Hamilton paths in Z-transformation graphs of perfect matchings of hexagonal systems

Chen Rong-sia ${ }^{\text {a,* }}$, Zhang Fu-ji ${ }^{\text {b }}$
${ }^{a}$ College of Finance and Economics, Fuzhou University, Fuzhou, Fujian, 350002, People's Republic of C'hina
'Department of Mathematics, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China

Received 26 June 1994; revised 26 March 1996

Abstract

Let H be a hexagonal system. The Z-transformation graph $Z(H)$ is the graph where the vertices are the perfect matchings of H and where two perfect matchings are joined by an edge provided their symmetric difference is a hexagon of H (Z. Fu-ji et al., 1988). In this paper we prove that $Z(H)$ has a Hamilton path if H is a catacondensed hexagonal system.

A hexagonal system [11], also called honeycomb system or hexanimal (see, eg. [10]) is a finite connected plane graph with no cut-vertices, in which every interior region is surrounded by a regular hexagon of side length 1 . Hexagonal systems are of chemical significance since a hexagonal system with perfect matchings is the skeleton of a benzenoid hydrocarbon molecule [9]. Recall that a perfect matching of a graph G is a set of disjoint edges of G covering all the vertices of G. In the following discussion we confine our considerations to those hexagonal systems with at least one perfect matching.

Let H be a hexagonal system. The Z-transformation graph $Z(H)[3,4]$ is the graph where the vertices are the perfect matchings of H and where two perfect matchings M_{1} and M_{2} are joined by an edge provided their symmetric difference $M_{1} \triangle M_{2}$, i.e. $\left(M_{1} \cup M_{2}\right)-\left(M_{1} \cap M_{2}\right)$, is a hexagon of H. Z-transformation graphs have some interesting properties. $Z(H)$ is either a path or a bipartite graph with girth 4 , and the connectivity of $Z(H)$ is equal to the minimum degree of the vertices of $Z(H)[3,4]$. Furthermore, $Z(H)$ has at most two vertices of degree one [3]. The construction feature for the class of hexagonal systems whose Z-transformation graphs have at least one vertex of degree one was reported in [5]. Z-transformation graphs are useful

[^0]

Fig. 1. A catacondensed hexagonal system H with two turning hexagons s_{1} and s_{2}, and the Z-transformation graph $Z(H)$.

Fig. 2.
in certain enumeration techniques for hexagonal systems [6]. By using the concept of Z-transformation graphs, a class of hexagonal systems with forcing edges is also characterized [7]. In the present paper we prove that for a catacondensed hexagonal system $H, Z(H)$ has a Hamilton path.

Recall that a catacondensed hexagonal system is a hexagonal system whose vertices are all on the perimeter [9]. A hexagon of a catacondensed hexagonal system is said to be a turning hexagon if it has two or three non-parallel edges which are common edges with other hexagons (cf. Fig. 1).

Lemma 1. Let G be a catacondensed hexagonal system without turning hexagon. Then $Z(G)$ is a path.

Proof. Since G has no turning hexagon, the centres of the hexagons of G all lie on the line L (see Fig. 2). It is not difficult to check that G has exactly $h+1$ perfect matchings (cf. [2, p. 38]), each of which has exactly one edge intersected by the line L. Therefore, $Z(G)$ is a path P, the i th vertex of P corresponds to the perfect matching N_{i} of G containing the edge $a_{i}(i=1,2, \ldots, h+1)$ (see Fig. 2).

Definition 2 (J. A. Bondy and U.S. R. Murty [1]). Let $G_{i}=\left(V\left(G_{i}\right), E\left(G_{i}\right)\right)$ be a graph $(i=1,2)$. The product $G_{1} \times G_{2}$ is the graph with vertex set $V\left(G_{1} \times G_{2}\right)=$ $\left\{(u, v) \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$, in which (u, v) is adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if either $u=u^{\prime}$ and $v v^{\prime} \in E\left(G_{2}\right)$ or $v=v^{\prime}$ and $u u^{\prime} \in E\left(G_{1}\right)$.

