
b

lly non-
ion of
Physics Letters B 588 (2004) 119–126

www.elsevier.com/locate/physlet

AnomalousU(1)’s masses in non-supersymmetric
open string vacua

P. Anastasopoulosa,b

a Department of Physics, University of Crete, 71003 Heraklion, Greece
b Laboratoire de Physique Théorique, École Polytechnique, 91128 Palaiseau, France

Received 20 February 2004; accepted 12 March 2004

Editor: L. Alvarez-Gaumé

Abstract

AnomalousU(1)’s are omnipresent in realizations of the Standard Model using D-branes. Such models are typica
supersymmetric, and the anomalousU(1) masses are potentially relevant for experiment. In this Letter, the string calculat
anomalousU(1) masses [hep-th/0204153] is extended to non-supersymmetric orientifolds.
 2004 Elsevier B.V. Open access under CC BY license.
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1. Introduction

Recently, many attempts have been made in o
to embed the Standard Model in open string the
with partial success [1–7]. In such a context the St
dard Model particles are open string states attache
(different) stacks of D-branes.N coincident D-branes
away from an orientifold plane typically generate
unitary groupU(N). Therefore, everyU -factor in the
gauge group supplies the model with extra Abel
gauge fields.1

SuchU(1) fields have generically 4D anomalie
The anomalies are cancelled via the Green–Schw

E-mail address: panasta@physics.uoc.gr (P. Anastasopoulo
1 There are cases where we can also haveSO(n) or Sp(n) gauge

factors. However,SU(3) can be minimally embedded only inU(3)

and in non-minimal cases (bigger gauge groups that are then br
by projections to those of the Standard Model), they leave also othe
potentially anomalousU(1)’s.
0370-2693 2004 Elsevier B.V.
doi:10.1016/j.physletb.2004.03.034

Open access under CC BY license.
mechanism [8–10] where a scalar axionic field (ze
form, or its dual two-form) is responsible for th
anomaly cancellation. This mechanism gives a m
to the anomalousU(1) fields and breaks the associat
gauge symmetry. The masses of the anomalousU(1)’s
are typically of order of the string scale but in op
string theory they can be also much lighter [11,1
If the string scale is around a few TeV, observat
of such anomalousU(1) gauge bosons becomes
realistic possibility [13].

As it has been shown in [12], we can compute
general mass formulae of the anomalousU(1)’s in
supersymmetric models by evaluating the ultravio
tadpole of the one-loop open string diagram with
insertion of two gauge bosons on different boundar
In this limit, the diagrams of the annulus with bo
gauge bosons in the same boundary and the Mö
strip do not contribute when vacua have cance
tadpoles. Mass formulae were provided forN = 1 and
N = 2 supersymmetric orientifolds.

http://www.elsevier.com/locate/physletb
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In this Letter we are interested in the masses
the anomalousU(1)’s in non-supersymmetric mode
since such are the models that will eventually repres
the low energy physics of the Standard Model. In p
ticular, intersecting-brane realizations of the Stand
Model are generically non-supersymmetric. We c
culate the mass formulae using the “background fi
method” and find that they are the same as the su
symmetric ones when we have cancellation of all t
poles. In cases where NSNS tadpoles do not van
there are extra contributions proportional to the n
vanishing tadpole terms.

The formulae are valid even if we add Wilson lin
that move the branes away from the fixed points. T
Wilson lines generically break the gauge group a
they will affect the masses of the anomalousU(1)’s
through the traces of the model dependentγ matrices.

The formulae, are applied to aZ2 non-supersym
metric orientifold model, with RR and NSNS tadpol
to be cancelled, where supersymmetry is broken b
Scherk–Schwarz deformation [14].

This ultraviolet mass is not the only source f
the mass of anomalousU(1)’s. In Standard Mode
realizations, the Higgs is necessarily charged un
one of the anomalousU(1)’s. As it was described
in [15], the Higgs contribution to the mass of the

U(1)’s is gA

√
M2 + e2

H 〈H 〉2 where gA the gauge
coupling of the anomalousU(1) and eH the U(1)

charge of the Higgs. The Higgs contribution to t
U(1) mass can be obtained from the effective fi
theory unlike the ultraviolet mass we calculate h
which can only calculated in string theory.

