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The effects of stearic (saturated) or oleic (monounsaturated) acids and their combination with x-3 and
x-6 polyunsaturated fatty acids (PUFA) on death of endothelial cells (ECV-304 cell line) were investi-
gated. We examined: loss of plasma membrane integrity, DNA fragmentation, accumulation of neutral
lipids (NL) and release of reactive oxygen species (ROS). The fatty acids studied were: stearic (SA), oleic
(OA), docosahexaenoic (DHA), eicosapentaenoic (EPA), linoleic (LA) and gamma-linolenic (cA) acids. SA at
150 lM induced cell death, did not lead to accumulation of NL and raised the release of ROS. x-3 PUFA
decreased ROS production, increased NL content but did not protect against ECV-304 cell death induced
by SA. x-6 PUFA inhibited SA-induced cell death, increased NL content and decreased ROS production. OA
caused cell death but did not increase NL content and ROS production even at 300 lM. x-3 and x-6 FA
associated with OA further increased cell death with no change in ROS production and NL content. Con-
cluding, x-6 PUFA had a greater protective effect than x-3 PUFA on the deleterious effects caused by SA
whereas OA had low cytotoxicity but, when associated with PUFA, presented marked toxic effects on
ECV-304 endothelial cells.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Obesity and high fat diets promote increased plasma concentra-
tions of free fatty acids (FFA) leading to endothelial dysfunction
(Mattern and Hardin, 2007). The most abundant FFA in plasma
are stearic (SA), palmitic (PA) (saturated) and oleic (OA) (monoun-
saturated) acids (Hagenfeldt et al., 1972). Saturated FA have pro-
inflammatory actions (Basu et al., 2006) and increase the risk of
cardiovascular diseases (CVD) (Oh et al., 2005; Singh et al., 2002),
whereas monounsaturated FA have been associated with a reduced
risk of cardiovascular diseases (West and York, 1998). x-3 Polyun-
saturated FA (PUFA; EPA and DHA) present anti-inflammatory
effects and decrease the release of pro-atherosclerotic factors (He
et al., 2009), whereas the effects of x-6 PUFA (e.g. linoleic and
c-linolenic acid) in the prevention of CVD still remain controversial
(Harris, 2008; Lecerf, 2009). High concentrations of FFA cause
apoptosis and necrosis in lymphocytes (Gorjão et al., 2007),
macrophages (Cury-Boaventura et al., 2006a) and neutrophils
(Cury-Boaventura et al., 2006b; Hatanaka et al., 2006). In spite of
this information, the effect of FA on endothelial cell (EC) death
was poorly investigated. The sites where plaques develop are
associated with increased EC turnover rate due to the occurrence
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of cell death (Xu, 2009). Endothelial microparticles are increased
in patients with unstable coronary disease, and account for pro-
coagulant activity of the plaque (Tan et al., 2005). This information
led us to investigate the effect of FA on EC death. We studied the
effects of the most abundant fatty acids in the diet (stearic, oleic,
linoleic and c-linolenic acids) and x-3 PUFA (EPA and DHA) that
has being used as therapeutic agents in several pathological
conditions (e.g. atherosclerosis and autoimmune diseases). We
examined if x-3 and x-6 PUFA can protect EC from death induced
by SA that is highly cytotoxic for several cell types (Harvey et al.,
2010; De Lima-Salgado et al., 2011). x-3 and x-6 PUFA was also
tested in combination with OA that presents low cytotoxicity
(de Lima et al., 2006; Levada-Pires et al., 2010). Neutral lipids
(NL) and ROS contents were also determined.