Fig. 3. A catacondensed hexagonal system G and the perfect matching N (its edges are identified by double lines) with all its edges on the perimeter of G.

Lemma 3. Let $G_{i}=\left(V\left(G_{i}\right), E\left(G_{i}\right)\right)(i=1,2)$ be a graph with a Hamilton path P_{i}. Then $G_{1} \times G_{2}$ has a Hamilton path.

Proof. suppose that $\left|V\left(G_{1}\right)\right|=m,\left|V\left(G_{2}\right)\right|=n$; and $P_{1}=u_{1} u_{2} \ldots u_{m}, P_{2}=v_{1} v_{2} \ldots v_{n}$. Evidently, $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{1}\right) \ldots\left(u_{m}, v_{1}\right)\left(u_{m}, v_{2}\right)\left(u_{m-1}, v_{2}\right) \ldots\left(u_{1}, v_{2}\right)\left(u_{1}, v_{3}\right) \ldots\left(u_{m}, v_{3}\right) \ldots$ is a Hamilton path of $G_{1} \times G_{2}$, in which the last vertex is $\left(u_{1}, v_{n}\right)$ if n is even or $\left(u_{m}, v_{n}\right)$ if n is odd.

Let G be a catacondensed hexagonal system, $s_{1}, s_{2}, \ldots, s_{t}$ be hexagons of G, where s_{i} and s_{i+1} have the edge a_{i+1} in common, and s_{t} is a turning hexagon as shown in Fig. 3. It is known that G has a perfect matching with all its edges on the perimeter of G since the perimeter of G is a Hamilton cycle of G [8] (cf. Fig. 3). Moreover, each perfect matching of G has exactly one edge intersected by the horizontal line L (see Fig. 3) (cf. [11]). Therefore, we can divide the set of all perfect matchings of G into $t+1$ disjoint subsets $K_{1}(G), K_{2}(G), \ldots, K_{t}(G), K_{t+1}(G)$; where $K_{i}(G)$ is the set of perfect matchings of G containing the edge $a_{i}(i=1,2, \ldots, t+1)$ (cf. Fig. 4). It is not difficult to see that the perfect matchings of $K_{i}(G)$ have some other common edges besides the edge $a_{i}(i=1,2, \ldots, t+1)$. We denote the set of the common edges of the perfect matchings of $K_{i}(G)$ by $M_{i}(G)$. For $i=1,2, \ldots, t$, the edges e and f as well as a_{t+1} (see Fig. 4) do not belong to any perfect matching of $K_{i}(G)$. Let G_{1} and G_{2} be the components obtained from G by deleting the edges e, f and a_{t+1}, where $G_{i}(i=1,2)$ contains the edge a_{1}^{*} (see Fig. 4). Suppose that the numbers of perfect matchings of G_{1} and G_{2} are p and q, respectively. Then we have $\left|K_{i}(G)\right|=p q$ for $i=1,2, \ldots, t$. Moreover, each perfect matching of $K_{i}(G)(i=1,2, \ldots, t)$ has the form $M_{i}(G)$ $\cup N_{1 j} \cup N_{2 r}$, where $N_{1 j}$ and $N_{2 r}$ are perfect matchings of G_{1} and G_{2}, respectively.

Lemma 4. Let G be a catacondensed hexagonal system with exactly one turning hexagon. Then $Z(G)$ has a Hamilton path P. Moreover, the first pq vertices of P correspond to the perfect matchings of $K_{1}(G)$.

Fig. 4. The common edges of the perfect matchings of $K_{i}(G)$.

Proof. Since G has exactly one turning hexagon, G_{1} and G_{2} are both catacondensed hexagonal systems without turning hexagon, or one of them is an edge and the other is a catacondensed hexagonal system without turning hexagon. It suffices to prove the assertion for the former, and the latter can be dealt with fully analogously.