The Letter is organized as follows. In Section
we evaluate the general mass of the anomalousU(1)’s
using the background-field method. In Section 3,
review the non-supersymmetricZ2 orientifold with a
Scherk–Schwartz deformation, and we use the res
of the previous section to calculate the anomal
U(1) masses.

2. Computing with the background-field method

Our purpose is to evaluate the bare masses
the anomalousU(1) which appear in the one-loo
amplitudes with boundaries where two gauge fie
are inserted [12]. Here we will use another techniq
which is based on turning on a magnetic field on
D-branes and pick out the second order terms to
magnetic field. This method is called “the backgrou
field method” [16]. We turn on different magnet
fieldsBa in every stack of branes, longitudinal tox1,
a non-compact dimension,

(1)Fa
23 = BaQa,

whereQa are theU(1)a generators from every stac
of branes. The effect of the magnetic field on the op
string spectrum is to shift the oscillator frequenc
of the string non-compactx2 + ix3 coordinate by an
amountεa :

(2)εa = 1

π

[
arctan

(
πqa

i Ba

) + arctan
(
πqa

j Ba

)]
,

where qa
i , qa

j are the U(1)a charges of thei, j

endpoints. The Chan–Paton statesλij that describe the
endpoint i, j of the open string, are the generato
of gauge group that remains after the orientifo
construction. Diagonalizing these matrices, we
replace theQi with λii .

The expansion of the one-loop vacuum energy i

Λ(B) = 1

2

(
T +K+A(B) +M(B)

)
(3)= Λ0 + 1

2

(
B

2π

)2

Λ2 + · · · ,

whereB one of the different magnetic fields. Gene
ically, it appears a linear toB term that is a pou
tadpole and it is coming from the RR sector. T
term vanishes when we have tadpole cancellation.
quadratic term in the background field contains a lo
information. In the IR limit, we have a logarithmic d
vergence whose coefficient is theβ-function. The UV
limit provides the mass-term of the anomalous ga
bosons. The finite part of this term is the threshold c
rection in the gauge couplings [16]. The annulus a
plitude in theZN type I orientifolds (without the mag
netic field) can be written as

(4)Aab = − 1

2N

N−1∑
k=1

∞∫
0

dt

t
Aab

k (q),

wherea, b the different kind of D-branes at the en
of the open strings. TheAab

k is the contribution of the
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kth sector:

Aab
k = 1

4π4t2 Tr
[
γ k
a

]
Tr

[
γ k
b

]
(5)×

∑
α,β=0,1

ηαβ
ϑ

[ α
β

]
η3 Zab

int,k

[ α
β

]∣∣∣∣∣
A

.

Similarly, we can exchangeA with M in (4) to have
an analogous expression for the Möbius strip. TheMa

k

is given by

Ma
k = − 1

4π4t2
Tr

[
γ 2k
a

]
(6)×

∑
α,β=0,1

ηαβ
ϑ

[ α
β

]
η3

Za
int,k

[ α
β

]∣∣∣∣∣
M

.

In the presence of the background magnetic fieldBa ,
the above amplitudes become

Aab
k (B) = i

4π3t

× Tr

[(
Baλaγ

k
a ⊗ γ k

b + γ k
a ⊗ Bbλbγ

k
b

)

×
∑
αβ

ηαβ
ϑ

[ α
β

](
iεt
2

)
ϑ

[ 1
1

](
iεt
2

)
]
Zab

int,k

[ α
β

]∣∣∣∣∣
A

,

Ma
k (B) = − i

2π3t
Tr

[
Baλaγ

2k
a

∑
αβ

ηαβ
ϑ

[ α
β

](
iεt
2

)
ϑ

[ 1
1

](
iεt
2

)
]

(7)× Za
int,k

[ α
β

]∣∣∣∣∣
M

.

Notice that the only differences from (5), (6) are in t
contribution of the non-compact part of the partition
functions. This is expected since the presence of
magnetic fields affect only thex2, x3 coordinates
Therefore, the expressions (7) are valid for all kin
of orientifold models.

