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Let f be a smooth self-map of a closed connected manifold of dimension m � 3. The
authors introduced in [G. Graff, J. Jezierski, Minimizing the number of periodic points for
smooth maps. Non-simply connected case, Topology Appl. 158 (3) (2011) 276–290] the
topological invariant NJDr [ f ], where r is a fixed natural number, which is equal to the
minimal number of r-periodic points in the smooth homotopy class of f . In this paper
smooth self-maps of real projective space RPm , where m > 3 is odd, are considered and
the estimations from below and above for NJDr [ f ] are given.
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1. Introduction

Let f be a smooth self-map of a compact manifold M . The central question in the smooth branch of Nielsen periodic
point theory is the following: what is the minimal number of r-periodic points in the smooth homotopy class of f ? In other words,
one seeks for the invariant that determines the number

MFdiff
r ( f ) = min

{
#Fix

(
gr): g

s∼ f
}
, (1.1)

where
s∼ means that the maps g and f are C1-homotopic.

We will consider a smooth closed connected manifold of dimension at least 3. It is remarkable that for r = 1, i.e. for
fixed points, the classical (continuous) and smooth Nielsen theories coincide [21]. However, for r > 1 these theories are
much different. Namely, if the minimum in (1.1) is taken over continuous homotopies, then the respective number, MFr( f ),
is given by Jiang invariant NFr( f ) (cf. [17,20]). In the smooth case MFdiff

r ( f ) = NJDr[ f ], the invariant introduced by the
authors in [8]. For smooth f , NJDr[ f ]� NFr( f ) and the equality holds only in some exceptional situations [16].

In the definition of NJDr[ f ] in addition to Reidemeister relations fixed points indices of iterations are involved. There
are strong restrictions for local indices of iterations of smooth maps [1], in contrast to continuous maps, which result in
the inequality NJDr[ f ]� NFr( f ). For example, for self-maps of simply-connected manifolds NFr( f ) ∈ {0,1}, while NJDr[ f ] is
usually greater than 1. In the simply-connected case NJDr[ f ] (denoted then by Dr[ f ]) has been found by the authors for
some special kinds of manifolds [3–7].

The computations of the invariants NFr( f ) and NJDr[ f ] are in general very challenging tasks, nevertheless NFr( f ) was
found in many particular cases [11–15,18,22–25]. The determination of the invariants simplifies a little for self-maps of
manifolds with simple Reidemeister relations. In [9] we found NJDr[ f ] for all self-maps of 3-dimensional real projective
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space RP 3. The recent finding of all forms of local indices of iterations in arbitrary dimension [10], make it possible to try
to calculate NJDr[ f ] also for RPm , where m > 3. However, the precise determination of the invariant for higher-dimensional
manifolds is a very complicated combinatorial task. In this paper we give an estimate for NJDr[ f ] from below and from
above for self-maps of RPm , where m is odd (the case of even m is more difficult, see Remark 5.7). The obtained estimates
provide some valuable information concerning periodic points. Namely, if a � NJDr[ f ]� b, then

(1) every smooth map g smoothly homotopic to f has at least a r-periodic points,
(2) there exists a smooth map g smoothly homotopic to f having at most b r-periodic points.

2. Invariant Dm
r [ f ]

The topological invariant Dm
r [ f ] was introduced in [5] and is equal to the minimal number of r-periodic points in smooth

homotopy class of f , a self-map of a simply-connected manifold:

Theorem 2.1. ([5]) Let M be a closed smooth connected and simply-connected manifold of dimension m � 3 and r ∈ N be a fixed
number. Then, for a smooth map f : M → M we have

Dm
r [ f ] = MFdiff

r ( f ).

In the final sections we will make use of this invariant to estimate NJDr[ f ] for f being a self-map of RPm . Now, we give
the definition of Dm

r [ f ] and describe its basic properties.

Definition 2.2. A sequence of integers {cn}∞n=1 is called DDm(p) sequence if there are: a C1 map φ : U →Rm , where U ⊂ Rm

is open; and P , an isolated p-orbit of φ, such that cn = ind(φn, P ) (notice that cn = 0 if n is not a multiple of p). The finite
sequence {cn}n|r will be called DDm(p | r) sequence if this equality holds for n | r, where r is fixed.

For a fixed integer r � 1 the invariant Dm
r [ f ] is defined as the minimal number of DDm(p | r) sequences which in sum

give the sequence of Lefschetz numbers of iterations.

