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Abstract

We consider Bose–Einstein condensation of massive electrically charged scalars in a uniform background of charged fermions. We focus on the
case when the scalar condensate screens the background charge, while the net charge of the system resides on its boundary surface. A distinctive
signature of this substance is that the photon acquires a Lorentz-violating mass in the bulk of the condensate. Due to this mass, the transverse
and longitudinal gauge modes propagate with different group velocities. We give qualitative arguments that at high enough densities and low
temperatures a charged system of electrons and helium-4 nuclei, if held together by laboratory devices or by force of gravity, can form such a
substance. We briefly discuss possible manifestations of the charged condensate in compact astrophysical objects.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction and summary

Consider a sphere enclosing massive stable charged spin-1/2
particles with number density J̄0, and stable massive spin-0 par-
ticles of an equal but opposite charge. At some high temperature
the substance in the sphere could form hot plasma. With the
decreasing temperature the opposite charges would ordinarily
form neutral atoms of half-integer spins. These atoms would
not be able to Bose–Einstein condense because of their spin-
statistics.

We will discuss in this work a different sequence of events
that could take place in the above system. In particular, we will
show that under certain conditions, instead of forming neutral
atoms, the charged scalars could themselves condense, neutral-
izing by this condensate the background charge of the fermions.

Especially interesting we find the case when the system has
a net overall charge to begin with. In this case, although the re-
sulting substance is charge neutral in the interior of the sphere,
the net charge will reside on its surface. The substance in the
bulk has distinctive properties. We will show in Section 2 that
propagation of a photon in this substance is rather special. Even
at zero temperature, the photon acquires a Lorentz non-invariant
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mass term. The transverse and longitudinal components of the
photon have equal masses; the mass squares are proportional
to J̄0 and inversely proportional to the charged scalar mass.
However, the group velocities of the transverse and longitudi-
nal modes are different. The longitudinal mode is similar to a
plasmon excitation of cold plasma. The transverse modes of the
photon propagate as massive states. We will refer to this phase
as the charged condensate, emphasizing that the charged scalars
have undergone Bose–Einstein condensation, while the back-
ground fermions merely play the role of charge neutralizers in
the bulk of the substance, and the net charge of the system is
residing on the boundary.

The above mechanism is universal: the gauge field could be
a photon or any other U(1) field, while the charged scalar could
be a fundamental field, or a composite state made of other parti-
cles, in the regime where its compositness does not matter. This
may have applications in particle physics and condensed matter
systems.

As a concrete example we imagine a reservoir, or a trap,
in which negatively charged electrons and positively charged
helium-4 nuclei, with a nonzero net charge, could be put to-
gether at densities high enough for an average inter-particle
separation to be smaller than the size of a helium atom. In this
case, the helium atoms would not form. The results of Section 2
cannot immediately be applied to this case, since electrons are
lighter than the helium nuclei. However, we will argue in Sec-
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tion 3 that if temperature of the system is low enough for the
helium de Broglie wavelength to be greater than both the av-
erage inter-particle separation and the Compton wavelength of
the massive photon, then the charged helium-4 nuclei would
fall into the condensate. Photons, in the bulk of this substance,
would propagate with a delay caused by the acquired mass.
Such a system would also have a net surface charge. Quanti-
tative features of this example are discussed in Section 3. Our
estimate for the temperature is within the range of the low tem-
peratures that have already been achieved in experiments on
Bose–Einstein condensation of atoms, see, e.g., [1].

In the above example the charged condensate containing
droplet was assumed to be held together by a rigid boundary
or external fields in a laboratory. In Section 4 we point out that
gravity could play the role of the stabilizing force, and briefly
discuss possible manifestations of the charged condensation in
compact astrophysical objects.

A few comments on the literature. The pion condensation
due to strong interactions is well known [2]. In this work we
discuss condensations due to electromagnetic interactions in-
stead (or in more general case, due to some U(1) Abelian in-
teractions). It was shown in Ref. [3] that the constant charge
density strengthens spontaneous symmetry breaking when the
symmetry is already broken by the usual Higgs-like nonlinear
potential for the scalar. In our work the scalar has a conven-
tional positive-sign mass term. The fact that the conventional-
mass scalar could condense in the charged background was first
shown in [4]. However, the system considered in [4] is neutral,
and thus, is physically different from the one studied in this
work (see, brief comments after Eq. (4.6) in [4]). An expanded
discussions of the topics covered in the present work, with other
possible applications will be presented elsewhere [5].