2. Materials and methods

2.1. Culture conditions

ECV-304 is a unique spontaneously transformed human umbil-
ical vein endothelial cell and has several practical advantages over
others endothelial cell lines such as an enhanced and highly repro-
ducible capacity for in vitro angiogenesis (Mutin et al., 1997).
Besides that, human EC line ECV-304 was characterized and com-
pared with human umbilical vein EC endothelial cell markers
(Hughes, 1996; Mutin et al., 1997; Wang et al., 2011). ECV-304
cells were maintained in RPMI-1640 culture medium containing

https://core.ac.uk/display/81138221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tiv.2011.06.011
mailto:ericaportisan@uol.com.br
mailto:ruicuri@icb.usp.br
mailto:ruicuri@icb.usp.br
http://dx.doi.org/10.1016/j.tiv.2011.06.011
http://www.sciencedirect.com/science/journal/08872333
http://www.elsevier.com/locate/toxinvit
http://www.elsevier.com/open-access/userlicense/1.0/
http://www.elsevier.com/open-access/userlicense/1.0/


L.N. Masi et al. / Toxicology in Vitro 25 (2011) 2140–2146 2141
10% fetal bovine serum (FBS) supplemented with glutamine
(2 mM), HEPES (20 mM), streptomycin (10,000 g/mL) and sodium
bicarbonate (24 mM). Cells were maintained at 37 �C in a humidi-
fied atmosphere with 5% CO2. Cells were treated with SA or OA
combined with LA, cA, EPA or DHA dissolved in ethanol. The con-
centrations used were based on preliminary studies. We used toxic
concentrations of SA (150 lM) and OA (300 lM) acids. PUFA (x-3
and x-6) were used at 50 and 100 lM.

2.2. Cytotoxicity determination

Signs of cell death (cell viability and DNA fragmentation) were
evaluated in a time course study carried out for 2, 6 or 24 h after
FA treatment. The proportion of cells with loss of membrane integ-
rity and fragmented DNA was determined by flow cytometry using
a FACSCalibur equipment (Becton and Dickinson System, San Juan,
California, USA), as previously described (Jaroszeski and Radcliff,
1999; de Lima et al., 2007).

2.3. Oil red O staining

ECV-304 cells were treated with FA for 24 h, than the slides
were washed, fixed and stained with oil red O as previously de-
scribed (Pearse, 1960). The slides were examined by light micros-
copy at 510 nm (Carl Zeiss Vision, Munchen-Hallbergmoos,
Germany). Images were taken at 20� magnification and a repre-
sentative image is shown (Figs. 2C and 4C).

2.4. Measurement of ROS

Cells were treated with the FA for 30 min. After treatment, the
cells were incubated with hydroethydine (1 lM) for 30 min at
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Fig. 1. ECV-304 endothelial cells incubated with stearic acid for 24 h. (A) Cell viability; (B
24 h and analyzed by flow cytometry. The fluorescence was measured in FL2 channel (585
acids for 24 h and then were washed, fixed and stained with oil red O. The cells were ex
intensity relative to the content of reactive oxygen species: ECV-304 endothelial cells w
Subsequently, the cells were analyzed to determine the production of superoxide anion i
of production of ROS induced by fatty acid treatment subtracted of the values obtained
ethanol as indicated by ANOVA, #p < 0.05 compared to stearic acid as indicated by ANOV
SA 250 = stearic acid at 250 lM.
room temperature in the dark. Cells were visualized in a fluores-
cence microscope (Carl Zeiss Vision, Munchen-Hallbergmoos, Ger-
many), using the 590/46 nm filter and analyzed by fluorescence
intensity using the KS 300 software. For quantification of ROS pro-
duction images were taken at 20� magnification from 10 random
fields of view for each well and were analyzed by fluorescence
intensity using the KS 300 software. Values of the areas were aver-
aged to obtain the mean values. A representative image is shown
(Figs. 2D and 4D).
2.5. Statistical analysis

Results are presented as means ± SEM of 6–9 determinations
from 2 to 3 experiments. Statistical analysis was performed by
using one-way ANOVA and Tukey’s test (Graph Pad Prism 5; Graph
Pad software) as indicated. The level of significance was set at
p < 0.05.
3. Results