Since we are interested in the quadraticB2 terms of
the above amplitudes, we expand the above form
to quadratic order in the background field,2 using the
following Taylor expansions:

(8)ε �
{

Baλa ⊗ 1+ 1⊗ Bbλb in Aab,

2Baλa in Ma.

2 Where the normalized expansion isA ≡ A0 + B
2π

A1 +(
B
2π

)2A2 + · · · . Similarly for M.
The zero-orderB terms are the amplitudes in the a
sence of the magnetic field (5), (6). These express
give the tadpole cancellation conditions in virtue of t
UV divergences. The linear toB terms appear from th
a = b = 1 sector in (7). This is a pour tadpole and va
ishes when we have tadpole cancellation. Therefor
does not affect higher order inB amplitudes. The sec
ond order-terms onB are

Aab
2,k = π2i

[
Tr

[
λ2

aγ
k
a

]
Tr

[
γ k
b

] + Tr
[
γ k
a

]
Tr

[
λ2

bγ
k
b

]
(9)+ 2 Tr

[
λaγ

k
a

]
Tr

[
λbγ

k
b

]]
Fab

k

∣∣
A,

(10)Ma
2,k = −4π2i Tr

[
λ2

aγ
2k
a

]
Faa

k

∣∣
M

defining Fab
k as a term which contains all the spi

structure and the orbifold information

Fab
k

∣∣
σ

= 1

4π4

∑
αβ

ηαβπi∂τ

[
log

ϑ
[ α

β

]
(0|τ )

η(τ )

]

(11)× ϑ
[ α

β

]
(0|τ )

η3(τ )
Zab

int,k

[ a
b

]∣∣∣∣∣
σ

for both surfaces (the choice ofτ define the surface
σ ). Note that thea = b = 1 sector is not containe
in the (11). This term can be formally written as t
supertrace over states from the openab k-orbifold
sector

(12)Fab
k

∣∣
σ

= |G|
(2π)2 Strab

k,open

[
1

12
− s2

]
e−tM2/2

∣∣∣∣
σ

where thes is the 4D helicity.
Thus, forlarge τ2 we have

(13)lim
τ2→∞ Fab

k = Cab
k,IR +O

[
e−2πτ2

]
with

(14)Cab
k,IR = |G|

(2π)2
Strk

[
1

12
− s2

]
open

.

For small τ2 we have

(15)lim
τ2→0

Fab
k = 1

τ2

[
Cab

k,UV +O
[
e
− π

2τ2
]]

,

where

(16)Cab
k,UV = |G|

(2π)2
Strk

[
1

12
− s2

]
closed

.

The helicity supertrace is now in the closed-str
k-sector mapped from the openk-sector by a modula
transformation.
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Notice that in the annulus amplitude (9), the tw
first terms are proportional to the square of theB field.
This cases are proportional to annulus amplitu
A2, where two vertex-operators (VOs) are on t
same boundary. In the last component of (9), theB

fields are coming from the opposite D-branes a
is proportional toA11, with the VOs on differen
boundaries. The (10) is proportional to a Möbius st
amplitude with the insertion of two VOs.

The IR limit t → ∞ can be found easily using th
(13). We regularize the integral byµ → 1/t2 and we
find theβ-function

b = − 2

N

N−1∑
k=1

lim
t→∞

(
Aab

2,k(t) +Ma
2,k(t)

)

= −2π2i

N

N−1∑
k=1

[(
Tr

[
λ2

aγ
k
a

]
Tr

[
γ k
b

]
+ Tr

[
γ k
a

]
Tr

[
λ2

bγ
k
b

]
+ 2 Tr

[
λaγ

k
a

]
Tr

[
λbγ

k
b

])
Cab

k,IR

∣∣
A

(17)− 4 Tr
[
λ2

aγ
2k
a

]
Ca

k,IR

∣∣
M

]
.