2. Basic mechanism

We consider a simplest model that exhibits the main phe-
nomenon. Let us start with a system in an infinite volume and
at zero-temperature. The classical Lagrangian contains a gauge
field Aμ, a charged scalar field φ with a right-sign mass term
m2

H > 0, and fermions Ψ +, Ψ with mass mJ

L= −1

4
F 2

μν + |Dμφ|2 − m2
H φ∗φ + Ψ̄ iγ μDμΨ

(1)− mJ Ψ̄ Ψ + μΨ +Ψ.

The chemical potential μ is introduced for the global fermion
number carried by Ψ ’s (e.g., lepton, baryon or other number).
The covariant derivatives in (1) are defined as ∂μ + igφAμ for
the scalars, and ∂μ + igψAμ for the fermions. Their respective
charges, gφ and gψ , are different in general. For simplicity we
assume that gφ = −gψ ≡ −g.

To study the ground state it is convenient to introduce the
following notations for the scalar, gauge field and fermions:
φ = 1√

2
σeiα , Bμ ≡ Aμ + 1

g
∂μα, and ψ = Ψ e−iα . In terms of

the gauge invariant variables σ , Bμ and ψ the Lagrangian, takes
the form
L= −1

4
F 2

μν + 1

2
(∂μσ)2 + 1

2
g2B2

μσ 2 − 1

2
m2

H σ 2

(2)+ ψ̄iγ μDμψ − mJ ψ̄ψ + μψ+ψ,

where now Fμν and D are a field-strength and covariant deriv-
ative for Bμ, respectively.

Fermions in (2) obey the conventional Dirac equation with
a nonzero chemical potential. This implies a net fermion num-
ber in the system, J̄0. Since the fermions are also electrically
charged, they set a background electric charge density. Such
charged fermions would repel each other. In our case, however,
the charge will be screened by the charged scalar condensate.
One way to see this is to assume that such a self-consistent
solution exists, and then check explicitly that it satisfied equa-
tions of motion, as we will do it below. We consider distance
scales that are greater than an average separation between the
fermions, so that their spatial distribution could be assumed to
be uniform. Then, the background charge density due to the
fermions could be approximated as J̄μ = J̄0δμ0, where J̄0 is a
constant. The magnitude of the latter is related to the value of
the chemical potential μ. In particular, a self-consistent solu-
tion of the equations of motion implies that μ − 〈gB0〉 = EF ,
where EF denotes the Fermi energy of the background fermion

sea, and is related to J̄0 as follows, EF =
√

(3πJ̄0/4)2/3 + m2
J .

The rest of the equations of motion derived from (2) are:

(3)∂μFμν + g2Bνσ
2 = gJ̄ν, �σ = g2B2

ν σ − m2
H σ.

The Bianchi identity for the first equation in (3), ∂ν(Bνσ
2) = 0,

can also be obtained by varying the action w.r.t. α. For a con-
stant charge density, J̄μ = J̄0δμ0, the theory with the scalar field
(1) admits a static solution with constant B0 and σ :

(4)〈B0〉 = B0c ≡ mH

g
, 〈σ 〉 = σc ≡

√
J̄0

mH

.

The charge density stored in the condensate, J scalar
0 =

−i[φ∗D0φ − (D0φ)∗φ] = −gσ 2B0, equals to −J̄0, by virtue
of (4). Hence, the total charge density Jtotal = J̄0 + J scalar

0 = 0,
vanishes. The ground state is charge-neutral in its bulk. On the
other hand, a nonzero 〈B0〉 in (4) suggests that there must be an
uncompensated charge on a surface at infinity, as it will be the
case (see below).

Before we continue with studies of small perturbations about
the solution (4), we would like to make four essential com-
ments:

(i) The expression for the gauge field in (4) scales as 1/g,
and is non-perturbative in its nature. Moreover, it diverges in the
limit mH → ∞. This seeming non-decoupling of the charged
scalar field results from the fact that we are dealing with a con-
stant background charge density in an infinite volume, i.e., with
an infinite background charge. It is not surprising then, that such
a background is capable of affecting a charged state of an arbi-
trary mass. Moreover, when mH exceeds the fermion mass, our
averaging procedure over the background charges should not be
applicable in general.

