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Abstract

AnomalousU (1)'s are omnipresent in realizations of the Standard Model using D-branes. Such models are typically non-
supersymmetric, and the anomalduigl) masses are potentially relevant for experiment. In this Letter, the string calculation of
anomaloud’ (1) masses [hep-th/0204153] is extended to non-supersymmetric orientifolds.

0 2004 Elsevier B.V. Open access under CC BY license.

1. Introduction mechanism [8—10] where a scalar axionic field (zero-
form, or its dual two-form) is responsible for the
Recently, many attempts have been made in order anomaly cancellation. This mechanism gives a mass
to embed the Standard Model in open string theory, to the anomalou& (1) fields and breaks the associated
with partial success [1-7]. In such a context the Stan- gauge symmetry. The masses of the anomalois’s
dard Model particles are open string states attached onare typically of order of the string scale but in open
(different) stacks of D-braned! coincident D-branes  string theory they can be also much lighter [11,12].
away from an orientifold plane typically generate a If the string scale is around a few TeV, observation
unitary groupU (N). Therefore, every/-factor in the of such anomaloud/(1) gauge bosons becomes a
gauge group supplies the model with extra Abelian realistic possibility [13].
gauge fields. As it has been shown in [12], we can compute the
SuchU (1) fields have generically 4D anomalies. general mass formulae of the anomalduél)’s in
The anomalies are cancelled via the Green—Schwarzsupersymmetric models by evaluating the ultraviolet
tadpole of the one-loop open string diagram with the
insertion of two gauge bosons on different boundaries.
L E-mail address: panasta@physics.uoc.gr (P. Anastasopoulos).  |n this limit, the diagrams of the annulus with both
There are cases where we can also [#0:) or S(n) gauge  gage bosons in the same boundary and the Mébius
factors. HoweversJ (3) can be minimally embedded only i(3) . R
and in non-minimal cases (bigger gauge groups that are then brokenStrlp do not contribute when VaCU.'a have cancelled
by projections to those of the Stamdaviodel), they leave also other  tadpoles. Mass formulae were provided #e= 1 and
potentially anomalou#/ (1)’s. N = 2 supersymmetric orientifolds.
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In this Letter we are interested in the masses of which is based on turning on a magnetic field on the
the anomalou$#/ (1)’s in non-supersymmetric models D-branes and pick out the second order terms to this
since such are the models that will eventually represent magnetic field. This method is called “the background-
the low energy physics of the Standard Model. In par- field method” [16]. We turn on different magnetic
ticular, intersecting-brane realizations of the Standard fields B, in every stack of branes, longitudinal 13,
Model are generically non-supersymmetric. We cal- a non-compact dimension,
culate the mass formulae using the “background field
method” and find that they are the same as the super-F53 = B, Qq., (1)

symmetric ones when we have cancellation of all tad-
poles. In cases where NSNS tadpoles do not vanish,WhereQ“ are thel/(1), generators from every stack

there are extra contributions proportional to the non- of F’ra”es' The effect of the magnen_c field on the open-
vanishing tadpole terms. string spectrum is to shift the oscillator frequencies

. _ 2 . 3 .
The formulae are valid even if we add Wilson lines ©f the string non-compaat” + ix* coordinate by an

that move the branes away from the fixed points. The amounte,:
Wilson lines generically break the gauge group and 1
they will affect the masses of the anomalduigl)’s € = ;[arctar(n q{'Ba) +arctarrqj Ba)|, @)

through the traces of the model dependematrices.