Definition 2.3. Let {L( f n)}n|r be a finite sequence of Lefschetz numbers. We decompose {L( f n)}n|r into the sum:

L
(

f n) = c1(n) + · · · + cs(n), (2.1)

where ci is a DDm(li | r) sequence for i = 1, . . . , s. Each such decomposition determines the number l = l1 + · · · + ls . We
define the number Dm

r [ f ] as the smallest l which can be obtained in this way.

Remark 2.4. The combinatorial procedure described in Definition 2.3 has a clear geometrical interpretation. Namely, let
f be a smooth self-map of a manifold M of dimension at least 3 and r be a fixed natural number. By the strong result
(so-called Canceling and Creating Procedures proved in [17]) one can create any periodic orbit in the smooth homotopy
class of f (and thus its sequence of indices of iterations is DDm(p | r) sequence). What is more, one can also remove in
the smooth homotopy class any set of periodic points provided their indices of iterations are equal in total to 0. As a
consequence, every decomposition of {L( f n)}n|r into DDm(p | r) sequences gives the associated orbit structure for some map
in the smooth homotopy class.

Thus, MFdiff
r ( f ) i.e. the minimal number of r-periodic points in the smooth homotopy class of f is given by Dm

r [ f ].

Any sequence of indices of iterations can be written down in the convenient form of integral combination of some basic
periodic sequences {regk(n)}n .

Definition 2.5. For a given k we define the basic sequence:

regk(n) =
{

k if k | n,

0 if k � n.

It turns out that any sequence of indices of iterations (as well as Lefschetz numbers of iterations) can be uniquely
represented in the form of periodic expansion (cf. [19]) i.e.

ind
(

f n, x0
) =

∞∑
k=1

ak regk(n), (2.2)

where an = 1
n

∑
k|n μ(k) ind( f (n/k), x0), μ is the Möbius function, i.e. μ : N→ Z is defined by the following three properties:

μ(1) = 1, μ(k) = (−1)s if k is a product of s different primes, μ(k) = 0 if p2 | k for some prime p.
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Remark 2.6. The coefficients an in the formula (2.2) must be integers, which was proved by Dold [2].

For manifolds of dimension m � 4, the computations of Dm
r [ f ] become easier due to the following:

Theorem 2.7. ([4]) For m � 4, in Definition 2.3 of Dm
r [ f ], one may equivalently use only DDm(1 | r) sequences.

Both sides of the equality (2.1) can be represented in the form of periodic expansions, as a consequence for the effective
computation of Dm

r [ f ] for m � 4 one needs:

(1) periodic expansion of L( f n) = ∑
k|r bk regk(n),

(2) all possible forms of periodic expansions of local fixed point indices of iterations of a smooth map {ind(gn, x)}∞n=1 at a
fixed point.

The information necessary in item (2), i.e. the complete list of all DDm(1) sequences, has been recently provided in [10].
Before we give that list (Theorem 2.9 below), we first introduce some notation. By LCM(H) we mean the least common

multiple of all elements in H with the convention that LCM(∅) = 1. We define the set H by: H = {LCM(Q ): Q ⊂ H}.
Next, for natural s we denote by L(s) any set of natural numbers of the form L, where #L = s and 1,2 /∈ L.
By L2(s) we denote any set of natural numbers of the form L, where #L = s + 1 and 1 /∈ L, 2 ∈ L.

Example 2.8. Consider L2(1). This is any set of the form L, where L has 2 elements, with 1 /∈ L and 2 ∈ L. Assume that the
second element in L is equal to w . Then

L = {2, w} = {
LCM(Q ): Q ⊂ {2, w}}

= {
LCM(∅), LCM

({2}), LCM
({w}), LCM

({2, w})}
= {

1,2, w, LCM
({2, w})}.

Theorem 2.9. ([10]) Let g be a C1 self-map of Rm, where m > 1 is odd, and g(x0) = x0 . Then the sequence of local indices of iterations
{ind(gn, x0)}∞n=1 has one of the following forms.

(Ao): ind(gn, x0) = ∑
k∈L2( m−3

2 )
ak regk(n).

(Bo), (Co), (Do): ind(gn, x0) = ∑
k∈L( m−1

2 )
ak regk(n), where

a1 =
⎧⎨
⎩

1 in the case (Bo),

−1 in the case (Co),

0 in the case (Do).

(Eo), (F o): ind(gn, x0) = ∑
k∈L2( m−1

2 )
ak regk(n), where

a1 = 1 and a2 =
{

0 in the case (Eo),

−1 in the case (F o).

Let us mention here that there are similar formulas for the case of even m, see [10].