By Lemma 1, $Z\left(G_{1}\right)$ is a Hamilton path $P_{1}^{*}=N_{11} N_{12} \ldots N_{1 p}$, where N_{11} is the perfect matching of G_{1} containing the edge a_{1}^{*} (cf. Fig. 4). Similarly, $Z\left(G_{2}\right)$ is a Hamilton path $P_{2}^{*}=N_{21} N_{22} \ldots N_{2 q}$, where N_{21} is the perfect matching of G_{2} containing the edge a_{2}^{*}. By Lemma $3, Z\left(G_{1}\right) \times Z\left(G_{2}\right)$ has a Hamilton path. Since the subgraph $\left\langle K_{i}(G)\right\rangle$ of $Z(G)$ induced by $K_{i}(G)$ is isomorphic to $Z\left(G_{1}\right) \times Z\left(G_{2}\right)$, $\left\langle K_{i}(G)\right\rangle$ has a Hamilton path P_{i} for $i=1,2, \ldots, t$. More precisely, the j th vertex of p_{i} $(i=1,2, \ldots, t)$ is $M_{i}(G) \cup N_{1, p+1-r} \cup N_{2, h+1}$, when h is odd; and $M_{i}(G) \cup N_{1 r} \cup N_{2, h+1}$ when h is even; where $j=h p+r, h$ and r are positive integers, $0 \leqslant h \leqslant q-1$, $1 \leqslant r \leqslant p$. Now consider the induced subgraph $\left\langle K_{t+1}(G)\right\rangle$. Evidently, $M_{t+1}(G)$ is the only member of $K_{t+1}(G)$. It is not difficult to see that $M_{t+1}(G)$ is adjacent to the first vertex of P_{t}, i.e. $M_{t}(G) \cup N_{11} \cup N_{21}$, since $M_{t+1}(G) \Delta\left(M_{t}(G) \cup N_{11} \cup N_{21}\right)=$ s_{t} (cf. Fig. 4). Note that in $Z(G)$, for each vertex of P_{1}, say, $M_{1}(G) \cup N_{1 j} \cup N_{2 k}$, there is a path $\left(M_{1}(G) \cup N_{1 j} \cup N_{2 k}\right)\left(M_{2}(G) \cup N_{1 j} \cup N_{2 k}\right)\left(M_{3}(G) \cup N_{1 j} \cup N_{2 k}\right) \ldots\left(M_{t}(G) \cup N_{1 j} \cup N_{2 k}\right)$, since $\left(M_{f}(G) \cup N_{1 j} \cup N_{2 k}\right) \triangle\left(M_{f+1}(G) \cup N_{1 j} \cup N_{2 k}\right)=s_{f}$ for $f=1, \ldots, t$. For brevity, we denote the j th vertex in P_{i} by $B_{i j}(i=1,2, \ldots, t ; j=1,2, \ldots, p q)$. Now we find a Hamilton path in $Z(G)$ as follows: $B_{11} B_{12} \ldots B_{1, p q} \quad B_{2, p q} B_{2, p q-1} \ldots B_{21}$ $B_{31} \ldots B_{3, p q} \ldots B_{t, p q} B_{t, p q-1} \ldots B_{t 1} M_{t+1}(G)$ when t is even; or $B_{1, p q} B_{1, p q-1} \ldots$ $B_{11} B_{21} B_{22} \ldots B_{2, p q} B_{3, p q} \ldots B_{31} \ldots B_{t, p q} B_{t, p q-1} \ldots B_{t 1} M_{t+1}(G)$ when t is odd. Evidently, the first $p q$ vertices of the above Hamilton path correspond to the perfect matchings of $K_{1}(G)$.

We are now in a position to formulate our main theorem.

Theorem 5. Let G be a catacondensed hexagonal system. Then $Z(G)$ has a Hamilton path with the first pq vertices corresponding to the perfect matchings of $K_{1}(G)$.

Proof. If G has no turning hexagon, $Z(G)$ itself is a path (Lemma 1). Now suppose that G has at least one turning hexagon. We proceed by induction on the number of turning hexagons.

