
Theoretical Computer Science 82 (1991) 253-284
Elsevier

253

a

Martin Abadi and Leslie Lamport
Digital Equipment Corporation, 130 Lytton Avenue, Palo Alto CA 94303, USA

Communicated by A. Meyer
Received August 1988
Revised May 1989

Abstract

Abadi, M., and L. Lamport, The existence of refinement mappings (Fundamental Study), Theoreti-
cal Computer Science 82 (1991) 253-284.

Refinement mappings are used to prove that a lower-level specification correctly implements a
higher-level one. We consider specifications consisting of a state machine (which may be infinite-
state) that specifies safety requirements, and an arbitrary supplementary property that specifies
liveness requirements. A refinement mapping from a lower-level specification S, to a higher-level
one St is a mapping from S,‘s state space to Sz’s state space. It maps steps of S,‘s state machine
to steps of Sz’s state machine and maps behaviors allowed by S, to behaviors allowed by St. We
show that, under reasonable assumptions about the specifications, if S, implements Sz, then by
adding auxiliary variables to S, we can guarantee the existence of a refinement mapping. This
provides a completeness result for a practical, hierarchical specification method.

Contents

1. Inr;.oduction .. 254

1.1. Specifications ... 254

1.2. Proving that one specification implements another 255

2. Preliminaries .. 258

2.1. Sequences .. 258

2.2. Properties.. .. 259

2.3. Specifications.. ... 260

2.4. Refinement mappings .. 262

3. Finite invisible nondeterminism ... 263

4. Safety properties .. 266

0304-3975/91/$03.50 @ 1991-Elsevier Science Publishers B.V.

254 M. Abadi, L. Lamport

5. Auxiliary variables ... 270

5.1. History variables ... 270

5.2. Simple prophecy variables .. 271

5.3. Prophecy variables that add stuttering .. 274

6. Internal continuity ... 276

7. Thecompletenesstheorem .. 278

8. Whenceand whither? .. 282

References ... 283

Glossary/ Index of notations and conventions ... 284

1. Introduction

1.1. Specifications

A system may be specified at many levels of abstraction, from a description of
its highest-level properties tc a description of its implementation in terms of micro-
code and circuitry. We address the problem of proving that a lower-level specification
is a correct implementation of a higher-level one.

Unlike simple programs, which can be specified by input/output relations, com-
plex systems can be adequately specified only by describing their behaviors-that
is, their possible sequences of inputs and outputs. We consider specification methods
in which a behavior is represented by a sequence of states and a system is specified
by a set of permitted behaviors. Input and output are represented in the state-for
example, by including a keyboard state describing which keys are currently depressed
and a screen state describing what is currently displayed.

A specification should describe c.,~y the externall_y visible components of a system’s
state. However, it is often helpful to describe its behavior in terms of unobservable
internal components. For example, a natural way to specify a queue includes a
description of the sequence of elements currently in the queue, and that sequence
is not externally visible. Although internal components are mentioned, the
specification prescribes the behavior of only the externally visible components. The
system may exhibit the externally visible behavior

Go, el, e, . . 4

where ei is a state of the externally visible component, if there exist states yi of the
internal component such that the ccmpIe*e behavior

(((6, _Q, (cl, _h), k, _vd, . . 4

is permitted by the specification. (We use (()) to denote a sequence.)
A specification may allow steps in which only the internal state component

changes; for example, a sequence

U%_vd, hy,), (e,,yk (e,,yr), (e?, y2), . . .)).

Such internal steps are not externally visible, so the sequence of external states

G5), eIT el, elr +,. . J) should be equivalent to the sequence ((e,,, el , e2, . . .)) obtained
by removing the “stuttering” steps from e, to e, . Let r((e,,, e, , . . .)) be the set of all
sequences obtained from ({e,,, e, , . . .)) by repeating states and deleting repeated

Existence of rejnement mappings 255

states-that is, by adding and removing finite amounts of stuttering. We consider
only specifications in which a sequence ((e,, e, , . . .)) is allowed only if all sequences

in QeO, el y l l J> are allowed. Such specifications are said to be invariant under
stuttering.

The behaviors permitted by a specification can be described as the set of sequences

satisfying a safety and a liveness property [1,6]. Intuitively, a safety property asserts

that something bad does not happen and a liveness property asserts that something

gaod does eventually happen. In specifying a queue, the safety property might assert

that the sequence of elements removed from the queue is an initial prefix of the

sequence of elements added to the queue. The liveness property might assert that

an operation of putting an element into the queue is eventually completed if the

queue is not full, and an operation of removing an element from the queue is

eventually completed if the queue is not empty. (What operations are in progress

and what elements they are adding to or have removed from the queue would be
described by the externally visible state.)

We are concerned with specifications in which the safety property is described

by an “abstract” nondeterministic program; a behavior satisfies the property if it

can be generated by the program. Liveness properties are described either directly

by writing axioms or indirectly by placing fairness constraints on the abstract

program. In a specification of a queue, the program describes the sequence of actions

by which an element is added to or removed from the sequence of queued elements,
ensuring the safety property that the correct elements are removed from the queue.

Additional fairness constraints assert that certain actions must eventually occur,

ensuring the liveness property that operations that should complete eventually do

complete.
Many proposed specification methods involve writing programs and fairness

conditions in this way [8,7,9]. (Some methods do not consider liveness at all and

just specify safety properties with programs.)
To describe specifications formally, we represent a program by a state machine

(whose set of states may be infinite) and we represent the fairness constraints by

an arbitrary supplementary condition. For our results, it does not matte if the

supplementary condition specifies a liveness property.

1.2. Proving that one specijication implements another

A specification S, implements a specification S2 if every externally visible behavior
allowed by S, is also allowed by S2. To prove that 2, it suffices to

prove that if S, allows the behavior

where the z, are internal states, then there exist internal states y, such that

Wh YO?, (e,, YA k, yA . - J>-

In general, each yi can depend upon the entire se uence (((G, 4, (4, T 21 A

256 M. Abadi, L. Lamport

h, zd, . . .)), and proving the existence of the yi may be quite difficult. The proof
is easier if each yi depends only upon ei and Zi, SO there exists a function f such
that (ei, yi) =f(ei, Zi)* TO verify that (f(e,, ZO), ./‘k, 21)~ .f@z, zd,. l J) satisfies the

safety property of Sz, it suffices to show that f preserves state machine behavior;
that is, it maps executions of 53,‘s state machine to executions (possibly with
stuttering) of !!&‘s state machine. Proving that f preserves state machine behavior
involves reasoning about states and pairs of states, not about sequences. Verifying
that f preserves liveness - meaning that ((f(e,, zO), f(e, , z,), f(ez, z,), . . .)) satisfies
the liveness property of Sz - usually also requires only local reasoning, with no
explicit reasoning about sequences. A mapping f that preserves state machine
behavior and liveness is called a rejnement mapping.

In the example of a queue, the internal state yi of specification S2 might describe
the sequence of elements currently in the queue, and the internal state Zi of
specification St might describe the contents of an array that implements the queue.
To prove that S, implements S2, one would construct a refinement mapping f such
that f(ei, zi) = (ei, yi), where yi describes the state of the queue that is represented
by the contents of the array described by state Zi.