Remark 2.10. Theorem 2.9 could be interpreted in the following way: the geometrical condition of smoothness of g leads
to some algebraical restrictions for indices of iterations of g . Namely, the form of {ind(gn, x0)}∞n=1 depends on the derivative
of Dg(x0). More precisely, the possible indices k that can appear in basic sequences ak regk in the periodic expansion of
{ind(gn, x0)}∞n=1 could be expressed in terms of degrees of primitive roots of unity which are contained in the spectrum of
Dg(x0) [1].

3. Reidemeister graph

In order to obtain the bounds for #Fix( f r) we will need the notion of the Reidemeister graph GOR( f ; r). Now we
recall the scheme of the construction of this graph in general case (see [19] for the details) and then describe the form of
GOR( f ; r) for self-maps of RPm .

The set of vertices of GOR( f ; r) is, by the definition, the disjoint sum of orbits of Reidemeister classes
⋃

k|r OR( f k).

There are natural maps ik,l : OR( f l) → OR( f k) (for l | k) which introduce the partial order in GOR( f ; r) = ⋃
k|r OR( f k)

(A � B ⇔ ik,l(A) = B).
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The space RPm for odd m is oriented and thus one may associate with each its self-map f its degree β = deg( f ). Let
us remind that the fundamental group π1RPm = Z2. By R( f n) we will denote the Reidemeister class of f n . The orbits of
Reidemeister classes depend on the parity of β in the following way [15]:

For all n ∈N:

• if β is even then the homotopy group homomorphism f# : π1RPm → π1RPm is zero map and R( f n) =OR( f n) = {∗},
a singleton set,

• if β is odd then f# is the isomorphism, thus R( f n) =OR( f n) = Z2.

Remark 3.1. In the further part of the paper we will consider only the case of odd β , because in the other case the
computation of NJDr[ f ] reduces to the simply-connected case. Namely, if β is even, each orbit of Reidemeister classes
consists of only one element, and thus NJDr[ f ] = Dr[h], where h is a self-map of Sm of degree β .

The aim of the paper is to give an estimation of the invariant NJDr[ f ] in the case of self-maps of m-dimensional real
projective space RPm , where m > 3 is odd. However, the obtained results remain valid in more general situation described
by the following

Standing Assumptions 3.2.

(1) f : M → M is a self-map of a smooth closed connected manifold of dimension � 4 and r is a given natural number,
(2) π1M = Z2, f# = id,
(3) all coefficients al∗ in the Reidemeister graph, standing at Regl∗ with l dividing r, are nonzero.

The above assumptions are satisfied for self-maps f :RPm → RPm where m > 3 is odd and |β| = |deg f | � 3 is also odd.
In that case the items (1) and (2) follow from our previous considerations. The item (3) is proved in [9, Lemma 5.5 and
Corollary 5.6] for RP 3, but exactly the same arguments act also for higher odd dimensional projective spaces. The definition
of the coefficients al∗ is given below by the formula (4.2).

Let us mention here, that the fulfillment of the condition (3) of our Standing Assumptions for self-maps of RPm with
|deg f | � 3 results from the fact that {|L( f n)|}∞n=1 grow fast (exponentially) and thus the moduli of the coefficients al∗ also
grow fast.

Now we continue the construction of the Reidemeister graph and the invariant NJDr[ f ] under our Standing Assump-
tions. In the set of orbits of the Reidemeister classes we define the natural map induced by inclusion of the respective
Nielsen classes. If Nl ⊂ Fix( f l), Nk ⊂ Fix( f k) are Nielsen classes representing the Reidemeister classes Al ∈ OR( f l) and
Ak ∈OR( f k) respectively, then Nl ⊂ Nk implies ik,l(Al) = Ak (cf. [19]).

By Standing Assumptions, OR( f l) = Z2. Let us denote OR( f l) = {l′, l′′}, OR( f k) = {k′,k′′}, where l′ and k′ correspond
to the identity element in Z2.

The map ik,l :OR( f l) →OR( f k) has the following form (cf. [8])

ik,l
(
l′
) = k′, (3.1)

ik,l
(
l′′

) =
{

k′′ if k
l is odd,

k′ if k
l is even.

(3.2)

Definition 3.3. Let us consider the natural number r and the set
⋃

k|r OR( f k) = ⋃
k|r{k′,k′′}. In this set we introduce the

partial order “�” in the following way: l∗ � k∗ , where l∗ ∈ {l′, l′′}, k∗ ∈ {k′,k′′} if and only if

• l | k,
• ik,l : {l′, l′′} → {k′,k′′} maps l∗ on k∗ .