(ii) In regard with the above discussions, it is instructive to
regularize the problem by considering a finite volume ball of a
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radius R. A nonzero 〈B0〉 in (4) suggests that there must be an
uncompensated charge on the surface of the ball, which tends
to the value, Q = mH R/g, as R → ∞. Indeed, such a charge
Q could give rise to a constant 〈B0〉 = mH /g in the interior of
the ball, where 〈B0〉 = Q/R, in analogy with a static potential
inside a conducting ball with surface charge Q. This is indeed
what happens in the present case. These and other finite volume
effects are discussed in detail in Section 3.

(iii) Unlike for the fermions, we have not introduced chem-
ical potential for the scalars. However, nonzero 〈gB0〉 acts as
dynamically induced chemical potential for the perturbations
of the scalar. Its value in the ground state, 〈gB0〉 = mH , is con-
sistent with the expectation that the chemical potential be equal
to the mass of the scalar in Bose–Einstein condensate.
In general, we could have introduced chemical potential for the
charged scalar, μs . The above described condensation mecha-
nism would still take place with the result, 〈gB0〉 = mH + μs ,
and σ 2

c = J̄0/mH , instead of (4). The charge density in the con-
densate in this case would read, −(μs − gB0)σ

2 = −J̄0, ensur-
ing charge neutrality of the substance in its bulk, but in general
there would be a nonzero surface charge, unless μs = −mH and
〈gB0〉 = 0.

(iv) So far our discussions have been classical. Upon quan-
tization the charged condensate can be thought of a zero-
momentum state with a nonzero occupation number of the
charged scalar field quanta. It is useful to consider small tem-
perature T in the system, in which case the de Broglie wave-
length of the condensed scalars, λT ∼ (1/mH T )1/2, will ex-
ceeds the average inter-particle separation ∼ J̄

−1/3
0 . Thus, it

makes sense to think of the charged condensate, as of any other
Bose–Einstein condensate, to be a macroscopically occupied
mode. The specifics of our case is that this macroscopic state
of electrically charged scalars can exist even when the Comp-
ton wavelength of the corresponding massive photon is greater
than the average interparticle separation between the scalars. In
the bulk of the condensate the charge is balanced by the back-
ground charge density of fermions.

The uniform fermion background sets a preferred Lorentz
frame. We study the spectrum and propagation of perturbations
in this background frame. For this we introduce small perturba-
tions of gauge and scalar fields, bμ and τ , as follows:

(5)Bμ = B0cδμ0 + bμ(x), σ = σc + τ(x).

The Lagrangian density for the perturbations reads

L2 = −1

4
f 2

μν + 1

2
(∂μτ)2 + 1

2
g2σ 2

c b2
μ

(6)+ 2gmH σcb0τ + · · · .
Here fμν denotes the field strength for bμ, and we dropped all
the fermionic terms as well as the cubic and quartic interaction
terms of b’s and τ . The last term in (6) is Lorentz violating.
Calculations of the spectrum of the theory is non-trivial but
straightforward. We briefly summarize the results. First, b0 is
not a dynamical field, as it has no time derivatives in (6). There-
fore, it can be integrated out through its equation of motion,
leaving us with the equations for three polarizations of a mas-
sive vector bj , j = 1,2,3, and one scalar τ . These constitute
four physical degrees of freedom of the theory. The transverse
part of the vector bj obeys the free equation

(7)
(
� + g2σ 2

c

)
bT
j = 0, where bT

j ≡ bj − ∂j

�
(∂kbk).

Therefore, the two states of the gauge field carried by bT
j have

the following mass

(8)m2
g = g2σ 2

c = g2 J̄0

mH

.

Moreover, the frequency ω and the three-momentum vector p
of these two states obey the conventional dispersion relation,
ω2 = p2 + m2

g .

The longitudinal mode of the gauge field bL
j , and the scalar

τ , on the other hand, give rise to the following Lorentz-violating
dispersion relations (valid for mg 
= 0)

ω2± = p2 + 2m2
H + 1

2
m2

g

(9)±
√

4p2m2
H + (2m2

H − 1

2
m2

g)
2.

The r.h.s. of (9) is positive. Both of these modes have masses
which can be obtained by putting p = 0 in (9). One of them co-
incides with (8), and the other one, has the mass squared equal
to m2

s = 4m2
H . Interestingly, the group velocities of the trans-

verse and longitudinal modes of the massive vector boson are
different. For mH � mg , and for an arbitrary p, the fastest ones
are the transverse modes, they are followed by the scalar, and
the longitudinal mode is the slowest.