If G has exactly one turning hexagon, by Lemma 4, the conclusion holds. Assume that G has more than one turning hexagon. As mentioned above, the vertex set of $Z(G)$ is divided into $t+1$ disjoint subsets $K_{1}(G), K_{2}(G), \ldots, K_{i}(G), K_{t+1}(G)$ (cf. Fig. 4). Since $G_{i}(i=1,2)$ is a catacondensed hexagonal system with fewer turning hexagons than G, by induction hypothesis, $Z\left(G_{i}\right)$ has a Hamilton path P_{1}^{*} with the first n_{i} vertices corresponding to the perfect matchings of $K_{1}\left(G_{i}\right)$ (i.e. the perfect matchings of G_{i} containing the edge a_{i}^{*}, cf. Fig. 4), where $n_{i}=\left|K_{1}\left(G_{i}\right)\right|$. Denote $P_{i}^{*}=N_{i 1} N_{i 2} \ldots N_{i n_{i}} \ldots N_{i c_{i}}(i=1,2)$. By Lemma 3, $Z\left(G_{1}\right) \times Z\left(G_{2}\right)$ has a Hamilton path $P^{\prime}=T_{1} T_{2} \ldots T_{c} \quad\left(c=c_{1} c_{2}\right)$, wherc for $j=a c_{1}+b \quad\left(0<a<c_{2}-1, \quad 1<b<c_{1}\right)$, $T_{j}=\left(N_{1, c_{1}+1-b}, N_{2, a+1}\right)$ when a is odd; and $T_{j}=\left(N_{1, b}, N_{2, a+1}\right)$ when a is even. Since the subgraph $\left\langle K_{i}(G)\right\rangle$ of $Z(G)$ induced by $K_{i}(G)$ is isomorphic to $Z\left(G_{1}\right) \times Z\left(G_{2}\right)$, $\left\langle K_{i}(G)\right\rangle$ has a Hamilton path $P_{i}=D_{i 1} D_{i 2} \ldots D_{i c}$ for $i=1,2, \ldots, t$; where $D_{i j}=M_{i}(G) \cup N_{1, c_{1}+1-b} \cup N_{2, a+1}$ when a is odd; and $D_{i j}=M_{i}(G) \cup N_{1, b} \cup N_{2, a+1}$ when a is even; $j-a c_{1}+b, 0 \leqslant a \leqslant c_{2}-1,1 \leqslant b \leqslant c_{1}$. One can check that for each vertex $D_{1 j}$ of P_{1}, there is a path in $Z(G): D_{1 j} D_{2 j} \ldots D_{t j}(j=1,2, \ldots, c)$ since $D_{h j} \triangle D_{h+1, j}=M_{h}(G) \triangle M_{h+1}=s_{h}$ (cf. Fig. 4), $h=1, \ldots, t-1$.