If l∗ � k∗ then we say that l∗ is preceding k∗ . We use the notation l∗ ≺ k∗ if l∗ � k∗ but l∗ �= k∗ .

Now we can give the definition of the Reidemeister graph for f , a self-map of a manifold M which satisfies our Standing
Assumptions.

Definition 3.4. Letting r be fixed, the partially ordered set of Reidemeister orbits
⋃

k|r{k′,k′′} can be perceived as a directed
graph (and denoted by GOR( f ; r)). There is an edge from vertex l∗ to k∗ if and only if l∗ � k∗ , with the convention that
if l∗ ≺ k∗ ≺ s∗ then we omit the edge from l∗ to s∗ (understanding that there is the connection between these two vertices
through k∗).



3756 G. Graff, J. Jezierski / Topology and its Applications 159 (2012) 3752–3759
4. NJDr[ f ] for a self-map f of M satisfying Standing Assumptions

In this section we give the definition of NJDr[ f ] for a self-map f of M satisfying our Standing Assumptions 3.2.

4.1. Index function

We define an index function by the formula: I(n∗) = ind( f n,n∗). In this way we obtain a function I defined on the set
of the vertices of the graph GOR( f ; r).

Let us recall that RPm is a Jiang space for odd m, so both Nielsen classes of the given self-map of RPm have equal
indices [20]. As L( f n) = 1 − βn = I(n′) + I(n′′) we get that

I
(
n′) = I

(
n′′) = 1 − βn

2
, (4.1)

where β is the degree of the map f .
Now we generalize the notion of periodic expansion onto the maps of GOR( f ; r).

Definition 4.1. For each vertex l∗ , where l∗ ∈ {l′, l′′}, we define basic integer-valued function on the graph:

Regl∗
(
n∗) =

{
l if l∗ � n∗,
0 otherwise.

Example 4.2. Reg3′ (6′) = 3, Reg3′ (6′′) = 0.

Function I can be uniquely represented as an integral combination of basic functions Regl∗ (so-called generalized periodic
expansion) [8].

I
(
n∗) =

∑
l∗�n∗

al∗ Regl∗
(
n∗). (4.2)

4.2. Attaching sequences at vertices

Let Γ be one of the sequences (A)–(F ) given in Theorem 2.9. It is represented as a combination of reg’s: Γ =∑
d∈O ad regd . We will say that we attach Γ at the vertex l∗ if we define the following function Γl∗ on the Reidemeis-

ter graph:

Γl∗
(
n∗) =

∑
l∗�(dl)∗,d∈O

ad Reg(dl)∗
(
n∗). (4.3)

Definition 4.3. We will say that a sequence Γ , of one of the types (A)–(F ), attached at the vertex l∗ realizes ak∗ Regk∗ (or
ak∗ for short) if this expression appears in the right-hand side of the formula (4.3).

4.3. Definition of NJDr[ f ]

The index function I can be expressed as a sum of the sequences (A)–(F ) attached at some vertices:

I
(
n∗) =

∑
l∗�n∗

al∗ Regl∗
(
n∗) = Γ 1

l∗1

(
n∗) + · · · + Γ s

l∗s
(
n∗). (4.4)

Each such decomposition determines the sum l1 + · · · + ls , which we call the decomposition number.

Definition 4.4. NJDr[ f ] is defined as the minimal decomposition number under all possible decompositions.

Remark 4.5. In [8] we described more general construction of the invariant NJDr[ f ] for any self-map of a closed smooth
connected manifold of dimension at least 3. In general case one must take into account that:

• the sequences are attached at the vertices of the Reidemeister graph of f but GOR( f ; r) may be more complex than
the one described by relations in Definition 3.3.

• Index function I may take much more complicated form than (4.1).
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In any case, the following theorem holds:

Theorem 4.6. ([8]) For any self-map of a closed smooth connected manifold of dimension greater than 3 and a fixed integer r ∈ N
there is:

NJDm
r [ f ] = MFdiff

r ( f ).

The geometrical interpretation of NJDm
r [ f ] the reader may find in [9, Section 4.4].