For the UV limit t → 0, we use the (15) and w
regularize the integral byµ � t . The A2 and M

together are giving terms proportional to the tadp
cancellation conditions.3 Therefore, when we hav
vanishing of RR and NSNS tadpoles, the masse
the anomalous gauge bosons are given byA11:

(18)
1

2
M2

aa = π2i

N

N−1∑
k=1

Tr
[
λaγ

k
a

]2
Cab

k,UV

∣∣
A,

(19)
1

2
M2

59 = π2i

2N

N−1∑
k=1

Tr
[
λ5γ

k
5

]
Tr

[
λ9γ

k
9

]
C59

k,UV

∣∣
A,

3 The UV limit of ∂τ log
ϑ

[α

β

]
η in (11) is generically of or-

derτ−2
2 . Terms that in the closed sector appear asϑ[10] are contribu-

tions from the RR part. These terms have limits 2πi/3t2 andπi/6t2

coming from the annulus and Möbius strip, respectively. Terms tha
in the closed string sector appear asϑ[0α ] are the NSNS sector
which have contribution only from the∂τ logη. The UV limits are
−π/3t2 and−π/12t2 from the annulus and Möbius strip, respe
tively. Therefore (9), (10) have the same form as (5), (6) that p
vides the tadpole conditions. It is important that both, R and NS
tors contribute to the mass formulas of the anomalousU(1)’s.
whereα = 5,9. When we have non-vanishing NSN
tadpoles there is an extra contribution to the m
formulas, proportional to the non-vanishing tadpole

The formulae (18), (19) still hold even if we ad
Wilson lines. Generically, adding a Wilson line w
shift the windings or the momenta in a coordinate w
Newmann or Dirichlet boundary conditions, resp
tively. This breaks the gauge group. In the transve
(closed) channel the shifts appears as phasese2πinθ

whereθ the shift andn the momenta or windings, re
spectively, to the above. Since only the massless s
contribute in the UV limit, the effect of the Wilson lin
will appear only in the traces of theγ matrices.

The threshold correction [18] is the finite part of (
and (10). Generically we have

16π2

g2 = 16π2

g2
0

− 1

2N

N−1∑
k=1

1/µ2∫
µ

dt

t

(
Aab

2 +Ma
2

)

(20)− b log
µ2

M2 − 1

2
M2

ab

1

µ
,

where we separate the divergences from the quad
terms toB. The above formulae for theβ-function,
the corrections to the gauge couplings and the ma
of the anomalousU(1)’s are the same to the supe
symmetric ones found in [12,16]. Next, we will app
the above formulae to a non-supersymmetric mo
that has been constructed by Scherk–Schwarz d
mation [14].

3. A 4D non-supersymmetric orientifold example

In this section we will evaluate the masses of
anomalousU(1)’s in aZ2 orientifold model where su
persymmetry is broken by a Scherk–Schwarz de
mation [20–26] and where RR and NSNS tadpo
cancel locally [14]. To start with, we give a revie
of this model defining some useful quantities. Co
sider theN = 1 orbifold of type IIB string theory in
4 dimensions,R4 × T 2 × (T 4/Z2). The elements o
this orbifold are{1, g}, acting only on theT 4 [17]. In
addition, we can act with a freely-actingZ2 orbifold
with elements{1, (−1)F δ}. We denote byh the non-
trivial element of this group. This orbifold is know
as a Scherk–Schwarz deformation. TheF = FL + FR

is the space–time fermion number andδ is the ele-
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Table 1
The massless spectrum for the two inequivalent solutionsγ 2

h
= ±1 of theZ2 accompanied with a transverse SS deformation. The gauge g

in both cases isU(8)9 × U(8)9′ × U(8)5 × U(8)5′ . The spectrum is non-chiral and consequently anomaly-free

γ 2
h = −1 Scalars Fermions

Gauge group:U(8)29 × U(8)25

(99)/(55) matter (8,8) + (8,8) (28,1) + (28,1) + (1,28)
(1,28) + 2× (8;8) + 2× (8;8)

(59) matter (8,1; 8,1) + (8,1;8,1) (8,1;1,8) + (8,1;1,8)

(1,8;1, 8) + (1,8;1,8) (1,8;8,1) + (1,8;8,1)