Several methods for proving that one specification implements another are based
upon finding a refinement mapping [8,7]. In practice, if S, implements S2, then
these methods usually can prove that the implementation is correct-usually, but
not always. The methods fail if the refinement mapping does not exist. Three reasons
why the mapping might not exist are:

St may specify an internal state with ““historical information” not needed by St.
For example, suppose S2 requires that the system display up to three of the
least-significant bits of a three-bit clock. This specification is implemented by a
lower-level specification S1 that alternately displays zero and one, with no internal
state. A refinement mapping does not exist because there is no way to define the
internal state of a three-bit clock as a function of its low-order bit.
Sz may specify that a nondeterministic choice is made before it has to be. For
example, consider two specifications S, and S2 for a system that displays ten
nondeterministically chosen values in sequence. Suppose S2 requires that all
values be chosen before any is displayed, while S, requires each value to be
chosen as it is displayed. Both specifications describe the same externally visible
behaviors, SO each implements the other. However, S2 requires the internal state
to contain all ten values before any is displayed, while S, does not specify any
internal state, so no refinement mapping is possible.
SZ may “run slower” than S,. For example, let S, and SZ both specify clocks in
which hours and minutes are externally visible and seconds are internal. Suppose

lock by one second, while in S, each step
0th specifications allow the same externally

i, we can use the re
the nearest multiple of ten set

lete behavior ((so, si , s2, . . .)) allowed by S2, the behavror

~f(&Af(s,),f(s2), l * 9)) is a complete behavior allowed by , that contains nine
“stuttering” steps for every step that changes the state.
On the other hand, a complete behavior ((so, sl, s2,. . .)) specified by $, may

produce an externally visible change every six steps. For any mappmg f; the
sequence ((f (so), f (s,), f (s2), . . .)) may also produce an externally visib
every six steps. This is not allowed by which requires fifty-nine internal steps
for every externally visible one. Hence, no refinement mapping can prove that
St implements S, .

If a refinement mapping does not exist, it can often be made to exist by adding
auxiliary variables tc be lower-level specification. An auxiliary variable is an internal
state component t!dsf: is added to a specification without aqecting the externally
visible behavior. The tfiree situations described above in which refinement mappings
cannot be found are handled as follows:

Historical information missing from the internal state specified by
provided by adding a history variable, a well-known form of auxilia
that merely records past actions [121.
If Sr requires that a nondeterministic choice be made before it has to be, then
S, can be modified so the choice is made sooner by adding a prophecy variable.
A prophecy variable is a new form of auxiliary variable that is the mirror image
of a history variable; its formal definition is almost the same as the definition of
a history variable with past and future interchanged, but there is an asymmetry
due to behaviors having a beginning but not necessarily an end.

0 If Sz runs slower than S,, then an auxiliary variable must be added to S, to slow
it down. We will define prophecy variables in such a way that they can perform
this slowing.
Our main result is a completeness theorem. It states that, under three hypotheses

about the specifications, if S, implements Sz then one can add auxiliary history and
prophecy variables to Si to form an equivalent specification Sfp and find a refinement
mapping from Sfp to S2. The three hypotheses, and their intuitive meanings, are:

S, is machine closed. Machine closure means that the supplementary property
(the one normally used to specify liveness requirements) does not specify any
safety property not already specified by the state machine. In other words,
state machine does as much of the specifying as possible.
St has jinite invisible nondeterminism. This denotes that, given any finite number
of steps of an externally visible behavior allowed by Sz, there are only a finite

umber of possible choices for its internal state component.

2 is internally continuous. A specification is internally continuous if, for any
complete behavior that is not allowed, we can determine that it is not
by examining only its externally visible part (which may be infinite) a
finite portion of the complete behavior.

We will show by examples why t
e will prove that any safety finite invisible

nondeterminism, any specification of a safety property is internally continuous, and

258 M. Abadi, L. Lampor

any property has a machine-closed specification. Therefore, our completeness
theorem implies that if the specifications are written in a suitable form and Sr
specifies only a safety property then one can ensure that a refinement mapping
exists, We will also show that, even when Sr is not internally continuous, a refinement
mapping exis? to show that S, satisfies the safety property specified by Sz. Therefore,
by writing suitable specifications, refinement mappings can always be used to prove
the safety property of a specification if not its liveness property. We do not know
if anything can be said about proving arbitrary liveness properties.

Throughout this report, proofs are written in a self-explanatory structured format.
The format permits very careful proofs that can be read to any desired level of
detail by ignoring lower-level statements. Writing proofs in this format helped us
to eliminate many errors and greatly increased our confidence in the correctness of
the results.

A glossary of notations and conventions apfrzars at the end. We hope it will help
the reader cope with the formalism.

2. Preliminaries

2.1. Sequences

We now define some useful notations for sequences. In these definitions, u denotes
the sequence ((su, sl, s2,. . .)) and 7 denotes the sequence ((to, f, , f2, . . .)). These
sequences may be finite or infinite. If a is finite, we let llall denote its length and
lusr((r) denote its last element, so Il((sO,. . . , s,,,_,))ll = m and lasr(((s,, . . . , s,,,_,))) =

S”,-1 l An infinite sequence is said to be terminating iff (if and only if) it is of the
form ((so, q , . . . , snr s,, s,, . . . &in other words, if it reaches a final state in which
it stutters forever.

As usual, a mapping on elements is extended to a mapping on sequences of
elements by defining g(c) to equal ((g(s,), g(s,), . . .)). and to a mapping on sets of
elements by defining g(S) to equal (g(s): s E S}.

The sequence o is said to be stutter-free if, for each i, either si # si+l or the
sequence is infinite and s, = s, for all j 2 i. Thus, a nonterminating sequence is
stutter-free iff it never stutters, and a terminating sequence is stutter-free iff it stutters

its final state. We define bcr to be the stutter-free form of a-that
uence obtained by replacing every maximal finite subsequence

entical elements with the single element Si. For example,

r iff u and 7 are equivalent up to
e set (7: T =z Q). If S is a set of sequences, r(S)

es 5 is ~10~~ under sfuftering if
uences a, 7 wit

Existence of refinement mappings

e use “0” to denote concatenation of sequences;
~0 7=((s0,. . . ,sm._+ to, t,, . . .)). If Ilc+ m, we let glrn
the prefix of cr of length m.

259

that is, if II all = m, then

For any set , 2 let 2” denote the set of all infinite sequences of elements in Z:
An infinite sequence ((CT,,, (tl, u 2,. . .)) of sequences in C” is said to converge to the
sequence u in c“’ iff for all m 2 0 there exists an n 3 0 such that ai Im = 01~ for all
i 2 n. In this case, we define lim ui to be a. This definition of convergence gives rise
to a topology on Z“. We now recall some other definitions.

Let Q be an element of 6” and let S be a subset of CU. We say that CT is a limit
poinf of S iff there exist elements Ui in S such that lim vi = a. The set S is closed
iB11 S contains all its limit points. The closure of S, denoted s, consists of all limit
points of S; it is the smallest closed superset of S.