In the limit mH → 0, (9) describes a massive longitudinal
component of a vector bosons of mass mg , and a massless
scalar, in agreement with (6). The limit mg → 0, however, is
discontinuous, since for any nonzero mg in (6) one has to sat-
isfy the Bianchi identity which would not appear as a constraint
if mg had been set to zero in (6) from the very beginning.

It is important to specify the limits of applicability of the
above condensation mechanism. (I) The Lagrangian (1) could
contain a quartic interaction term for the scalar λ(φ∗φ)2 =
λσ 4/4. It is straightforward to check that our results will hold as
long as λm2

g � g2m2
H . (II) The scalar could have an additional

Yukawa term, q(φ∗ψ̄1Γ ψ2 +h.c.), where q is a coupling, Γ de-
notes either the 1 or iγ5 matrix depending on the spatial parity
of φ, and ψ1,2 denote fermions with different U(1) charges that
render the Yukawa term gauge invariant. One, or both of these
fermions could be setting the background charge density J̄0.
The fermion condensate, 〈ψ̄1ψ2 + h.c.〉, if nonzero, could act
as a source for the scalar. In order for this not to change sig-
nificantly our results, the condition q〈ψ̄1ψ2 + h.c.〉 � m2

H σc

should be met.1 (III) Due to the above Yukawa couplings the
scalar φ can decay. In order for the condensate phase to form

1 The Yukawa coupling would also lead to the new terms in the fermion mass
matrix. Depending on a concrete context, this may or may not impose additional
constraints.
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in the first place, the “condensation time” σ−1
c has to be shorter

then the lifetime of the φ. Thruough the work we will be check-
ing the conditions (I–III) when appropriate.

If the number density of the background fermions is such
that it allows for the average inter-particle separation between
them to be greater than the Bohr radius of a fermion-scalar
bound state, then, the fermions would likely form a crystalline
structure at low temperatures. If the resulting crystal is due
to the metallic bonding, that is it supports quantum gas of al-
most free scalars, then the condensation of the scalars described
above would be similar to the condensation of Cooper pairs in
superconductors. This case could be realized if J0 � g6m3

H .
On the other hand, if the average inter-particle separation

between the background fermions is much smaller than the
would-be Bohr radius of the fermion-scalar bound state, then
the conventional quantum-mechanical considerations of the van
der Waals, ionic, covalent or metallic bonding would not be ap-
plicable. This would corresponds to the choice J0 � g6m3

H . In
this case, the background fermions do not have to form an or-
dered structure, and yet, we would expect the condensation of
scalars. Moreover, the argument that the crystalline structure
should be lost at some high density is supported by the discus-
sions in a paragraph below.

A special sub-case of the discussion in the above paragraph
is when J0 � m3

H /g6: It is straightforward to deduce from the
results obtained above that the average inter-particle separation
in the system, although is smaller than the would-be Bohr ra-
dius, is greater than the Compton wavelength of the massive
photon. If so, then, the electric charges of the fermions and
bosons are screened for all our purposes. The above described
condensation mechanism, with a good approximation, would
reduce to the standard Bose–Einstein condensation of (almost)
free scalars. This system would behave as a two-component
substance of free fermions and condensed scalars.

3. Finite-volume regularization

Here we would like to regularize the infinite-volume theory
of the previous section. Consider a material ball of a fixed radius
R which has a built in constant charge density gJ̄0 uniformly
distributed over its volume. We will assume that such a ball is
prepared “by hands” with appropriate charges, and address the
question: How does the electric potential of this ball look like
when the charged condensate described in the previous section
compensates the fermion charge in its interior? This question is
similar in spirit to the one we ordinarily study for, e.g., a uni-
formly charged insulating ball in electrodynamics.

We shall be looking for static solutions of Eq. (3), which we
parametrize as follows:

(10)B0(r) = B0c + δB0(r), σ (r) = σc + δσ (r).

We focus on the solutions that in the interior of the ball satisfy
δσ/σc � 1 and δB0/B0c � 1. Then the equations for δB0 and
δσ become:

(11)−∇2δB0 + m2
gδB0 = −2mgmH δσ,

(12)−∇2δσ = 2mgmH δB0,
where, as before, mg ≡ gσc. Explicit solutions of the above
equations can be readily found. For simplicity, we will present
them for mH � mg , i.e., when the m2

gδB0 term in the first equa-
tion can be neglected.