γ 2
h

= +1 Scalars Fermions
Gauge group:U(8)29 × U(8)25

(99)/(55) matter (28,1) + (28,1) + (1,28) + (1,28) (8,8) + (8,8)
2× (8; 8) + 2× (8;8)

(59) matter (8,1; 8,1) + (8,1;8,1) (8,1;1,8) + (8,1;1,8)

(1,8;1,8) + (1,8;1,8) (1,8; 8,1) + (1,8;8,1)
e
it
es

ent

ec-

is

me

auge
nce
eps

4D

n
t
.
ta

the

ly.
it

ons,

and
ment(−1)m4 (which geometrically corresponds to th
shift x4 → x4 + πR4 of a compact dimension). As
was shown in [14], the tadpole cancellation provid
two different solutions that depend on the inequival
choices ofγ 2

h = ±1 whereγh the action ofh on the
Chan–Paton matrices. The 16-dimensional ‘shift’ v
tor of theZ2 orientifold is [10,19]

(21)

V 9
g = V 5

g = 1

4
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).

The ‘shift’ vector of the SS deformation generically

(22)V 9
h = V 5

h = 1

4

{
(1a,−1b) for γ 2

h = −1,

(2a,0b) for γ 2
h = +1,

where the index referred to the number of the sa
components in the vector. In both casesa + b = 16,
however we implement for simplicitya = b = 8. The
massless spectrums are provided in Table 1. The g
group in both cases is the same. The only differe
appears in the exchange of the antisymmetric r
with the bi-fundamental(8,8)+(8,8) in the (99)/(55)
matter sector. The spectrum is anomaly-free in
since it is non-chiral. Theinternal annulus partition
functions for 99, 55 and 59 strings are

Z
99,55
int,k

[ α
β

] = −
1∑

s,r=0

(−1)αs+βr
[
(−1)s·m4Pm4Pm5

]

× ϑ
[ α

β

]
(0|τ )

η(τ )

(
2 sin

πk

2

)2
×
2∏

j=1

ϑ
[ α

β+2vj k

]
(0|τ )

ϑ
[ 1

1+2vj k

]
(0|τ )

,

Z59
int,k

[ α
β

] = 2
1∑

s,r=0

(−1)αs+βr
[
(−1)s·m4Pm4Pm5

]

(23)× ϑ
[ α

β

]
(0|τ )

η(τ )

2∏
j=1

ϑ
[ α+1

β+2vj k

]
(0|τ )

ϑ
[ 0

1+2vj k

]
(0|τ )

.

For s = r = 0, we have the internal partition functio
of a T 2 × K3/Z2 orientifold. s denotes the direc
action of the SS deformation andr the twisted sector
The(−1)s·m4Pm4Pm5 is the lattice sum over momen
along the first torusT 2:

(24)

(−1)s·miPmi (iτ2/2) = 1

η(iτ2/2)

∑
mi

(−1)s·miq
α′
4 (

mi
Ri

)2

.

For s = 1 we have the SS deformation that shifts
m4 momenta. As we mention before,r = 0,1 denotes
the h untwisted and twisted sectors, respective
However we will neglect the twisted sector since
requires the insertion of anti-D-branes [14].

To evaluate the masses of the anomalous bos
we insert (23) and (11) in the mass formulae.4 After

4 This model has local vanishing of RR and NSNS tadpoles,
there will not be contributions fromA2 andM.
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Fαα
k=1 = η2

2π2

{
Tr

[
λaγg

]
Tr

[
λaγg

]
+ Tr

[
λaγgh

]
Tr

[
λaγgh

]
(−1)m4

}
(25)× Pm4Pm5,

F 59
k=1 = − η2

2π2

{
1

2
Tr

[
λ5γg

]
Tr

[
λ9γg

]

+ i

2π

ϑ2
2ϑ2

4

η6ϑ2
3

∂τ log
ϑ2ϑ4

η2

× Tr
[
λ5γgh

]
Tr

[
λ9γgh

]
(−1)m4

}
(26)× Pm4Pm5.