3.1. Combined effects of SA with x-3 and x-6 PUFA

Treatment with SA for 24 h decreased the proportion of viable
cells by 18% at 150 lM, 9% at 200 lM and 11% at 250 lM, as com-
pared to vehicle (Fig. 1A). The proportion of cells with DNA frag-
mentation was increased by 3-fold due to treatment with SA at
150 lM, by 3.5-fold at 200 lM and 4-fold at 250 lM for 24 h, as
compared to vehicle (Fig. 1B). The treatment with SA at 150 and
200 lM for 24 h did not change the content of lipids but at
250 lM decreased it by 25% compared to vehicle (Fig. 1C). ROS
Production was increased by approximately 2-fold due to SA
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) DNA fragmentation: ECV-304 endothelial cells were incubated with fatty acids for
/42 nm). (C) Oil red O staining: ECV-304 endothelial cells were incubated with fatty
amined by light microscopy and by absorbance assay at 510 nm. (D) Fluorescence

ere incubated with fatty acids for 30 min and then with hydroethydine for 30 min.
n a fluorescence microscope using 590/46 nm filter. (D) The graph shows the values
with ethanol. Values are presented as mean ± SEM (n = 9). ⁄ p < 0.05 compared to

A. EtOH = ethanol; SA 150 = stearic acid at 150 lM; SA 200 = stearic acid at 200 lM;
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Fig. 2. ECV-304 endothelial cells incubated with stearic acid combined with x-6 or x-3 fatty acids for 24 h. (A) Cell viability; (B) DNA fragmentation: ECV-304 endothelial
cells were incubated with fatty acids for 24 h and analyzed by flow cytometry. The fluorescence was measured in FL2 channel (585/42 nm). (C) Oil red O staining: ECV-304
endothelial cells were incubated with fatty acids for 24 h and then were washed, fixed and stained with oil red O. The cells were examined by light microscopy and by
absorbance assay at 510 nm. (D) Fluorescence intensity relative to the content of reactive oxygen species: ECV-304 endothelial cells were incubated with fatty acids for
30 min and then with hydroethydine for 30 min. Subsequently, the cells were analyzed to determine the production of superoxide anion in a fluorescence microscope using
590/46 nm filter. (C, D) The photos illustrate the most significant results; 1. ethanol; 2. stearic acid 150 lM; 3. stearic acid 150 lM plus eicosapentaenoic acid 100 lM; 4.
stearic acid 150 lM plus linoleic acid 100 lM; (D) The graphs show the results of fluorescence intensity of the treatments minus the values obtained with ethanol, expressed
as mean ± SEM of three experiments performed in duplicate. ⁄p < 0.05 compared to ethanol as indicated by ANOVA, #p < 0.05 compared to stearic acid as indicated by ANOVA.
EtOH = ethanol; SA = stearic acid always at 150 lM; DHA = docosaexaenoic acid; EPA = eicosapentaenoic acid; LA = linoleic acid; cA = c-linolenic acid; all at 50 or 100 lM as
indicated.
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treatment either at 150, 200 and 250 lM, as compared to vehicle
(Fig. 1D).

Treatment with SA and the association with PUFA (x-3 and
x-6) for 2 and 6 h did not alter the viability and the percentage
of cells with DNA fragmentation compared to vehicle (data not
shown). Treatment with SA for 24 h decreased the proportion
of viable cells by 18% at 150 lM as compared to vehicle
(Fig. 2A). The combination of SA with DHA at 100 lM decreased
still further the proportion of viable cells by 19% as compared to
SA. On the other hand, the association of SA with EPA at 50 and
100 lM increased the proportion of viable cells by 12% and 9%,
respectively, compared to SA. x-6 FA (LA and cA, at 50 and
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100 lM) increased the proportion of viable cells in the presence
of SA by 20% as compared to SA (Fig. 2A).