2.2. Roperties

We can only say that one specification implements another if we are given a
correspondence between the externally visible states of rhe two specifications. For
example, if Sz asserts that the initial value of a particuiar register is the integer -3
and S, asserts that the register’s initial value is the se+rence of bits 1111100, then
we cannot say whether or not S, implements Sz withJut knowing how to interpret
a sequence of bits as an integer. Hn general, to decide if 55, implements St we must
know how to interpret an externally visible state of S, as an externally visible state
of S2. Given such an interpretation, we can translate S, into a specification with
the same set of externally visible states as S 2. Thus, there is no loss of generality
in requiring that S, and S2 have the same set of externally visible states.

We therefore assume that all specifications under consideration have the same
fixed set & of externally visible states. A state space 2 is a subset of & x 2, for
some set Z, of internal states. We let l7, be the obvious projection mapping from
& x 2, onto &. The set & itself is considered to be a state space for which &
is the identity mapping.

If 25 is a state space, then a C-behavior is an element of Y. A &-behavior is
called an exrernall,, visible behavior. A Z-properfy P is a set of X-behaviors that is
closed under stuttering. A &-property is called an externally visible property. If P
is a Z-property, then n,(P) is a set of externally visible behaviors but is not
necessarily an externally visible property because it need not be closed under
stuttering. The externally visible property induced by a X-property P is defined to
be the set r(&(P)).

If E is clear from context or is irrelevant, we use the terms behavior and property

visible behaviors and

is one assertin

260 M. Abadi, L. Lumport

observe that if something bad happens, then it must happen within some finite
period of time. Thus, P is a safety property iff, for any sequence c not in P, one
can tell that 0 is not in P by looking at some finite prefix ali of a. In other words,
cr@ P iff there exists an i such that for all T if 71i = ali then TE R Hence, u E P iff
for all i there exists a Ti E P such that Tili = ali. But lim Ti = a, which implies that
c E B; thus, CT E P iff (+ E E Therefore, P satisfies the intuitive definition of a safety
property only if P = E

Even though we do not use the formal definition, it is interesting to note that a
X-property L can be defined to be a liveness property iff it is dense in Y-in other
words, if E= Cw. This means that L is a liveness property iff any finite sequence of
elements in C can be extended to a behavior in L. In a topological space, every set
can be written as the intersection of a closed set and a dense set, so any property
P can be written as M n L, where 1M is a safety property and L is a liveness property.
Moreover, M can be taken to be i!

2.3. Specifications

A state machine is a triple (2, F, N) where
C is a state space. (Recall that this means C c & x & for some set & of internal
states.)
F, the set of initial states, is a subset of 2.
N, the next-state relation, is a subset of C x C. (Elements of N are denoted by
pairs of states enclosed in angle brackets, like (s, t).)

The (complete) property generated by a state ma +’ 3e (2, F, N) consists of all infinite
sequences ((s,, sl, . . .)) such that sot F and, &or all i 3 0, either (Si, Si+l) E N or
Si - S i+l . This set is closed under stuttering, so it is a Z-property. The externally
visible property generated by a state machine is the externally visible property induced
by its complete property.

We now show that the complete property P generated by a state machine is a
safety property. This requires proving that if lim ui = a and each ai E P, then u E R
For any behavior T = ((s o, s 1, e . .)) and any j a 0, let ~j be the terminating behavior

(is09 s19 sl, l 8 l 9 sj9 sj, Sj, . . .)). Then T is in P iff each T’ is in R Since lim Ui = a, each
(~j equals (,)j for some i. Since each ai is in P, each (ai)’ is in P, which implies
that u is also in P. Hence, P is closed, so the complete property generated by a
state machine is a safety property. However, we will show in Section 3 that the
externally visible property generated by a state machine need not be a safety property.

A state machine (2, F, N) is a familiar type of nondeterministic automaton, where
F is the set of starting states and N describes the possible state transitions. (However,
remember that L: may be an infinite set.) The set of sequences generated (or accepted)
by such an automaton is usually defined to be the set A of all sequences starting
with a state in F and progressing by making transitions allowed by N. However,
we also allow stutterin sitions, so we have defined the property generated by
the state machine to be er with all terminating sequences obtained from
finite prefixes of behaviors i by infinite stuttering.

Existence of refinement mappings 261

A specificafion S is a four-tuple (Z, F, N, L), where (Z, F, N) is a state machine
and L is a Z-property, called the supplementary property of the specification. The
property A4 generated by the state machine (2, F, N) is called the machine property
of S. The (complete) property defined by S is defined to be M n L, and the externally
visible property defined by S is defined to be r(& (M n L)), the externally visible
property induced by M n L.

State machines are easier to work with than arbitrary sets of sequences, so one
would like to specify a property purely in terms of state machines. However, the
complete property generated by a state machine is a safety property. The supplemen-
tary property of a specification is needed to introduce liveness requirements.
However, if we were to place no additional requirement on our specifications, we
could use the supplementary property to do all the specifying. To see why this leads
to trouble, let S2 be a specification consisting of any arbitrary state machine that
generates an externally visible safety property 0 together with the trivial supplemen-
tary property that contains all behaviors. Define S, to be the specification with state
space C, whose state machine is the trivial one that generates all &-behaviors and
whose supplementary property is 0. Obviously 23, implements S2. The existence of
a refinement mapping from S, to St implies that Sr’s state machine implements Sz’s
state machine. However, Sr has the trivial state machine and no internal state. As
we will see, auxiliary variables are added to a specification’s state machine without
affecting or being affected by the supplementary property. (This is what makes the
addition of auxiliary variables practical.) No sound method of adding auxiliary
variables can trar?sform the trivial machine into one that implements an arbitrary
state machine. Therefore, we need some constraint on the supplementary property.

In practice, we specify a desired property P by writing P as the intersection
M n L of a safety property M and a liveness property L. We try to construct L SO

that it does not specify any safety property, meaning that it does not rule out any
finite behavior. More precisely, we try to choose L to be a liveness property such
that any finite sequence of states generated by the state machine is the prefix of a
behavior in I? For our results, it is not necessary that L be a liveness property; we
need only require that L does not specify any safety property not implied by M=
To express this requirement formally, we say that a specification S having machine
property M and supplementary property L is machine closed iff M = M n L.

The following lemma implies that, for a machine-closed specification, we can
ignore the supplementary property and consider only the state machine when we
are interested in finite portions of behaviors.

in P.

If M = p, then every prejix of a behavior in is the preJix of a behavior

Given: Al. M = p.

262 M. Abadi, L. Lamport

A2. UE M.
A3. ma0.

Prove: Cl. There exists T E P such that ~1~ = &.
HZ 1. Choose cti E P such that lim ai = a.

pS: Al, A2, and the definition of E
2. Choose n 2 0 such that, for all i 2 n, ailnl= al,,,.

Pf: Definition of convergence.
3. Cl holds.

w: Let 7 be a,,.
roof of Lemma 1

The converse of this lemma is also true when M is generated by a state machine,
but we will not need it.

