamilton path P} = N, Ny, ... N;,, where N,, is the
perfect matching of G, containing the edge af (cf. Fig. 4). Similarly, Z(G,) is
a Hamilton path P} = N,;N,;...N,,, where N,, is the perfect matching of
G, containing the edge af. By Lemma 3, Z(G,) x Z(G,) has a Hamilton path. Since
the subgraph (K;(G)> of Z(G) induced by K;(G) is isomorphic to Z(G;)x Z(G;),
{K;(G)> has a Hamilton path P; for i = 1,2, ...,t. More precisely, the jth vertex of p;
(=12 ..,0)is M;(G)UN; ,+1-+ VN, 1, when his odd; and M;(GYU N, UN, 4.1
when h is even; where j=hp +r, h and r are positive integers, 0 <h < g — 1,
1 < r < p. Now consider the induced subgraph (K, . ;(G)>. Evidently, M, . ;(G) is the
only member of K, (G). It is not difficult to see that M,,(G) is adjacent to the
first vertex of P, ie. M,(G)UN;; UN,;, since M, (G)A(M,(G)UN;1UN,) =
s, (cf. Fig. 4). Note that in Z(G), for each vertex of P,, say, M;(G) U N;;U Ny, thereis a
path (M;(G)uNy;UNu (M (G)UN; ;U Ny M M3(G)UN1;UNy) ... (M(G) VN ;O Ny,
since (M(GYUN1;UNu)A (M, ((G)UN;UNy) =5, for f=1,...,t. For brevity,
we denote the jth vertex in P, by B;; (i=1,2,...,5j=1,2,...,pq). Now we find
a Hamilton path in Z(G) as follows:B;;By,...By 5y Ba pgB2,pg-1---Ba1
B3y ...Bs pg.-. By pqBypg—1...BaM, 1 (G) when t is even; or By pBipg-1---
B(1B31Bys ... By pyBa pg..-Bs1 ... By py By pg-1 .- BuM, . 1(G) when ¢ is odd. Evident-
ly, the first pg vertices of the above Hamilton path correspond to the perfect
matchings of K (G).

We are now in a position to formulate our main theorem.
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Theorem 5. Let G be a catacondensed hexagonal system. Then Z(G) has a Hamilton
path with the first pq vertices corresponding to the perfect matchings of K{(G).

Proof. If G has no turning hexagon, Z(G) itself is a path (Lemma 1). Now suppose
that G has at least one turning hexagon. We proceed by induction on the number of
turning hexagons.

If G has exactly one turning hexagon, by Lemma 4, the conclusion holds. Assume
that G has more than one turning hexagon. As mentioned above, the vertex set of
Z(G) 1s divided into t + 1 disjoint subsets K((G), K,(G), ..., K (G), K, {(G) (cf. Fig.
4). Since G; (i = 1,2) is a catacondensed hexagonal system with fewer turning hexa-
gons than G, by induction hypothesis, Z(G;) has a Hamilton path Pf with the first
n; vertices corresponding to the perfect matchings of K,(G;) (i.e. the perfect match-
ings of G; containing the edge af, cf. Fig. 4), where n, = |K,(G;)|. Denote
Pf = NN, ...N,, ... Ny, (i=1,2). By Lemma 3, Z(G,) x Z(G,) has a Hamilton path
P =TT,...T. (c=cic;), where for j=ac,+b O<a<c,—1, 1l <b<qy),
T;={(N1,;,+1 5 Nz 4+1)whenaisodd; and T; = (N; ,, N2 ,+1) when a is even. Since
the subgraph <K;(G)> of Z(G) induced by K;(G) is isomorphic to Z{G,) x Z(G,),
{Ki{G)) has a Hamilton path P,=D;D;,...D; for i=12,...,r; where
Dij=MJ(G)UN, ., +1-sUN;3 ,+1 When a is odd; and D;; = Mi(G)UN; yUN, 4.y
whenaiseven;j=acy + b, 0<a<c, — 1,1 <b < cy. One can check that for each
vertex Dy; of Py, there is a path in Z(G): Dy;Dy;... D;; (j=1,2,...,¢c) since
DyiADLy ;= My(GYAM 4y =s,(cf. Fig. 4, h=1,...,t — 1.

Now consider (K,,1(G)). Let Nj; = N;; — M (G, i=12;j=1,2,...,n; M,(G))
is the set of common edges of the perfect matchings of K {G;). Evidently,
{Nj;|j=1,2,...,n;} is the set of perfect matchings of G} UG?. Hence Z(G} U G}) has
a Hamilton path P{ = N}, - N{, ... Nj, (i=1,2). By Lemma 3, Z(G} U G}) x Z(G} U G3)
has a Hamilton path P = JJ, ... J,,,, where J; = (N1, Nj;). Since (K, (G)) is
isomorphic to Z(GluG})xZ(G3uG3), <(K,:(G)> has a Hamilton path
Py =0,0,...0,,, where O; =M, (G)uNj;UN3,. One can check that
O0; D, =M (G)YUN;UNSO)AM(GYUN;; UN,,) =s,. This means that the
first vertex of P, | is adjacent to the first vertex of P,. Now we find a Hamilton path of
Z(G) as followss P=DyDy,..D DyDy . y...Dy D3, ...D5....D, D, .4 ...
D,0,0,...0,,, when t is even; or P=D D . y...Dy;Dy;...D32. D3 ...
DD .-y...D;10,0,...0,,, when t is odd.

Remark 6. In the proof of the above theorem, if G; or G/ (i = 1,2;j = 1,2) is exactly an
edge, it can be dealt with similarly.

Remark 7. For a hexagonal system which is not catacondensed, its Z-transformation
graph need not have a hamilton path. An example is given below.
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