The formulae, are applied to Z non-supersym-  Where ¢, ¢ are the U(1), charges of thei, j
metric orientifold model, with RR and NSNS tadpoles €ndpoints. The Chan-Paton statgsthat describe the
to be cancelled, where supersymmetry is broken by a €ndpointi, j of the open string, are the generators
Scherk—Schwarz deformation [14]. of gauge group that remains after the orientifold

This ultraviolet mass is not the only source for construction. D_iagonalizing these matrices, we can
the mass of anomalous (1)’s. In Standard Model ~ replace thep; with &;;. _
realizations, the Higgs is necessarily charged under  The expansion of the one-loop vacuum energy is
one of the anomalou#/(1)’'s. As it was described 1
in [15], the Higgs contribution to the mass of these A(B) = E(T+IC+A(B) + M(B))

U(L)'s is gay/ M2+ e2 (H)2 where g4 the gauge 1/ B2
coupling of the anomalou#/(1) and ey the U(1) = Ao+ §<2—) Ag+---, (3)
charge of the Higgs. The Higgs contribution to the T

U(1) mass can be obtained from the effective field where B one of the different magnetic fields. Gener-
theory unlike the ultraviolet mass we calculate here ically, it appears a linear t& term that is a pour

which can only calculated in string theory. tadpole and it is coming from the RR sector. This
The Letter is organized as follows. In Section 2, term vanishes when we have tadpole cancellation. The
we evaluate the general mass of the anomalois's quadratic term in the background field contains a lot of

using the background-field method. In Section 3, we information. In the IR limit, we have a logarithmic di-

review the non-supersymmetrit; orientifold with a vergence whose coefficient is tigefunction. The UV

Scherk—Schwartz deformation, and we use the resultslimit provides the mass-term of the anomalous gauge

of the previous section to calculate the anomalous bosons. The finite part of this term is the threshold cor-

U (1) masses. rection in the gauge couplings [16]. The annulus am-
plitude in theZy type | orientifolds (without the mag-
netic field) can be written as

2. Computing with the background-field method Mg 00

| 3 (4)
Our purpose is to evaluate the bare masses of 2N - t

the anomaloud/ (1) which appear in the one-loop 0
amplitudes with boundaries where two gauge fields wherea, b the different kind of D-branes at the ends
are inserted [12]. Here we will use another technique of the open strings. Thgzb is the contribution of the

k
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kth sector:

AP = s T T
A

X Z ’7 75 |ntk[ﬂ]

o, =0,1

®)

A

Similarly, we can exchangd with M in (4) to have
an analogous expression for the Mobius strip. g
is given by

1
MZ = _47.[4[ TI’[)/QZk]

X Z ’70”3 ]Zﬁntk[Z]

a, p=0,1

(6)

M

In the presence of the background magnetic figld
the above amplitudes become

A (B) = o
x Tr|:(Bakayj ®Vh + 4 ® Byhyy)
aﬂ %) ab ¢
X Zn ](L) Zlnt,k[ﬁ] ’
2 A
2[](%)
¢(B)= Tr|:B Aay 2y b B
g o)

x Zine o[ 5] )

M

Notice that the only differences from (5), (6) are in the
contribution of the non-ampact part of the partition

The zero-ordeB terms are the amplitudes in the ab-
sence of the magnetic field (5), (6). These expressions
give the tadpole cancellation conditions in virtue of the
UV divergences. The linear tB terms appear from the
a=b=1sectorin (7). Thisis a pour tadpole and van-
ishes when we have tadpole cancellation. Therefore, it
does not affect higher order iB amplitudes. The sec-
ond order-terms oB are

Agh = w2 [Te[ 02y k] Te[yf ]+ Te[wd ] Te[adys ]
+ 2T Ty [IF | 0 (9
g = — 472 Tr[ A2y 2} Foe M (10)

defining F,f” as a term which contains all the spin-
structure and the orbifold information

] LS i 9]0
Fkb|o' = m - naﬁﬂlaf[logw}
?[g]om)
X0 Zinil 3] (11)

o

for both surfaces (the choice of define the surface
o). Note that thes = b = 1 sector is not contained
in the (11). This term can be formally written as the
supertrace over states from the open k-orbifold
sector

functions. This is expected since the presence of the With

magnetic fields affect only the?, x3 coordinates.
Therefore, the expressions (7) are valid for all kinds

of orientifold models.
Since we are interested in the quadragfcterms of

the above amplitudes, we expand the above formulae

to quadratic order in the background fiéldising the
following Taylor expansions:

ez{Baxa ®1+1@® By

in A
’ 8
2B,y ( )