24. Rejnemenl mappings

A specification S, implements a specification Sz iff the externally visible property
induced by S, is a subset of the externally visible property induced by Sz. In other
words, S, implements Sz iff every externally visible behavior allowed by S, is also
allowed by St.

A rejnement mapping from a specification S, = (2,) F, , Ni , L,) to a specification
Sz = (X2, F,, N,, L2) is a mapping f: C, + & such that

Rl. For all s tz 2, : & (f(s)) = &(s). (f preserves the externally visible state
component.)

R2. f(F,) E F2. ($ takes initial states into initial states.)
R3. If (s, t) E N, then (f(s),f(I)) E N2 or f(s) =f(t). (A state tt..nsition allowed

by N, is mapped by f into a [possibly stuttering] transition allowed by N=.)
R4. $(P,) c L2, where P, is the property defined by S,. ($maps behaviors allowed

by S, into behaviors that satisfy St’s supplementary property.)
Conditions Rl-R3 are local, meaning that they can be checked by reasoning

about states or pairs of states rather than about behaviors. Condition R4 is not
local, but checking it is simplified by the fact that $ is not an arbitrary mapping on
sequences, but is obtained from a mapping on states. Thus, one can apply IocaP
methods like well-founded induction to prove R4.

. If there exists a rejnement mapping from S, lo *, then S, implerJtents

Exisrence of rejinemen f mappings 263

Prove: Cl. q E r(l?,(M,n L2)).

Pf: 1. f(M& M2.

Given: Al.1. u=((s,-,,s ,,...))E M,.

Prove: C1.1. f(u)~ M2.

f’f: 1.1. f(q-,)~ F2.

pf: By Al .l, A2, the definition of machine property (which permits
stuttering), A3, and property R2 in the definition of refinement
mapping.

1.2. For all ia0: (f(si),f(si+,))E IV2 orf(si)=f(si+l).
pf: By Al.l, A2, the definition of machine property, A3, and

property R3.
1.3. Cl.1 holds.

pS: By 1 .l, 1.2, tk definition of,f(CT) (it equals ((f(so), f(s,), . . .))),

A2, and the definition of ma&& property.
2. f(M,nL,)c M2nL,.

w: By 1, A3, and R4, since g(Sn T) c_ g(S)ng(T) for any sets S and T
and any mapping g.

3. Choose a = ((so, sI , . . .)}E M, n L, such that &Qo) = q.

pf: Such a CT exists by A4 and the definition of K

4. &(fW)=&(a)-
Pj’: By A3 and Rl.

5. &U(a)) = rl-
Pf: By 3 and 4.

6. &(f(o)k&(
pS: By 3 and 2.

7. Cl holds.
pS: By 5, 6, and the definition of f.

End Proof of Proposition 1

bite invisible nondeterminism

The machine property of a specification is a safety property. owever, the

property that is really be specified by the specification’s state machine is the

external1 y visible property r(& (The following example shows

sible property is not necessa
of natural numbers, and define the state mat

264 M. Abadi, L. Lamport

A stutter-free behavior of this machine starts in state (0, O), goes to state (1, n)

for some arbitrary n 3 0, then goes through the sequence of states (2, n - l),

(3,n-2),...,(n- i+ 1, i) for some i 3 0, and terminates (stutters forever) in the

state (n - i+ 1,i).
The set of externally visible behaviors induced by this state machine consists of

all sequences obtainable by stuttering from a sequence o, of the form
((0, 1,2,. . . , n, n, n, e l .)). This set is not closed, because lim o, = ((0, 1,2,3, . . .)), and

(O,I, 2,3, l l J> is not in the set. The externally visible property specified by this state
machine is the conjunction of two properties:

(1) The set of all behaviors that start in state 0 and change state only by adding
1 to the previous state.

(2) The set of terminating behaviors.
The first property is a safety property, but the second is a liveness property; their
intersection is neither a safety nor a liveness property.

The purpose of a specification is to specify an externally visible property. We
feel that the externally visible property specified by a state machine should be a
safety property, so we want to restrict the class of allowed state machines.

The reason the externally visible property defined by the state machine in our
example is not a safety property can be traced to the existence of infinitely many
state transitions ((0, 0), (1, n)) that correspond to the same externally visible transi-
tion (0,l). It is this type of infinite invisible nondeterminism that allows the introduc-
tion of liveness into the externally visible property of a state machine. To ensure
that a state machine specifies only safety properties, we must restrict it to having
finite invisible nondeterminism.

Instead of defining the concept of finite invisible nondeterminism for a state
machine, it is more general to define it for a property. A state machine is defined
to have finite invisible nondeterminism iff the property it generates does.

efinition 1. Let P be a property and 0 its induced externally visible property
r(I&(P)). We say that P is fin (for finitely invisibly nondeterministic) iff for all
qE0 and all n%O, the set

is finite. We say that a specification is fin iff the complete property of the specification
is fin.

In other words, property P is fin iff every refix qln of any externally visible

behavior Q is the projection of only finitely many inequivalent (under -) finite
xes uJ,,, of complete behaviors u in R

tronger property P is also fin. (Property P is
ur main theorem, nstead of requiring

ine-closed, since a machine-closed

Existence of rejnement mappings 265

The following proposition asserts that the externally visi le property of a fin state
machine is a safety property. It is a simple corollary of the subsequent lemma, which
will be used later as well.

a safety property P isjin, then the externally visible property r(& (P))
that it induces is also a safety property.

mma 2 (Closure and nondeterminism). Let property P be jin and let 0 be the
externally visible property that it induces. If 6 is a limit point of 0 then there is a limit
point p of P such that I&(p) = 6.

Proof of Lemma 2
Given: Al. P is fin.

A2. O=f(&(P)).
A3. S is a limit point of 0.

Prove: Cl. There exists; p such that:
Cla. p is a limit point of P
Clb. &(p)= 6.

pf: 1. Let 0, equal {h(al,): (m>O)n(c~P)n(&(~(~)-Si,).Forall~~,theset
@,, is finite. (0, is the set of stutter-free prefixes of behaviors in P that are
externally equivalent to 6 1 n .)

pf: By A3, we can choose 17 E 0 such that ~1~ = ~1,. Statement 1 then
follows from Al and Definition 1, substituting this 77 for the 77 of the
definition.

2. For all n, the set 0, is nonempty.
pS: 2.1. Choose v E 0 such that ~1~ = ~1,.

pf: A3 implies the existence of 77.
2.2. Choose UE P such that &(IT) = II.

pf: A2 and definition of r imply the existeq:lce of a.
2.3. There exists m such that & (al,,,) = VI,,.

pf: 2.2 and the definition of ==.
2.4. ‘q(ol,) E O,,, so 0, is nonempty.

pf: u E P (by 2.2), and &(~j,,+ 61, (by 2.3 and 2.1), so 2.4
follows from 1 (the definitiosl of O,,).