Now consider $\left\langle K_{t+1}(G)\right\rangle$. Let $N_{i j}^{\prime}=N_{i j}-M_{1}\left(G_{i}\right), i=1,2 ; j=1,2, \ldots, n_{i} ; M_{1}\left(G_{i}\right)$ is the set of common edges of the perfect matchings of $K_{1}\left(G_{i}\right)$. Evidently, $\left\{N_{i j}^{\prime} \mid j=1,2, \ldots, n_{i}\right\}$ is the set of perfect matchings of $G_{i}^{1} \cup G_{i}^{2}$. Hence $Z\left(G_{i}^{1} \cup G_{i}^{2}\right)$ has a Hamilton path $P_{i}^{\prime}=N_{i 1}^{\prime} \cdot N_{i 2}^{\prime} \ldots N_{i n_{i}}^{\prime}(i=1,2)$. By Lemma 3, $Z\left(G_{1}^{1} \cup G_{1}^{2}\right) \times Z\left(G_{2}^{1} \cup G_{2}^{2}\right)$ has a Hamilton path $\bar{P}=J_{1} J_{2} \ldots J_{n_{1} n,}$, where $J_{1}=\left(N_{11}^{\prime}, N_{21}^{\prime}\right)$. Since $\left\langle K_{t+1}(G)\right\rangle$ is isomorphic to $Z\left(G_{1}^{1} \cup G_{1}^{2}\right) \times Z\left(G_{2}^{1} \cup G_{2}^{2}\right),\left\langle K_{t+1}(G)\right\rangle$ has a Hamilton path $P_{t+1}=O_{1} O_{2} \ldots O_{n_{1} n_{2}}$, where $O_{1}=M_{t+1}(G) \cup N_{11}^{\prime} \cup N_{21}^{\prime}$. One can check that $O_{1} \Delta D_{t 1}=\left(M_{1+1}(G) \cup N_{11}^{\prime} \cup N_{21}^{\prime}\right) \Delta\left(M_{1}(G) \cup N_{11} \cup N_{21}\right)=s_{1}$. This means that the first vertex of P_{t+1} is adjacent to the first vertex of P_{t}. Now we find a Hamilton path of $Z(G)$ as follows: $P=D_{11} D_{12} \ldots D_{1 c} D_{2 c} D_{2, c-1} \ldots D_{21} D_{31} \ldots D_{3 c} \ldots D_{t r} D_{t, c-1} \ldots$ $D_{t 1} O_{1} O_{2} \ldots O_{n_{1} n_{2}}$ when t is even; or $P=D_{1 c} D_{1, c-1} \ldots D_{11} D_{21} \ldots D_{2 c} D_{3 c} \ldots$ $D_{t c} D_{t, c-1} \ldots D_{t 1} O_{1} O_{2} \ldots O_{n_{1} n_{2}}$ when t is odd.
Remark 6. In the proof of the above theorem, if G_{i} or $G_{i}^{j}(i=1,2 ; j=1,2)$ is exactly an edge, it can be dealt with similarly.

Remark 7. For a hexagonal system which is not catacondensed, its Z-transformation graph need not have a hamilton path. An example is given below.

G

Z (G)

Acknowledgements

The authors are indebted to the referee for the valuable comments.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1981).
[2] S.J. Cyvin and I. Gutman, Kekulé structures in Benzenoid Hydrocarbons (Springer, Berlin, 1988).
[3] Z. Fu-ji, G. Xiaofeng and C. Rong-si, Z-transformation graphs of perfect matchings of hexagonal systems, Discrete Math. 72 (1988) 405-415.
[4] Z. Fu-ji, G. Xiao-feng and C. Rong-si, The connectivity of Z-transformation graphs of perfect matchings of hexagonal systems, Acta Math. Appl. Sinica 4(2) (1988) 131-135.
[5] Z. Fu-ji and G. Xiao-feng, The classification of the hexagonal systems by their Z-transformation, J. Xinjiang University 4(3) (1988) 9-16.
[6] Z. Fu-ji and G. Xiao-feng, The enumeration of several classes of hexagonal systems, to appear.
[7] Z. Fu-ji and L. Xue-liang, Hexagonal systems with forcing edges, Discrete Math., accepted for publication.
[8] I. Gutman, Covering hexagonal systems with hexagons, in: Graph Theory, D. Cvetković, I. Gutman, T. Pisanski and R. Tošić, eds., Proceedings of the Fourth Yugoslav Seminar held at Novi Sad, 1983. (Univerzitet u Novom Sadu, Institut za Mathematiku, Novi Sad, 1984).
[9] I. Gutman and S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Springer, Berlin, 1989).
[107 F. Harary, The cell growth problem and its attempted solutions, in: H. Sachs, H-J. Voss and H. Walther, eds., Beitrage zur Graphentheorie (Int. Koll. Manebach, 9-12, Mai, 1967), (B. G. Teubner Verlagsgesellschaft, Leipzig, 1968) 49-60.
[11] H. Sachs, Perefect matchings in hexagonal systems, J. Combin. 4 (1984) 89-99.

[^0]: *Corresponding author.