The solutions in the interior of the ball are

δB0(r) = 1

r

[
c1 sinh(Mr) cos(Mr)

(13)+ c2 cosh(Mr) sin(Mr)
]
,

δσ (r) = 1

r

[−c1 cosh(Mr) sin(Mr)

(14)+ c2 sinh(Mr) cos(Mr)
]
,

where M ≡ √
mgmH , and c1 and c2 are constants to be deter-

mined from matching these solutions to the exterior ones.
Outside of the ball we approximate the solutions to be

(15)B0 = Q

r
, σ = k

e−mH (r−R)

r
,

where Q is a yet-unknown effective charge of the ball, which
should be determined from the matching conditions, and which
we expect to be mostly concentrated near the surface. By
matching the solutions and their first derivatives at r = R, we
find

c1 = 2

gD

[
mg(mH R + 1)

(
sinh(MR) sin(MR)

+ cosh(MR) cos(MR)
) + mH

(
sinh(MR) sin(MR)

(16)

− cosh(MR) cos(MR) − mH

M
sinh(MR) cos(MR)

)]
,

c2 = 2

gD

[
mg(mH R + 1)

(
sinh(MR) sin(MR)

− cosh(MR) cos(MR)
) − mH

(
sinh(MR) sin(MR)

(17)

+ cosh(MR) cos(MR) + mH

M
cosh(MR) sin(MR)

)]
.

While, for the charge Q we obtain the following expressions:

Q = 1

gD

[(
mg(mH R + 1)

+ mH (mH R − 1)
)

sinh(2MR) − (
mg(mH R + 1)

− mH (mH R − 1)
)

sin(2MR)

+ (
2mH MR − m2

H /M
)

cosh(2MR)

(18)+ (
2mH MR + m2

H /M
)

cos(2MR)
]
,

where D ≡ mH sinh(2MR) + mH sin(2MR) + 2M ×
cosh(2MR) + 2M cos(2MR). Finally, the constant k is deter-
mined as

k = 1

gD

[−(mg + mH ) sinh(2MR) − (mg − mH ) sin(2MR)

(19)+ 2mgMR cosh(2MR) + 2mgMR cos(2MR)
]
.
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In the case of physical interest, MR � 1, the above solu-
tions have a number of interesting properties. The net charge
density in the ball, gJ̄0 eff = gJ̄0 − g2σ(r)2B0(r), is exponen-
tially small in the interior, except in a narrow spherical shell
near the surface of width M−1. Thus, the charge is screened
in the bulk of the ball, but there remains an unscreened sur-
face charge. In this limit the effective charge of the ball is
Q = mH R/g = gJ̄0R

3/(mgR)2. This system is characterized
by the conserved electric charge Q, and conserved fermion
number N = J̄0R

3/3.
If we increase R → ∞, with all the other parameters held

fixed, the effective charge should also grow linearly with R in
order for the condensate phase to be possible inside the ball. Put
in other words, in order to prepare a ball of a given radius with
the charged condensate phase inside, one has to retain a spe-
cific amount of charge Q defined in (18), on its surface. Hence,
in the infinite volume limit considered in the previous section,
there is “a surface at infinity” that carries charge. This charge is
responsible for the constant B0 in (4).

In the bulk of the ball the electric field and the electromag-
netic energy are negligible. Closer to the boundary, however,
the surface energy becomes nonzero due to the varying electric
field. The resulting expression scales as

(20)EnergyE ∝ Q2

R
∝ m2

H R

g2
.

From our solutions it is also straightforward to get the scaling of
the volume energy well within the ball; it reads as ∼ mH J̄0R

3.
Let us consider an example of a physical system in which

the charged condensate could potentially be obtained. Suppose
in a laboratory one could prepare a reservoir, or a trap, in which
negatively charged electrons and positively charged helium-4
nuclei, with a net negative charge, could be put together. Con-
sider densities of these particles high enough so that the average
separation between the particles, ∼ J̄

−1/3
0 , is smaller than the

size of a helium atom, which we estimate for simplicity to be
the Bohr radius ∼ 1/(αemme) (αem denotes the fine-structure
constant, and me is the electron mass; we still stay somewhat
lower than nuclear densities). As long as J̄