3. For finite sequences u and 7, let u -. x r iff there is a (pclssibly empty) sequence
x such that r = u l x. For all n and all 8 E O,,, , there exists 0’~
that 8’ < 8.
pf: By 1 (the definition of .), since if rl,,, = & . , then there exists m’s fn

such that rl,*= al,,.
here is an infinite sequence p1 < p2 =S p3 =S l l l with each pi E

pf: By 1,2, 3 and Kiinig’s Lemma [S, pp. 381-3831.

266 hf. Abadi, L. Lamport

5. For all i, choose pi such that:
Sa. Pi =pi*
5b. 1Ip:ll a i.

5c. p:<p;=sp;=G l l .

w . .

6. Let

Pf:

7. Let

PI-
. .

The existence of the pi is proved by induction using 4, where the length
of p: is increased by stuttering the last element when necessary.

ii be an element of P such that pi is a prefix of A.
Since pi E @i (by 4), the definition of @i (1) implies that there exists a
stutter-free sequence #i E P such that pi is a prefix of #ia By 5a and the
assumption that P (like all properties) is invariant under stuttering, $i
can be obtained by adding stuttering to #i.
p equal lim $i*
p exists by 6 (pi a refix of bi), 5b and 5~.

8. Cla holds.
P$ Follows immediately from 7,6 (Gi E P), and the definition of limit point.

9. For every i there exists an m 2 i such that I?E (bil,) =r 81,.
w: Sa, Sb, 6,4 (pi E @i), and 1 (the definition of @i).

10. Lim I?E(si)= 8.
pf: Follows immediately from 9. .

11. Clb holds.
P$ By 6 ($i E P), 7, and 10, since lim 5, = 6 implies lim IIE (C) = I& (6).

For a state machine to be fin, it may not make an infinite nondeterministic choice
unless all but a finite part of that choice is immediately revealed in the externally
visible state. e can weaken our definition by requiring only that the choice
eventually be revealed. Formally, this means defining a property P with induced
externally visible property 0 to be fin iff for every ~7 in 0 and n 2 0 there exists an
n’a n such that the set

MC&H): (m >O) A b= m A u&k&l) = VI”) A 3m’: <&-c&d = ql”+l
this weaker definition of finite invisible nondeterminism
more powerful prophecy variables and would complicate

out proofs, so we will stick with our original definition.

finite-state case that
rnally visible safety
state machines with

Existence of rejnement mappings 267

Proposition 2 implies that the externally visible property
machine is a safety property. We now prove the converse.

generated by a fin state

ropositioa 3. Every externally visible safety
machine with jinite invisible nondeterminism.

property can be generated bY Q state

f of Proposition 3
loen: Al. 0 is a &-property.

A2 0=0.
Prove: C 1. There exists a state machine (2, F, N) generating a (complete) property

A4 such that
Cla. M is fin
Clb. Ocf(&(M)).
Clc. f(&(M))c- 0.

pf: 1. efine the state machine (2, F, IV) as follows:

2 = W@l”), @I,>: n 2 1 A 0 e 0). (2 consists of ail pairs (ei, ((eO, e, ,

. . . , ei))) such that ((e,, , e, , . . . , 2J) is a pr,fix of a sequence in 0.1
F = ((e, ((e))) E C}, (The starting states are ones whose internal components
have length one.)
JV = {((e, h), (e’, h l ((e’)))) E S x E} (The machine can go from state

fG9teO,- l . 9 ei})) only t0 state (e;,, , ((eO,. . . , Si, e,,,)}) for some ei+l.)
2. A stutter-free sequence (((eO, h,$, (e, , h,), . .)) is in M iff, for all i 2 0,

hi s ((20, e,, . . . , ei)) and there exists qt E 0 such that hi = qi(i+ 1.
pf: Fo?lows easily by induction from the definition of the state machine

(2, F, IV) and of the property that it generates.
3. Cla holds.

w: By Definition 1, we must show that for any q E 0 and all n 3 0 the set

is finite. However, it follows from 2 that if 7 = ((eO, e, , . . .)) then this set
contains only the single eiement

WorWJ~), (el,te,, eJ9,. . . , h-dko,. . . , e,_dDb
4. Clb holds.

pf: For any q=((eO,e,,...)) in 0, statement 2 implies that a =

. . , k, qJi+l), . - .)) is in and obviously & (a) = TJ.

S.

Given: A5.1. (((eO, h,),(e,, h,), . . .))E

allows immediately from 5.1.

268 M. Abadi, L. Lampori

5.3. CS.1 holds.
Pf: By 5.1 (which asserts that qj E 0),

6. Clc holds.

5.2, A2, and the definition of 0.

w: By 5 and the assumption that 0 is a property (Al), SO f(0) = 0.

nd Proof of Proposition 3

If specification St is not internally continuous, it is possible for it to be implemented
by a specification $5, without there being a refinement mapping from St to S2.
(Internal continuity was mentioned in the introduction and will be defined formally
in Section 6.) However, since safety properties are internally continuous, we would
expect to be able to prove that, whenever S, implements S*, the externally visible
machine property of S, implements the externally visible machine property of S2.
Combined with our main theorem, the following result shows that this is always
possible if S, is machine closed and the machine property of Sz is fin.

Theorem 1 (Separate safety proofs). Let PI = M, n L, and Pz = M2 n L2, where the
Li are arbitrary properties and the Mi are safety properties; and let Oi and Oy be the
externally visible properties induced by P, and M,, respectively. lf M, = p, , M2 is fin,
and 0, E 02, then Or4 E 0,“.

Proof of Theorem I
Given: Al. For i = 1,2:

Ala. P, = M, n L,.
Al b. M, closed.
Ale. 0, = f(n,(P,)).
Ald. 0;’ = NMW).

A4 O,cO,.
prove: Cl. OYE 0;‘.
pf: 1. For any set Q of behaviors f (0) c f (0).

Given: Al.1. UE f (6).
eve: c1.1. aE f(Q).

9f: 1.1. There exists cr’~ 0 such that G’ = G.
pf: Al -1 and the definition of f.

1.2. There exists a function I- such that, for all i > 0, oli = 0’1,(,).
pS: 1.1 and the definition of ==.

t =3 rzen. ,!I - 2 __*_ z -2: cps: r’ ‘3 9 !hcre exim 7; F Q such that $[,;,; = &,;.
pS: Definition of 0 and 1.1.

1.4. Ul, = 7j,(,).

-)) and define T, to be equal to

Exisrence qf rqfinement mappings 269

1.6. Ti E r(Q).

w : Ti == T: (by 1 S), 7: E Q (by 1.3), and the definition of K
1.7. lim ri = a.

pS: By 1.5 and the definition of convergence.
1.8. Cl.1 holds.

pf: 1.6, 1.7, and the definition of closure.
2. For any set Q of behaviors &(0) C_ rJ,(o)*

Given: A2.1. 7 E l&(Q).
Prove: C2.1. q Em.
Pf: 2.1. There exists a E Q such that q = I&(u=).

Pf: A2.1.
2.2.

2.3.

2.4.

2.5.

For all i 2 0 choose Ti in Q such that ri1, = ~1,.
pS: 2.1 and the definition of Q.
For all ia0, ITE(r = ~1,.
pf: 2.1 and 2.2, since nE(eli)=(flE(+))(, for any sequence $.

nE(q)EnE(Q)*
Pf: By 2.2 (ri E Q).