The proportion of cells with DNA fragmentation was increased
by 18-fold due to treatment with SA at 150 lM for 24 h as
compared to vehicle (Fig. 2B). x-3 PUFA did not alter the SA effect.
However, x-6 PUFA markedly reduced the proportion of cells with
DNA fragmentation caused by the SA. The reduction in the propor-
tion of cells with DNA fragmentation induced by x-6 PUFA was as
follows: by 36% and 79% for LA at 50 and 100 lM, respectively, and
by 35% and 47% for cA at 50 and 100 lM, respectively, all com-
pared to SA (Fig. 2B).

Treatment with x-3 PUFA (DHA and EPA, both at 100 lM)
associated with SA at 150 lM for 24 h increased NL content by
31% and 29%, respectively, both compared to SA. The increased
NL content induced by x-6 PUFA was as follows: by 60% and
91% for LA at 50 and 100 lM, respectively, and by 69% and
80% for cA at 50 and 100 lM, respectively, all compared to SA
(Fig. 2C).

The content of ROS in FA treatments (Fig. 2D) were sub-
tracted of the values obtained with the vehicle. ROS Production
was increased by approximately 2-fold due to SA treatment at
150 lM (Fig. 2D). SA associated with DHA, EPA and cA at
50 lM did not alter the ROS production compared to SA. How-
ever, combinations of SA with DHA, EPA and cA at 100 lM de-
creased by approximately 20% the ROS production compared to
SA. SA plus LA at 50 and 100 lM decreased by 50% and 67%,
respectively, the ROS content compared to SA (Fig. 2D).
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Fig. 3. ECV-304 endothelial cells incubated with oleic acid for 24 h. (A) Cell viability; (B)
24 h and analyzed by flow cytometry. The fluorescence was measured in FL2 channel (585
acids for 24 h and then were washed, fixed and stained with oil red O. The cells were ex
intensity relative to the content of reactive oxygen species: ECV-304 endothelial cells w
Subsequently, the cells were analyzed to determine the production of superoxide anion
production of ROS induced by fatty acid treatment subtracted of the values obtained with
as indicated by ANOVA, #p < 0.05 compared to oleic acid as indicated by ANOVA. EtOH = e
acid at 400 lM.
3.2. Combined effects of OA with x-3 and x-6 PUFA

OA at 300, 350 and 400 lM for 24 h did not alter the integrity of
plasma membrane compared to vehicle (Fig. 3A). The treatment
with OA for 24 h increased the proportion of cells with DNA frag-
mentation by 5-fold at 300 lM, by 8-fold at 350 lM and by 10-fold
at 400 lM, compared to vehicle (Fig. 3B). The NL content was de-
creased by 68% with OA at 300, 350 and 400 lM (Fig. 3C). OA at
300 and 350 lM did not alter ROS production but at 400 lM in-
creased by 50% as compared to vehicle (Fig. 3D).

Treatment with OA at 300 lM only or associated with x-3 FA for
2 and 6 h did not alter the cell viability and fragmentation of DNA as
compared to vehicle. However, OA associated with x-6 FA for 6 h re-
duced the proportion of viable cells by 49% and 57% for LA at 50 and
100 lM, respectively, and by 52% for cA at 100 lM, as compared to
OA (data not shown). The fragmentation of DNA was increased by
the association of OA with x-6 FA for 6 h by 8- and 16-fold for LA
at 50 and 100 lM, respectively; and by 5- and 16-fold for cA at 50
and 100 lM, respectively (data not shown).

OA at 300 lM for 24 h did not alter the integrity of plasma
membrane compared to vehicle (Fig. 4A). On the other hand, OA
associated with x-3 and x-6 PUFA for 24 h reduced cell viability
by: 87% and 91% for DHA; 81% and 87% for EPA; 76 and 77% for
LA; 75 and 83% by cA, all at 50 and 100 lM, respectively (Fig. 4A).