1/3
0 � αemme the

helium atoms in the substance would not form. According to
the discussion at the end of Section 2, at high-enough densi-
ties (but still somewhat below the nuclear ones) we would not
expect the crystalline structure to form either. Can the charged
condensate be formed in this system? Strictly speaking, the cal-
culations of the previous section are not directly applicable to
this case, because electrons are lighter than the helium-4 nu-
clei and averaging over the electron positions to calculate the
photon mass may not be a good approximation. In this case
we would expect the photon mass squared to be determined
by g2J̄0/me , instead of g2J̄0/mH , which should be applicable
when the fermions are heavier than the scalars. We can intro-
duce small temperature in the above system to see under what
conditions the condensation would take place. Once the thermal
de Broglie wavelengths of the helium-4 nuclei have overlaps
with each other, and as long at the photon Compton wavelength
is shorter than the thermal de Broglie wavelength, the system
can be treated as a macroscopic mode, or the condensate. The
former condition, λT ∼ (1/mH T )1/2 � J̄

−1/3
0 , would suggest

that T � 10−1 eV ∼ 10−5 K, while the latter, 1/mg � λT ,
would give a stronger bound T � 10−5 eV ∼ 10−9 K (we use
g2J̄0/me as the photon mass squared). Temperatures reached
in experiments on Bose–Einstein condensation of atoms are
within this range, see, e.g., [1].

Let us look at other characteristics of this system in the con-
densate phase. Suppose the size of the sphere, or the trap we
are dealing with, was ∼ 1m. Then, the number of electrons and
helium-4 nuclei would have to be N � (αemme)

3(1m)3 ∼ 1033

for helium atoms not to form. The total mass of these parti-
cles would be � 106 kg. Moreover, the photon in this substance
would acquire the mass mg � 104 eV, while the unbalanced
charge of � 1016 units would be residing near the surface, in
a narrow spherical shell of size ∼ 1/

√
mH mg ∼ 10 fm. (The

electric field strength near the surface of such a sphere would
be enough to ionize the air, so we assume that it is placed in a
vacuum chamber.)

Propagation of light in the bulk of this substance would pro-
ceed with a delay caused by the induced photon mass mg . For
simplicity, we have considered above the system of a macro-
scopic size, but nothing prevents one to look at much smaller
systems, e.g., for a 1 mm size system the required number of
electrons and helium-4 nuclei would have to be N ∼ 1022, and
the mass of the system � 10−5 kg.

Suppose a ball of a fixed radius and charge determined by
(18) with the charged condensate had been prepared. What
happens if we gradually bring to the ball’s surface additional
charges that would decrees or increase Q? In terms of the the-
ory considered above, this would imply that we are adding a
nonzero scalar chemical potential term μs , as discussed in the
comment (iii) in Section 2. In this case, the value of 〈gB0〉 in-
side the ball would change to maintain the value of the effective
chemical potential, −μs + 〈gB0〉, to be equal to mH . In this
case, one should expect the relation (18) to be modified.

Before turning to the next section, let us comment on cer-
tain limiting cases. If mH → ∞, for fixed and finite R, we
would expect the scalar field to decouple and the solution to
turn into the one for the potential of an insulating ball populated
by a constant charge density, for which the potential equals

to gJ̄0(
R2

2 − r2

6 ) inside, and to gJ̄0(
R3

3r
) outside. On the other

hand, this would imply that δσ = −σc. However, our expan-
sion breaks down in this regime, and the solutions (13) and (14)
are no longer applicable. In the full perturbative expansion, the
l.h.s. of Eqs. (11) and (12) include the non-linear terms

(21)+gmH δσ 2 + 2gmgδσδB0 + g2δσ 2δB0,

(22)−gmgδB
2
0 − 2gmH δσδB0 − g2δσδB2

0 ,

respectively. When δσ = −σc these terms become relevant, and
in fact recover the standard electrodynamics result: −∇2B0 =
gJ̄0. Moreover, at some point when mH exceeds the back-
ground fermion mass, mobility of the fermions will play a role
and, in general, our results should not be immediately applica-
ble.
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Alternatively, we could look at the limit in which mg → 0
for a fixed mH , i.e., J̄0 → 0. In this case we have a massless
photon and a massive scalar, with σ scaling as mg . Since this
implies that δσ → −σc, the same argument as above applies
and the solutions (13) and (14) are not applicable.