C2.1 holds.
pS: By 2.3, which implies lim & (7,) = 7, and 2.4.

3.

4.

5.

6.

7.

oyso,.
ps: 3.1. oy = WMP,)).

pf: A2 and Ald.
3.2. c= I-(&(I’,)).

Pf: Ale.
3.3. &(F)c- K&P,).

pf: 2.
3.4. QY 5 I+(&(P,))

pf: 3.1, 3.3, and monotonicity of 1:
3.5. N&f,) s r(n, (PI)).

ps: 1.
3.6. 3 holds.

pf: 3.4, 3.5, and 3.2.
z&E&
pf: A4 and monotonicity of the closure operation.
O-, !z QY.
pf: Ala, Ale, Ald, and the monotonicity of IIE and 4:
ZXG QM.
pf: 5 and monotonicity of closure.
OM=Z.
pf: Alb, Ald,

8. Cl holds.
w: 3, 4, 4, and 7.

270 M. Abadi, L. Lamport

5, Auxiliary variables

Although in practice refinement mappings usually exist, they do not always exist.
To construct a refinement mapping, it may be necessary to add auxiliary variables.
We now formally define two types of auxiliary variables: the well-known history
variable and the new prophecy variable. These auxiliary variables are added to a
specification’s state machine; the supplementary property is essentially left
unchanged.

5.1. History variables

Adding a history variable means augmenting the state space with an additional
component &, and modifying the state machine in such a way that this additional
component records past information but does not affect the behavior of the original
state components. Formally, a specification Sh = (Z”, F”, Nh, I!‘) is said to be
obtained from the specification S = (2, F, IV, L) by adding a history variable iff the
following five conditions are satisfied. In these conditions, we identify (CE x &) x &
with SE x (& x &.,) (so H 1 implies that Ch is 2 state space), and we let I7t,.,l be
the obvious projection mapping from C x & onto C. (In the intuitive explanation,
we say that a Z”-behavior o simulates the Z-behavior Z&(o).)

Hl. ~“r~x&., for some set &.
H2. I7[H](Fh) = F. (A state in Z is an initial state of S iff it is the first component

of an initial state of Sh.)
HS. If ((s, h), (s’, h’)) E IV” then (s, s’) E N or s = s’. (Every step of Sh’s state

machine simulates a [possibly stuttering] step of S’s state machine.)
H4. If(s,s’)~Nand(~,h)~~“thenthereexistsh’~~~suchthat((s,h),(s’,h’))~

IV”. (From any state, Sh’s state machine can simulate any possible step of
S’s state machine.)

H5. L” = I7$ I(k). (A X”-behavior is in L” iff the Z-behavior that it simulates
is in L.)

The following result shows that adding a history variable leaves an implementation
essentially unchanged.

(Soundness of history variables). IJE Sh is obtained from S by adding
a history variable, then the two specijcations define the same externally visible property.

L), Sh = (Z”, Fk, IV”, L”), and Hl-H5 hold.
chine properties of S and Sh, respectively.

Existence of wjittetttertt tttappitgd 271

Pf: 1. n,,,(M”)c_ M.

pf: FOIDOWS from A2, Al (conditions H2 and H3), and the definition of the

machine property of a specification.
2. n,,,(Ph)E p.

pf: From A3, 1, and H5, since g(S n T) e_ g(S) n g(T) for any function g
and sets S and T.

3. Cl holds.
pf: From 2, A4, and the fact that &(I?~,&)) = I&(s) for any s E 2”.

4. PC, &](P”).

Given: A4.1. o =((sO, s,, . . .)) in I?
Prove: C4.1. There exists r E P” such that I7[&r) = a.
pS: 4.1. SUE F and, for all ia0, (si, s,+,)E N.

w: A3 and the definition of machine property.
4.2. For all i 2 0 choose hi inductively such that (so, h,) E F” and ((s,, h,),

tsi+l, h,+,))E N”*

pf: The existence of ho follows from 4.1 (so E F) and H2; for i Z= 0,
the existence of hi+ 1 follows from 4.1 ((s,, s,+ ,) E N) and H4.

4.3. Let r=(((so, ho), (s&),.. .)). Then VE M”.

PJ: 4.2, A2, and the definition of machine property.
4.4. &I(7) = (P,

pf: By definition of 7 (4.3).
4.5. 7 E L”.

Pf: 4.4, HS, and A4.1.
4.6. C4.1 holds.

pf: 4.5, 4.3, and A3, which imply that 7~ Pl’, and 4.4.
5. C2 holds.

pf: From 4, A4, the monotonicity of r and IT,, and the fact that
&(I~~,+s))=&(s) for any s&X”.

End Proof of Proposition 4

5.2. Simple prophecy variables

A prophecy variable is the dual of a history variable; its definition is almost that
of a history variable with time running backwards. Intuitively, whereas a history
variable records past behavior, a prophecy variable guesses future behavior. Using
notation similar to that used in defining history variables, we define a specification
Sp = (2 p, F “, N p, L “) to be obtained from N, L j by adding a propheq

variable iff the following conditions are satisfied. (Conditions P2’ and P4’ will bc
replaced in Section 5.3.)

Pl.
P2’.

P3.

C ’ C_ 2 X & for some set &.
F” = l7&(F). (Thi s is the expecte
of the two specifications.)

etween the initia

272

P4’.

PS.

PG.

M. Abadi, L. Lamport

If (s, s’) E N and (s’, p’) t C P then there exists p E & such that
((s, p), (s’, p’)) E .?V C (From every state in C 1 the state machine of Sp can
take a backwards step that simulates any possible backwards step of
machine. This is the time-reversed version of condition H4.)
LP = II&(L). (The supplementary property of Sp is the set of behaviors that
simulate behaviors in the supplementary property of S.)
For all s E E3 the set n&(s) is finite and nonempty. (To every state of S
there corresponds some nonzero finite number of states of Sp.)

Condition P6 is the only one not corresponding to any condition for history
variables. It is needed because time reversal is asymmetric: all behaviors have initial
states but only terminating behaviors have finai states. The second example below
indicates why it is needed.

We now give two examples to illustrate the definition of prophecy variables. We
mention only the state machines; the supplementary property can be taken to be
the trivial one containing all behaviors.

For our first example, we take a state machine that nondeterministically generates
an integer between 0 and 9. To do this, the machine counts up by one until it either
decides to stop or else reaches 9, at which point it stutters forever. The set & of
externally visible states is the set N of natural numbers, and the internal state
component is a Boolean that becomes true when the final value is reached. (The
Boolean values are written t and f.)

C = N x (t, f}.

I= = w, f)L
N is the union of the following two sets:
- (((i- 1, f), (i, f)): o< ic lo},
- {((i, f), (i, t)): i E N}.

The set of stutter-free behaviors generated by this state machine consists of all
sequences of the forms

((0, f), (190, 9 l l 9 h 0, h th b-4 t), (n, t), l l J)

and

HO, f), (1, f), l l l 9 b.4 0, (n, 0, h 0, l l 0))

with 0~ n < 10.