The treatment with OA at 300 lM for 24 h increased the propor-
tion of cells with DNA fragmentation by 5-fold (Fig. 4B). The combi-
nation of OA with x-3 and x-6 PUFA increased this parameter still
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Fig. 4. ECV-304 endothelial cells incubated with oleic acid combined with x-6 or x-3 fatty acids for 24 h. (A) Cell viability; (B) DNA fragmentation: ECV-304 endothelial cells
were incubated with fatty acids for 24 h and analyzed by flow cytometry. The fluorescence was measured in FL2 channel (585/42 nm). (C) Oil red O staining: ECV-304
endothelial cells were incubated with fatty acids for 24 h and then were washed, fixed and stained with oil red O. The cells were examined by light microscopy and by
absorbance assay at 510 nm. (D) Fluorescence intensity relative to the content of reactive oxygen species: ECV-304 endothelial cells were incubated with fatty acids for
30 min and then with hydroethydine for 30 min. Subsequently, the cells were analyzed to determine the production of superoxide anion in a fluorescence microscope using
590/46 nm filter. (C) The photos illustrate the most significant results; 1. ethanol; 2. oleic acid at 300 lM; 3. oleic acid at 300 lM plus eicosapentaenoic acid at 50 lM; 4. oleic
acid at 300 lM plus linoleic acid at 100 lM; (D) The photos illustrate the most significant results; 1. ethanol; 2. oleic acid at 300 lM; 3. oleic acid at 300 lM plus
eicosapentaenoic acid at 100 lM; 4. oleic acid at 300 lM plus c-linolenic acid at 50 lM; (D) The graphs show the results of fluorescence intensity of the treatments minus the
values obtained with ethanol, expressed as mean ± SEM of three experiments performed in duplicate. ⁄p < 0.05 compared to ethanol as indicated by ANOVA, #p < 0.05
compared to oleic acid as indicated by ANOVA. EtOH = ethanol; OA = oleic acid always at 300 lM; DHA = docosaexaenoic acid; EPA = eicosapentaenoic acid; LA = linoleic acid;
cA = c-linolenic acid; all at 50 or 100 lM as indicated.
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further by 3-fold for DHA; 4-fold for LA and cA, at 50 and 100 lM,
and by 4-fold for EPA at 50 lM as compared to OA (Fig. 4B).

The treatment with OA at 300 lM decreased the lipids content
by 56% compared to vehicle. The association of OA with PUFA (x-3
and x-6) increased the NL content compared to OA at 300 lM by:
30% and 25% for EPA and cA, respectively, both at 50 lM and 37%
for LA at 100 lM (Fig. 4C). OA associated with x-3 and x-6 PUFA
did not alter the ROS production compared to OA (Fig. 4D).
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4. Discussion

4.1. SA associated with x-3 and x-6 PUFA

FFA are important mediators of endothelial dysfunction, athero-
sclerosis and cardiovascular disease (Azekoshi et al., 2010). In this
study, SA increased the EC death and ROS production, without
affecting NL content. x-3 PUFA did not protect EC from death in-
duced by SA but increased the lipids content and decreased the
ROS production. In contrast, x-6 PUFA reduced cell death induced
by SA, increased lipids accumulation and decreased ROS content.

SA-induced cell death confirms the results obtained in previous
studies (Artwohl et al., 2004; Rioux and Legrand, 2007. Artwohl
et al., 2008 showed that SA causes apoptosis of various EC lines
(HUVECs, HAECs, and EPCs HRECs). Saturated FA (stearic and pal-
mitic acid) are the most abundant FFA in plasma (Hagenfeldt
et al., 1972) and the major components of parenteral and enteral
nutritional formulations, so the potential for adverse vascular ef-
fects initiated by saturated FA are cause for clinical concern. EC
apoptosis plays an important role in endothelium dysfunction
and directly affects blood thrombogenicity through the release of
apoptotic microparticles into the bloodstream (Blann et al., 2009).
x-3 PUFA have important anti-inflammatory and anti-apoptotic
properties (Massaro et al., 2008; Suphioglu et al., 2010). Artwohl
et al. (2008) showed that low EPA levels (5–20 lM) inhibits SA-in-
duced apoptosis in HUVEC, HAEC, EPC and HREC. In our study, EPA
increased the percentage of viable cells without affecting DNA frag-
mentation induced by SA. However a marked decrease in the pro-
portion of cells with death signs was found in the treatment with
x-6 PUFA and SA. No significant association between LA (x-6 PUFA)
intake (or tissues levels) and CHD risk (Esrey et al., 1996; Pietinen
et al., 1997) and no consistent relations between stroke and LA in-
take (He et al., 2002; Sauvaget et al., 2004) have been found. Herein,
x-6 PUFA protected EC from death induced by SA.