in M4,

2 Where the normalized expansion i4 = Ag + £ 4y +
(£)%A42+ . Similarly for M.

b G| b 1 2| —tM?)2
a | (2 )2 k,open|:1_2 — 57 |e 3 (12)
where thes is the 4D helicity.
Thus, forlarge 72 we have
b -2
am, FP = Clig + 0[] (13)
|G| 1 5
cob = —— trk[— —s . (14)
kIR ™ (2m)2 12 open
Forsmall > we have
1 _x
lim OFI?b = [Ck v +O[e 22]], (15)
T—>
where
|G| [ 1 z}
cib . =——_Stp|——s . (16)
OV (2m)2 12 closed

The helicity supertrace is now in the closed-string
k-sector mapped from the opérsector by a modular
transformation.
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Notice that in the annulus amplitude (9), the two wherea =5, 9. When we have non-vanishing NSNS
first terms are proportional to the square of théeld. tadpoles there is an extra contribution to the mass
This cases are proportional to annulus amplitudes formulas, proportional to the non-vanishing tadpole.
Az, where two vertex-operators (VOs) are on the The formulae (18), (19) still hold even if we add
same boundary. In the last component of (9), the  Wilson lines. Generically, adding a Wilson line we
fields are coming from the opposite D-branes and shift the windings or the momentain a coordinate with
is proportional to.411, with the VOs on different ~ Newmann or Dirichlet boundary conditions, respec-
boundaries. The (10) is proportional to a Mdbius strip tively. This breaks the gauge group. In the transverse
amplitude with the insertion of two VOs. (closed) channel the shifts appears as phas&s’

The IR limit 7 — oo can be found easily using the where6 the shift and: the momenta or windings, re-
(13). We regularize the integral by — 1/72 and we spectively, to the above. Since only the massless states
find the g-function contribute in the UV limit, the effect of the Wilson line

will appear only in the traces of the matrices.

2 = ab u The threshold correction [18] is the finite part of (9)
b= N ]; zleoo(Az»k([) + M3, (1) and (10). Generically we have
_ l//L2
272 3 1672 167° 1\~ [ di
=—— (D]l ] i e / = (Agh + M9)
2 2 2 2
N = g % N3 0!
k 2.k
+ Ty 1 T35 w] piogZ Ly L 0
+ 2T{rars ] T2 ) Cilr| 4 Mz
— 4T A2y CE M (17) where we separate the divergences from the quadratic

terms toB. The above formulae for thg-function,
For the UV limit r — 0, we use the (15) and we the corrections to the gauge couplings and the masses
regularize the integral byt <t. The A2 and M of the anomaloud/(1)’s are the same to the super-
together are giving terms proportional to the tadpole symmetric ones found in [12,16]. Next, we will apply
cancellation conditiond. Therefore, when we have the above formulae to a non-supersymmetric model
vanishing of RR and NSNS tadpoles, the masses of that has been constructed by Scherk—Schwarz defor-

the anomalous gauge bosons are givetdhy. mation [14].
1 72 Nt 2
2 k b
EMaa =N Z Tr[kal’a] Ciuvia (18) 3. A 4D non-supersymmetric orientifold example
k=1
1, w? N-1 L (159 In this section we will evaluate the masses of the
§M59 =N Z Tr[Asys | Tr[Aovs |CP Ly |A’ (19) anomaloud/ (1)’s in a Z» orientifold model where su-
k=1 persymmetry is broken by a Scherk—Schwarz defor-
mation [20—-26] and where RR and NSNS tadpoles
o cancel locally [14]. To start with, we give a review
3 The UV limit of 3, m# in (11) is generically of or- of this model defining some useful quantities. Con-
derz, 2. Terms that in the closed sector appea# g are contribu- S|d?r theN =1 frbﬁozld of t}l’pe IIB string theory in
tions from the RR part. These terms have limits 232 andsi /612 4 dimensionsR™ x T< x (T*/Zz). The elements of

coming from the annulus and Mdbiusipt respectively. Terms that  this orbifold are{1, g}, acting only on ther'* [17]. In
in the closed string sector appear @] are the NSNS sectors  addition, we can act with a freely-actirigp orbifold
which 2have contnbuztlon only from thé; logn. T.hg uv Ilmlts are with elements{1, (_1)F5}_ We denote by: the non-
—m /3t and —m/12< from the annulus and Mdobius strip, respec- .. . . . .