The γ -matrices point out the sector that each term
coming from. In the UV region, only the first term
in both formulae contribute to the mass of the ano
alousU(1)’s. The second terms (that contains the
actionh) after the Poisson re-summation become p
portional toWν4+1/2 and does not contribute to th

C
99,55,59
UV . Since SS deformation does not contrib

to the mass terms of the anomalousU(1)’s, we can di-
rectly evaluate their masses for both two inequival
solutions (γ 2

h = ±1):

1

2
M2

αα,ij = −4π2

4
Tr

[
λa

i γg

]
Tr

[
λa

j γg

] V1

π2α′

= −V1

α′

(
− i√

8
sin

[
2πV a

i

])

×
(

− i√
8

sin
[
2πV a

j

])

(27)= V1

8α′ ,

1

2
M2

59,ij = 4π2

2× 4
Tr

[
λ5

i γg

]
Tr

[
λ9

j γg

] V1

2π2α′

(28)= − V1

32α′ ,

where α = 5,9. The mass-matrix has two massle
gauge bosons−Ã1 + Ã2, −A1 + A2 and two massive
A1+A2+ Ã1+ Ã2, −A1−A2+ Ã1+ Ã2 with masses
3V1/32α′, 5V1/32α′, respectively.

There are no anomalousU(1)’s in these models
since the spectrum is non-chiral. However, the e
tence of the two massive gauge bosons are the co
 -

quence of 6D anomalies [2,11,12,19]. The decomp
ification limit of the first torus (where the SS deform
tion acts) leads to theN = 1 6D Z2 orientifolds that
contains two anomalousU(1)’s that become massiv
via the Green–Schwarz mechanism. Therefore, ax
that participate in the anomaly cancellation in the
model, contribute to the 4D masses of the anoma
U(1)’s by volume dependent terms. The ratio of t
masses found in [19] for theZ2 supersymmetric ori
entifold are the same to the above.

4. Conclusion

In this Letter we evaluated the general mass
mula for the anomalousU(1)’s in non-supersymmetri
orientifolds. We have shown that the supersymme
formulae of [12] are also valid in non-supersymme
orientifolds provided that the tadpoles cancel.

Our analysis has direct implications for mod
building, both in string theory and field theory or
ifolds. It provides a necessary and sufficient con
tion for a non-anomalousU(1) to remain massles
(the hypercharge for example). The masses of
anomalousU(1)’s are always as heavy or lighter tha
the string scale. Therefore, production of these n
gauge bosons in particle accelerators provides bot
constrains on model building and new potential sign
at colliders, if the string scale is around a few TeV.
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Appendix A. Definitions and identities

The Dedekind function is defined by the usu
product formula (withq = e2πiτ )

(A.1)η(τ) = q
1
24

∞∏(
1− qn

)
.

n=1
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The Jacobiϑ-functions with general characteristic a
arguments are

(A.2)

ϑ
[ α

β

]
(z|τ ) =

∑
n∈Z

eiπτ(n−α/2)2
e2πi(z−β/2)(n−α/2).

We define: ϑ1(z|τ ) = ϑ
[ 1

1

]
(z|τ ), ϑ2(z|τ ) =

ϑ
[ 1

0

]
(z|τ ), ϑ3(z|τ ) = ϑ

[ 0
0

]
(z|τ ), ϑ4(z|τ ) =

ϑ
[ 0

1

]
(z|τ ). The modular properties of these functio

are

η(τ + 1) = eiπ/12η(τ),

ϑ
[ α

β

]
(z|τ + 1) = e− iπ

4 α(α−2)ϑ
[ α

α+β−1
]
(z|τ ),

η(−1/τ) = √−iτη(τ ),

(A.3)

ϑ
[ α

β

]( z

τ

∣∣∣∣−1

τ

)
= √−iτeiπ(

αβ
2 + z2

τ
)ϑ

[
β

−α

]
(z|τ ).

A very useful identity that is valid for
∑

hi = ∑
gi = 0

is

∑
α,β=0,1

ηαβϑ
[ α

β

]
(v)

3∏
i=1

ϑ
[ α+hi

β+gi

]
(0)

(A.4)= ϑ1(−v/2)

3∏
i=1

ϑ
[ 1−hi

1−gi

]
(v/2).
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