Remark 4.7. The aim of the paper is to minimize the set Fix( f r) in the smooth homotopy class (for a given r ∈ N). This
leads also to the question about the possible orbital structure of such minimal periodic sets. For example, we know that
in dimension m � 4 and for f being a self-map of a simply-connected manifold, Fix( f r) may consist only of fixed points
([4], cf. also Remark 2.7). When, in the simply-connected case, could Fix( f r) contain longer orbits? By Remark 2.4 the
promising way to answer such a question is to analyze the decomposition of the sequence of Lefschetz numbers {L( f k)}k|r
into DDm(p | r) sequences. In general (non-simply-connected) case one needs to follow such an analysis on Reidemeister
graph.

Remark 4.8. Let us recall that for connected simply-connected closed smooth manifold M the invariants Dm
r [ f ] and NJDm

r [ f ]
coincide, since then for each iteration there is a single Nielsen class.

5. Estimation of NJDm
r [ f ] for maps satisfying Standing Assumptions

For the rest of the paper we assume that f is a map satisfying our Standing Assumptions 3.2.
The computations of the invariant Dm

r [ f ] in [4,5] (and NJDm
r [ f ] in [9]) show that the most troublesome coefficient is

the one standing at reg1. This is because in some forms of sequences of indices listed in Theorem 2.9 the coefficient at
reg1 is not arbitrary, but belongs to the set {−1,0,1}. As a consequence, in some situations one can represent the term
a1 reg1 (in the minimal realization, cf. Definition 2.3) as a sum of the other DDm(1 | r) sequences that appear in the minimal
realization. However, it is not easy to describe all these situations. To avoid this difficulty we introduce the invariant Dm

r [ f ]
mod reg1. The computation of the last invariant is much simpler and gives the approximate value of Dm

r [ f ] [4], namely:

Dm
r [ f ] mod reg1 = Dm

r [ f ] or Dm
r [ f ] − 1.

Definition 5.1. By (Dm
r [ f ] mod reg1) we denote the number of sequences in the minimal decomposition of L( f n) =∑

k|r bk regk(n) into DDm(1 | r) sequences modulo reg1 i.e. we require only that the equality (2.1) holds for all divisors
n | r different than 1 (thus we ignore the coefficient at reg1).

Remark 5.2. In the simply-connected case NJDr[ f ] = Dr[ f ], and Dr[ f ] may be expressed in the language of the Reidemeister
graph in the following way. If M is simply connected then GOR( f ; r) constitutes the graph of all divisors of r and the
procedure of calculating Dr[ f ] described in Definition 2.3 can be equivalently expressed as finding minimal number of
DDm(1) sequences attached at 1 realizing in sum {L( f n)}n|r .

Remark 5.3. Let us consider a self-map f : M → M of a connected simply-connected closed manifold M , satisfying the
condition:

(∗) all coefficients bk for k �= 1 in the periodic expansion of L( f n) = ∑
k|r bk regk(n) are nonzero.

We will denote the family of such maps by B. It was proved in [4] that, for a given dimension m, Dm
r [ f ] mod reg1 has

the common value for all maps f in B. Let P be an odd natural number, we will denote for short this common value of
(Dm

r [ f ] mod reg1) for r = P by hP , assuming that the dimension m � 4 is fixed.

Remark 5.4. Let us mention that the algorithm of determining hP was described in [4] and successfully applied for calculat-
ing hP in the case P is a product of different odd primes. Namely, let the dimension of the manifold be equal to m (m = 2s
or m = 2s + 1) and P be a product of v different odd primes, where v � s. We represent v in the form v = k · s + R where
R = 1, . . . , s and k ∈ Z. Then

hP = 2sk+R − 2R

2s − 1
+ 1. (5.1)

Our aim is to estimate NJDr[ f ], where r = P · 2R with P odd, by hP . The main idea of finding the useful estimation is
based on the decomposition of GOR( f ; r) into parts, each of which is isomorphic to the graph of all divisors of the odd
number P , and observing that each such part gives the contribution to NJDr[ f ] equal to hP .
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Fig. 1. GOR(2s P )′′ for P = p3q; p, q primes.

Fig. 2. GOR( f ; r) for self-maps of RPm .

Now, let f be a map satisfying Standing Assumptions and GOR( f ; r) be the Reidemeister graph for f , r = P · 2R , P is
odd. For a fixed 0 � s � R we consider a part of this graph, defined as:

GOR
(
2s P

)′′ = {(
2sk

)′′
: k | P

}
.

Lemma 5.5. In order to realize all coefficients of GOR(2s P )′′ , maybe except for the coefficient at the vertex (2s)′′ , one needs hP

DDm(1) sequences attached at (2s)′′ . They give the contribution hP · 2s to NJDr[ f ].