We now add a prophecy variable whose value is a natural number. This variable
“predicts” the maximum number of nonstuttering steps that the state machine will
take. The precise definition of the new state machine is:

2’ is the union of the following two sets:
j): Osi, Osj, and i+j<13},

e following two sets:

Existence of rejne.men t mappings 273

The reader can check that the conditions PI?4 and P6 given above are satisfied.
(Condition P5 is satisfied if L and Lp are the trivial properties that contain all
behaviors.) Observe that although condition P4’ is satisfi”:d, condition H4 is not.
The state machine can take a backwards step from the state (6, f, 0) but noi a forward
step.

The only stutter-free behaviors of (L: p, Fp, N p, starting from the state (0, f, n)
are of the forms

w, f, 4, (19 f, n - 0, l l ’ 9 (n, f, O), b-4 , O), (n, t, 01, . . .))

and

(((0, f, n), (1, f, n - l), . . . , (i, f, n - i), (5 f, n - i), . . .))

with 0~ i s n. The set of externally visible behaviors generated by the two state
machines is the same; the stutter-free behaviors have the form ((0, 1, . . . , n, n, n, . . .})
for some n less than 10. State machine (2, F, N) decides nondeterministically when
it is going to stop counting, while in state machine (C p, Fp, N “) this choice is made
by the initial value of the prophecy variable.

As our second example, replace “10” by “00” in the definitions of the two state
machines. Conditions Pl-P4’ still hold, but P6 does not; for each state (i, f) of C
there are an infinite number of states (i, f, j) in C p. The externally visible stutter-free
behaviors of (2 p, Fp, N “) consist of sequences of the form ((0, 1, . . . , n, n, n, . . .))
for any natural number n. The state machine (2, F, N) generates all these behaviors
plus the additional behavior ((0, 1,2,3,. . .)) that never terminates. Because the
finiteness condition P6 is not satisfied, adding the auxiliary variable changed the
specification by ruling out this nonterminating behavior, effectively adding a liveness
condition.

We can use our last example to indicate why we need the hypothesis of finite
invisible nondeterminism for our completeness theorem. Let Sz be the specification
consisting of the state machine (2 p, F p, N “) we just constructed (the one with “10”
replaced by “m”) and the trivial supplementary property containing all C ‘-
behaviors. Let S, be the specification with state machine (Z, F, N) and supplemen-
tary property L consisting of all terminating behaviors. Both specifications define
the same set of externally visible behaviors- all behaviors obtainable by stuttering
from ones of the form ((0,1, . . . , n, n, n)). To construct a refinement mapping, we
would have to add to S, a prophecy variable that “guesses” the value of the ‘last
component of a state of C p. However, no such prophecy variable can be constructed
that satisfies P6, since for any starting state of S, there are an infinite number of
corresponding starting states of

The complete property P, defined by this specification
and we will see that this implies that S2 is internally
specification I is machine closed. Nevertheless, adding

274 M. Abadi, L. Lamport

will not allow US to construct a refinement mapping to prove that it implements Sz.
Our completeness theorem does not apply because P2 is not fin.

In this example, the prophecy variable we wanted :o add would not satisfy P6.

However, the supplementary property happened to ensure that adding the prophecy
variable did not change the externally visible behavior. If we were to replace P6 by
the weaker requirement that S” have the same externally visible property as S, then
we could find a refinement mapping. However, this requirement is precisely what
we had to prove in the first place, qamely, that S, implements Sz.

5.3. Prophecy variables that add stuttering
We now generalize our definition of a prophecy variable to allow it to introduce

stuttering. Condition P2’ asserts that a state (s, p) E C p is an initial state of Sp’s state
machine iff s is an initial state of S’s state machine. We relax this condition by
requiring only that such a state (s, p) be reachable from an initial state by steps that
simulate stuttering steps. Formally, we replace P2’ by:

P2. (a) &,(FP)~ F.
(b) For all (s, p) E n&F) there exist po, pl, . . . , pn = p such that (s, pO) E FP

and, for 0s i < n, ((s, pi), (s, pi+,)) E Np.
Similarly, we relax condition P4’ by allowing Sp’s state machine to simulate the

step in S’s state machine from state s to state s’ by a sequence of n + 1 steps, the

last n of which simulate stuttering steps. The precise condition that replaces P4’ is:
P4. If (s, s’) E N and (s’, p’) E 2 p then there exist p, p& . . . , pL_, , p: =p’ such

that ((s, p), (s’, ph)>~ NP and, for 0~ i < n, ((s’, pi), (s’, pi+& Np.
As with history variables, the addition of prophecy variables leaves an implementa-

tion essentially unchanged.

Proposition 5 (Soundness of prophecy variables). 1” Sp is obtained from S by adding
a prophecy variable, then the two specijcations deJine the same externally visible
property.

roof of Proposition 5
Given: Al. S=(Z, F, N, L), Sp=(Y, Fp, NP, Lp), and Pl-P6 hold.

Prove:

ps: 1.

2.

A2. M and W are the machine properties of S and Sp, respectively.
A3. P=MnLand PP=M%Lp.
A4. 0 = r(&(P) and Op = r(&(Pp)).
Cl. op c 0.

c2. oc 0”.
Cl holds.
pf: The proof is identical to the proof of the corresponding condition for

history variables in Proposition 4.
P c U[P](PP).
Given: A2.1. o.=((Q, s,, . . .})E l?

Prove: C2.1. There exists 7 E Pp such that n[& 7) = U.

Existence of reJinement mappings 275

pf: 2.1. Let 99 be the directed graph with
nodes: the set Zp x
edges: there is an edge between ((A~, p), i) and ((s,, p’),j) iff j = i+ f

and either (si, p) = (si+, , p’) or there exist po, p, , . . . , p,l = p’ Isrir &
such that ((Si,p), (si+l,po))~N~ and, for all O~k<n, ((si+l,p,c),

(%+I 9 P/c+*)) E NP*
Let 9 be the subgraph of 99 reachable from nodes of the form

((so, PA 0).
Then %’ is acyclic, with finite branching and a fkite set of sources.

w: It is obviously acyclic, since there is an edge from ((s, p), i) 1.o
((s’, p’), i’) only if i’ = i + 1. Its sources are all the nodes of the
form ((so, p), 0). For each j, P6 implies that there is only a finite
set of p such that (Sj, p) E Zp, SO 3’ has a finite set of sources and
is finitely branching.

2.2. For all n 2 0 and all (s,, pn) E Cp there exist elements po, . . . , pn-, in
& such that ((((so, po), 0), . . . , ((s,, pn), n))) is a path in W.
pf: The proof is by induction on n. The case n = 0 is trivial. For n > 0,

condition P4 implies the existence of the required P~_~, and the
induction hypothesis provides PO, . e . , P,,_~.