SA did not affect EC NL content, but it does so in association of
SA with x-3 or x-6 PUFA. Thus, PUFA, specially x-6, may protect
from SA-induced EC death by incorporating FA into NL (Cnop
et al., 2001).

ROS have been implicated in the initiation and progression of
atherosclerosis. ROS can oxidize lipoproteins, limit the vascular
availability of antiatherosclerotic NO, and promote vascular
expression of cytokines and adhesion molecules. Treatment of
ECV-304 cells with SA for 30 min led to an increase of ROS. The
combination of SA with x-3 reduced ROS production but did not
protect cells from SA-induced death. Our findings corroborate with
those by Richard et al., 2008, showing that low ROS production by
human aortic EC treated with x-3 and x-6 PUFA compared with
saturated FA. In our study, the x-6 PUFA led to a decrease in SA-in-
duced ROS production. These findings contradict previous studies
indicating that x-6 PUFA have more potent effect on production
of superoxide than the saturated FA (Schonfeld and Reiser, 2006,
2007). However, these authors did not investigate the combined
effects of FA.

In general, x-3 PUFA decreased ROS production, increased the
content of NL but did not protect against EC death induced by
SA. x-6 PUFA inhibited SA-induced cell death, increased NL con-
tent and decreased ROS production. So, x-6 PUFA have a greater
protective effect than x-3 PUFA on the deleterious effects caused
by SA on EC.
4.2. OA associated with x-3 and x-6 PUFA

The consumption of the Mediterranean diet has been linked to
greater longevity, improved quality of life and lower incidence of
cardiovascular diseases (Carluccio et al., 2007). The Mediterranean
diet is low in saturated FA and high in monounsaturated FA, partic-
ularly in OA. Pacheco et al. (2008) observed that a meal with a high
monounsaturated to saturated FA ratio has a significant postpran-
dial benefit on markers of endothelial dysfunction in healthy and
hypertriglyceridemic subjects.

The results of OA on cell death confirm those of Krieglstein et al.
(2008) and Reinbold et al. (2008). These authors also observed
apoptosis in HUVEC cells by treatments with OA at concentrations
of 200–400 lM.

This effect was pronounced in the treatment of OA at 300 lM
with x-3 and x-6 PUFA for 24 h. The increase in cell death due
to treatments with OA and PUFA was not due to the high load of
FA since OA did not increase loss of membrane integrity even at
400 lM.

The diversion of FFA into NL may have cytoprotective effect. The
NL content was decreased by OA at 300–400 lM. OA with x-6 and
x-3 PUFA increased NL content compared to OA. These results did
not prevent cell death in these treatments. Stentz and Kitabichi
(2006) did not observe endothelial activation and increased ROS
production in human aortic EC treated with OA at 50–500 lM.
The same was found herein for OA alone or in association with
x-3 and x-6 PUFA.

In summary, we demonstrated herein that the effect of a spe-
cific fatty acid (beneficial or deleterious) is substantially affected
by combination with other fatty acids. x-6 and x-3 PUFA associ-
ated with OA increased cell death with no change in the OA effect
on NL and ROS content. OA had low cytotoxic effect per se. How-
ever, the combination of OA with x-3 or x-6 PUFA, presented
marked toxicity for ECV-304 EC. These results contribute to the
understanding of the effects of circulating fatty acids on endothe-
lial cell function and dysfunction.
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