Finally, in the limit mH → 0 we return back to Eqs. (11)
and (12) and now take mH � mg so that we neglect the r.h.s.
of the first equations. Then, it would seem that as mH → 0 the
solutions approach the trivial ones, B0 = 0 and σ = 0. To see
how we arrived at this erroneous result we again return to the
non-linear terms (21) and (22) which become significant in this
limit. Retaining these terms in our equation for B0, we set σ = 0
and recover the expected electrodynamics result.

In the present work we left out a question of existence
of a soliton with the charged condensate phase inside, that
would be stable due to surface effects. Such an object would
be somewhat similar to a droplet in a liquid drop model of
the nucleus (see, e.g., [6]). The related issues will be discussed
in [5].

4. Comments on compact objects

In this section we will use the power of gravity as a stabilizer
to suggest a possible manifestation of the charged condensa-
tion in astrophysics. We consider compact objects. In a gen-
eral setup, due to energy considerations, the condensing scalar
would be a lightest charged scalar available in the spectrum [5],
that could condense before decaying. If no new light charged
scalars exist, then a first candidate would be a charged pion.
However, in order for pions not to decay, one should consider
high densities, e.g., the conditions similar to the ones for pion
condensation in neutron stars [2].

Charged condensate in compact objects with electrons and
helium-4 nuclei could also exist. These object could be held to-
gether by gravity which is competing against the degeneracy
pressure of the fermions.2 Since this mechanism is generic, and
since we would expect any such object to contain a mixture
of various species, we will discuss it in general terms of back-
ground fermions and charged scalars.

Consider a distribution of N charged fermions and Ns

charged scalars with the net electric charge Q. Such a distribu-
tion could collapse under the influence of gravity into a compact
object, a droplet. Below we consider a regime in which gravita-
tional force is dominating over the electrostatic forces at the sur-
face of the droplet. Moreover, we will assume that the temper-
ature in the interior is low enough for all particles to be treated
non-relativistically. Then, at a certain temperature, there should
be a phase transition in the interior into the charged condensate
state. At that point the relation 〈gB0〉 − μs(Tc) = mH (Tc) will
be satisfied.

To get qualitative estimates of the size of such a droplet we
will ignore the difference between the values of N and Ns , and
minimize energy as a function of the radius R at a fixed value

2 This is similar to the stabilization mechanism in white dwarfs and neutron
stars.
of the charged particle number N . Since these discussions are
qualitative, we shall be omitting the factors of order 10 or less.
The total energy of a droplet reads:

(23)E(R) = mH N + N

√
p2

J + m2
J − GM2

R
,

where the first term is the energy of the condensate; the second
term is the energy of a non-interacting gas of charged particles
that give rise to the background density J0 (hence, the sub-
scripts in pJ ,mJ ); and the last term is due to gravity, where
G denotes the Newton’s constant (we shall be using the Planck
mass MPl ≡ G−1/2), and M is the total mas of the droplet which
depends on N . We have ignored in (23) the surface terms which
are negligible in the regime where gravity is dominant.

The critical radius reads: Rc ∼ B2/mJ N1/3 where B ≡
MPl/(mH + mJ ). This leads to the expression for the critical
energy

(24)Ec = (mH + mJ )N

[
1 −

(
mJ

mH

)(
N1/3

B

)4]
.

The critical radius decreases with increasing N , the bounds on
which are:

(25)
1

e1/2

(
mH

mJ

)3/4

B9/4 � N � min

{(
mH

mJ

)3/4

B3;B3
}
.

Here the lower bound is due to the requirement that gravity
be dominant in stabilizing this object, and the upper bound
is for the relativistic gravitational and fermionic effects to be
negligible. These objects are stable as long as the gravitational
binding energy in (24) exceeds the electrostatic energy of un-
compensated charges on its surface. This constraint is taken into
account by the bounds (25).

In a simple case when the droplet is assumed to be made of
electrons and the charged condensate of helium-4 nuclei, N has
to be close to the upper bound in (25), N ∼ 1057. The mass of
this object is within an order of magnitude of the mass of the
Sun, and its size is ∼ 106 m. This object has characteristics that
are similar to those of neutron stars (except that it will have
some surface charge, that was negligible in our considerations).
However, propagation of light through such a cold and dense
object will have specific characteristics described in Sections 2
and 3.
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