Proof. The equality

GOR
(
2s P

)′′ = {(
2sk

)′′
: k | P

}
, (5.2)

shows that GOR(2s P )′′ is isomorphic to the graph of all divisors of P . Thus, by Remark 5.2, to realize (in the sense of
Definition 4.3) all coefficients of GOR(2s P )′′ modulo a(2s)′′ it is enough to attach (Dm

P [ f ] mod reg1) DDm(1) sequences
at (2s)′′ . Furthermore, due to item (3) of our Standing Assumptions the condition (∗) of Remark 5.3 is satisfied for the
isomorphic graph of all divisors of P . As a consequence, (Dm

P [ f ] mod reg1) does not depend on f and is equal hP . This
ends the proof. �

The example of GOR(2s P )′′ for P = p3q, where p and q are primes, is given in Fig. 1. We are now in a position to
formulate the main result of the paper.

Theorem 5.6. Let f be a map satisfying our Standing Assumptions i.e.

(1) f : M → M is a self-map of a smooth closed connected manifold of dimension � 4 and r is a given natural number of the form
r = 2P · R, where P is odd,

(2) π1M = Z2 , f# = id,
(3) all coefficients al∗ in the general periodic expansion of index function (4.2) (i.e. the coefficients in the Reidemeister graph standing

at Regl∗ ) are nonzero.

Then:

2R+1 · hP � NJDr[ f ]� 2R+1 · (hP + 1).

Proof. In Fig. 2 a symbolic representation of GOR( f ; r) is given. This graph can be interpreted literally in the case P is
a prime number. In the general case the aslope lines (in bold), joining (2s)∗ and (2s P )∗ , represent a graph isomorphic to
a graph of all divisors of an odd number P . This means that on the bold edges there are other vertices, which are not
specified. For example, the line joining (2s)∗ and (2s P )∗ for P = p3q, where p, q are primes, is in fact the graph given in
Fig. 1.

Now, we fix 0 � s � R . Then, by Lemma 5.5, to realize all the coefficients at vertices {(l · 2s)′′: l | P , l �= 1} one needs hP

sequences attached at (2s)′′ , which gives the contribution to NJDr[ f ] equal to 2s · hP .
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Similarly, to realize the coefficients at {l′: l | P , l �= 1} one needs hP sequences attached at 1′ . In sum this gives the
following estimates of NJDr[ f ] from below:

NJDr[ f ]�
R∑

s=0

hP · 2s + hP

= hP

[
1 +

R∑
s=0

2s

]
= hP · 2R+1. (5.3)

Now we give an upper estimate. Let us notice that realizing the graph GOR(2s P )′′ we can also realize the graph
GOR(2s+1 P )′ = {(2s+1 · l)′: l | P } for s = 0, . . . , R − 1, modulo the coefficient at (2s+1)′ . In fact, let c(n) be a sequence
attached at (2s)′′ realizing the coefficient at (2sl)′′ , where l | P . Then, as P is odd, c(n) is of one of the types (Bo), (Co) or
(Do) of Theorem 2.9. We can change it for the sequence c′(n) of the type (Eo) or (F o) of Theorem 2.9 realizing also (2s+1l)′
for 0 � s � R − 1. This is possible, since the dimension of the manifold M is odd by the assumption.

As the result, the only coefficients which may still remain unrealized are {(2s)∗: 0 � s � R}.
The vertices 1′′,2′′, . . . , (2R)′′ are irreducible, so to realize the coefficients at these vertices it is necessary (and sufficient)

to attach a single sequence at each of them, which gives the contribution to NJDr[ f ] equal to: 1 + 2 + · · · + 2R = 2R+1 − 1.
Furthermore, if we use for that purpose the sequences of the type (A), then they realize also the coefficients at the vertices
2′, . . . , (2R)′ . The remaining coefficient at 1′ can be realized by one sequence of the type (A) attached at this vertex. Finally,
summing the contributions of the three parts of GOR( f ; r) considered above, we obtain:

NJDr[ f ]� hP · 2R+1 + (
2R+1 − 1

) + 1, (5.4)

which ends the proof. �
Remark 5.7. For a self-map f :RPm → RPm , where m is even GOR( f ; r) is the same as in the case of m odd. However, the
forms of local fixed point indices of iterations in even dimensions are much different (cf. [10]). This makes it impossible to
apply the same trick which allowed us, in the proof of the inequality (5.3), to realize both GOR(2s P )′′ and GOR(2s+1 P )′
by one sequence, and consequently it is much more difficult to find the reasonable estimate for NJDr[ f ] from above in the
case of even m.
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