tively. Therefore (9), (10) have the same form as (5), (6) that pro- trivial element of this group. Th_ls orbifold is known
vides the tadpole conditions. It is important that both, R and NS sec- @S @ Scherk—Schwarz deformation. The= Fj, + Fg

tors contribute to the mass formulas of the anomald(®)’s. is the space—time fermion number a#fds the ele-
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Table 1
The massless spectrum for the two inequivalent solutjg%s +1 of theZ, accompanied with a transverse SS deformation. The gauge group
in both cases i§/(8)g x U(8)y x U(8)5 x U(8)g . The spectrum is non-chiral and consequently anomaly-free

yi=-1 Scalars Fermions
Gauge groupU (8)3 x U (8)2
(99)/(55) matter 8,8+ (8,8 (28,1) + (28,1) + (1, 28)
(1,28 +2x (8,8 +2x (8 8)
(59) matter (8,1;81)+(8,1,81) (8,1,1,8+(8 11,8
(1,8,1,8 + (1,8 1,8) (1,881 + (1881
yZ=+1 Scalars Fermions
Gauge groupU (8)3 x U (8)2
(99)/(55) matter (28,1) + (28,1) + (1,28) + (1,28 8,8+ (8,8
2x(8;8)+2x(8;8)
(59) matter (8,1;81)+(8,1,8,1) 8,1:1,8+8,1;1,8
(1,81,8+(1,818) (1,881 +(1,88,1)
. . 2 o
ment(—1)"4 (which geometrically corresponds to the ﬁ[ﬂ+2v,-k] Ol7)
shift x4 — x4 + 7 R4 of a compact dimension). As it X 1_[

l 9
1 U .|
was shown in [14], the tadpole cancellation provides =1 2 L1204 O10)

two different solutions that depend on the inequivalent 1

choices ofy? = +1 wherey, the action oz on the  Z22 [£1=2 )" (=D)* P [(=1)* "4 Py, P
Chan—Paton matrices. The 16-dimensional ‘shift’ vec- 5.r=0

tor of the Z5 orientifold is [10,19] ) wil
2[5l & [ s520,4] 00

1
V9=V5=—(l, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1). x l_[ 0 )
£08 4 21) @ 0] 1420,] O

The ‘shift’ vector of the SS deformation generically is Fors = r = 0, we have the internal partition function

) of a T2 x K3/Z, orientifold. s denotes the direct
5_ 1) Qe =1p) foryy =-1. (22) action of the SS deformation amdhe twisted sector.
=4 (24,0p) for )/hz =+1, The (—1)*"4 Py, Py is the lattice sum over momenta
along the first torug'?:

(23)

V)P

where the index referred to the number of the same
components in the vector. In both cases b = 16, )
however we implement for simplicity = = 8. The (—1)"™i P, (i72/2) = 1 Z(_l)s.m,-q%(’,’é—j)z
massless spectrums are provided in Table 1. The gauge ' n(it2/2) 4=

group in both cases is the same. The only difference (24)
appears in the exchange of the antisymmetric reps ) )

with the bi-fundamenta, 8) + (8, 8) in the (99) (55) For s = 1 we have the SS deformation that shifts the

matter sector. The spectrum is anomaly-free in 4D "4 Momenta. As we mention before= 0, 1 denotes
since it is non-chiral. Thénternal annulus partiton ~ the 7 untwisted and twisted sectors, respectively.
functions for 99, 55 and 59 strings are However we will neglect the twisted sector since it

requires the insertion of anti-D-branes [14].

1 To evaluate the masses of the anomalous bosons,

99,55ray _ + . . K
Ziwr Ll == D (D™ [(=1)"" Py P we insert (23) and (11) in the mass formufaafter
s,r=0
o500 (k)2 S
X ————|(2 S|n7 4 This model has local vanishing of RR and NSNS tadpoles, and
n(z) there will not be contributions froml, and M.
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some ‘thetacology’ we find fax =5, 9:

2
% (T[] Tr[2% ]

+ Tr[A%ygn] Tr[A%yen ] (=D}

X Pm4Pm5,

ao
Fk=l

(25)

9, = - L, 11
=17 75313 (22 | Tr[A7s]
0292

n®y2

Vo4
772

i o; lo
o 109

T yen] Tr[Agygh](—l)”’4}

X Py Ps-

(26)

The y-matrices point out the sector that each term is
coming from. In the UV region, only the first terms
in both formulae contribute to the mass of the anom-
alousU (1)'s. The second terms (that contains the SS
actionh) after the Poisson re-summation become pro-
portional to W,,;+1/2 and does not contribute to the
Con>>%9. Since SS deformation does not contribute
to the mass terms of the anomaldugl)’s, we can di-
rectly evaluate their masses for both two inequivalent
solutions ¢/ = £1):

1 472 )%
M iy === Tl TR ve] =
:_%<—%sin[2nvi“])

X (— ﬁ sin[ 27 VJ“])

%1
8o @0
1 - 4n® 5 9. 1M1
>Ms9ij =5 4Tr[)‘i Vg]Tr[)‘ng]znza/
V1
N 29)

wherea = 5,9. The mass-matrix has two massless
gauge bosons A1 + A», —A1 + A, and two massive
A1+ A2+ A1+ Az, —A1— Az + A1+ Ao with masses
3V1/32’, 5V1/32, respectively.

There are no anomaloug(1l)’s in these models
since the spectrum is non-chiral. However, the exis-

tence of the two massive gauge bosons are the conse-

P. Anastasopoulos / Physics Letters B 588 (2004) 119-126

guence of 6D anomalies [2,11,12,19]. The decompact-
ification limit of the first torus (where the SS deforma-
tion acts) leads to th&y =1 6D Z» orientifolds that
contains two anomaloug (1)’s that become massive
via the Green—-Schwarz mechanism. Therefore, axions
that participate in the anomaly cancellation in the 6D
model, contribute to the 4D masses of the anomalous
U (1)’s by volume dependent terms. The ratio of the
masses found in [19] for th&, supersymmetric ori-
entifold are the same to the above.

4. Conclusion

In this Letter we evaluated the general mass for-
mula for the anomaloug (1)’s in non-supersymmetric
orientifolds. We have shown that the supersymmetric
formulae of [12] are also valid in non-supersymmetric
orientifolds provided that the tadpoles cancel.

Our analysis has direct implications for model
building, both in string theory and field theory orb-
ifolds. It provides a necessary and sufficient condi-
tion for a non-anomalou®’ (1) to remain massless
(the hypercharge for example). The masses of the
anomaloud/ (1)’s are always as heavy or lighter than
the string scale. Therefore, production of these new
gauge bosons in particle acestors provides both
constrains on model building and new potential signals
at colliders, if the string scale is around a few TeV.
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Appendix A. Definitionsand identities

The Dedekind function is defined by the usual
product formula (withy = ¢27i7)

]

a2 [](2-q").

n=1

n(r) = (A1)



P. Anastasopoulos / Physics Letters B 588 (2004) 119-126

The Jacobi?-functions with general characteristic and
arguments are

ﬁ[g](zh’) = Zeinr(”*D‘/Z)z627”.(1*5/2)(11701/2)‘

nez
(A.2)
We define: 91(zlt) = #[7]Gl1), Daklt) =
oo, van = v[glEln),  valn) =

ﬁ[‘l)](zh). The modular properties of these functions
are

n(z +1) =" n(0),
]l + = FU@ 29, 5 ]l
n(=1/t) =~ —itn(r),
(2|1 i () o1 B
[ 4] o] e —ite ™ T P 1(zl0).
(A.3)

A very useful identity that is valid fop " h; =Y g; =0
is

3
> e[l [[2[5e 1O
i=1

a,$=0,1

3
=v1(—v/2 [ [2[10] /2.

i=1

(A.4)
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