2.3. Choose elements pi E & such that ((((so, po), 0), ((sl, p,), l), . . .)) is an
infinite path in VI’.
pf: The existence of this path follows from 2.1, 2.2, and K&rig’s

Lemma.
2.4. Let p = (((so9 po), . . . , (sj, p,), . . .)) Choose a sequence p’ =

(((s;, p;), . . . , (A:, pi), . . .)) such that:
2.4a. &(p’) = CT.

2.4b. For all i>O: ((s:,p:), ;s~+~,~~+,))EN~ or (&pi)=

(d+, Y P:,,).
2.4~ (s;, ~3 = (so, po).

w: Let p’ be the supersequence of p obtained by inserting between

Csi, Pi) and (si+19pi+l) the sequence tCsi+l Y Pk)9

(si+13P1 9 7 l **9(si+l,pk-I))} of elements in Cp whose existence is
guaranteed by 2.3 and the definition of edges in %’ (2.1). (Recall
that (T = ((so, sl, . . .)).)

2.5 Choose r = (((to, qo), (b, p ql), . . .)) such that:
2Sa. nrpl(7) = U.
2Sb. For all GO: ((z~, qi), (fi+l, qi+l))E NP or (ti, q,)=(ti+l, qiel)*
2.5~. (to, qo) E F p.

9f: By A2.1, we have so E F. By P2, there exists a finite sequence

((so, PO”), l l l 9 (so, pi)! of elements in C p such that (so:, ~$1 E FP,

each ((so,p:l), (so,pY+,)k Np9 and pE=pom Let T=

U%9 PO”), l ’ l 9 (so9 PLU l P’.

276 M. Abadi, L. Larrport

2.6. 7~ MP.

Pf: By A2, 2.5b, and 2.5~.
2.7. T E Pp.

Pf: By A3, 2.6, and PS.
2.8. C2.1 holds.

pf: 2.7, 2Sa.
3. C2 holds.

pf: From 2, Al-A4, and the fact that &(&(t)) = I;r, (f) for any t E 2 9
End Proof of Proposition 5

6. Internal continuity

We now define internal continuity, which appears in the third hypothesis of our
main theorem. But first, we give an example that indicates why the hypothesis is
needed for our completeness theorem.

Let & = N, let qi be the terminating sequence ((0,l i i i)} and let q be v-*.9 9 3 ?--* 9

the nonterminating sequence ((0,1,2, . . .)) Let ((e,, e, , . l .)) x x denote the sequence

(He,, x), (e, 9 x), . . .)). We construct a specification Sz that defines the property whose
stutter-free sequences consist of all sequences qi x t together with the sequence VJ x f.
Formally, Sz = (&, F2, Nz, L2), where

& = N x (t, f}. (The internal component is a Boolean.)
F, = ((0, t), (0, f)}. (Behaviors start with their visible components equal to 0.)
IV2 = {((i, b), (i + 1,b))). (The external component is incremented by 1 and the
internal component remains constant.)
E2 consists of all behaviors except ones of the form G x f with c terminating, and
u x t with u nonterminating.

The externally visible property O2 defined by S2 consists of the behaviors vi, the
behavior v, and all behaviors obtained from them by stuttering. Specification Sz is
fin and machine-closed.

The externally visible property O2 is also defined by the simpler specification

SI = (& 9 FI 9 N1 9 k), where
& =‘ & = N. (There is no internal component.)
F, = (0). (All behaviors start at 0.)
N, = {(i, i + I)}. (The state is incremented by 1.)
L, = 2: (the trivial property that allows all behaviors).

Obviously, S, implements Sz. Let Sr = (Zjp, Ff, Nf, Lf) be any specification
obtained from S, by adding a prophecy variable. We now show that there does not
exist a refinement mapping from St to S,; in fact there does not exist any mapping
from 2: to & that proves that SF implements S*.

Let PP be the property defined by S:. We show by contradiction that there does
not exist any mapping f: C f +& such that (i) &(f(i,p))=i and (ii)f(P,P)c P2.

For each i let rl: E Pf be a behavior with &](7:) = vi. Moreover, P5 implies that
we can choose 77: to have no repeated nonfinal states, meaning that for j < i and

Existence of rejnement mappings 277

k > 1, there is no segment (((j, pl), (j, pd, . . . , (j, pk))) of 7: with p1 = pk. By (i), we
then have that for every i arid m with i c m there is an I such that &(&I,) = qjli+, .
Moreover, P6 and the absence of repeated nonfinal states imply that for each i there
is an integer n(i) > i such that I< rr(i) for all such m. We can choose T so that
7r(i+l)a m(i) for all i.

For any n, the set { $ Irr(n)} is finite (by P6). Therefore, we can inductively construct
the sequence 0” of length m(n) such that 8,, is a prefix of infinitely many of the 775
and is also a prefix of 6,,+, . Let 7’ = lim On ; then &($) = q. Since each 6, is a
prefix of some 75, clearly 7’ is in the machine property of S!. Property P5 then
implies that 7% P f . By definition of 71, assumption (ii) implies that flv:) = vi x t,
which implies that f(7’) = 7 x t. We then have $E Pp and f(?I’) ti P2, which contra-
dicts assumption (ii).

This proof can be extended to the case where S, is replaced by any specification
St obtained from it by adding a history variable. We just replace q with any behavior
allowed by SF that simulates it, and replace vi with an initial prefix of this new 7.
Thus, first adding a history variable still doe5 not allow one to construct the

refinement mapping.
The problem with specification Sz is that v x t is not in P2 even though I& (q x t)

is in O2 and any finite portion of v x t is the same as the corresponding portion of

some behavior vi x t in P2. The sequence v x t is not in P2 even though we cannot
tell that it is not by looking either at its externally visible component or at any finite
part of the complete behavior. To rule out this possibility, we must add to our
completeness theorem the hypothesis that P, is internally continuous.

Definition 2. A Z-property P with induced externally visible property 0 is internally
continuous iff, for any C-behavior a, if I&(C) E 0 and (+ E F, then (T E P. A
specification is internally continuous iff the (complete) property it defines is inter-
nally continuous.

Suppose P = M n L and M = f! Ther, lim aj = CT for gi E P iff CT E M. It follows
from this that, for a machine-closed specification, internal continuity is equivalent
to the condition that a complete behavior is allowed iff it is generated by the state
machine and its externally visible component is allowed. In particular, safety
properties are internally continuous.

Since the machine property M is closed, if lim cj = CT for oi E M n L, then CT E L
iff CF E M n L. This implies that if L is internally continuous, then M n L k internally
continuous. Hence, for any specification, if the supplementary property is internally
continuous, then the specification is internally continuous. The converse is not true,
since if M is the empty property, then M A L is internally continuoas for any L.

Any specification can be m. 49 internally continuous by adding to L all sequences
u in M such that I& (a) E 0. Expanding 6, in this way obviously adds no new

externally visible behaviors, so the resulting specification is equivalent to the original

278 M. Abadi, L. Lamport

one. The expansion could introduce infinite internal nondeterminism, but not if M
is fin.

7. The completeness theorem

We can now prove our main result.

Theorem 2 (Completeness). If the machine-closed specification S, implements the
in ternally continuous& specification Sa, then there is a specijkation S” obtained from
$5, by adding a history variable and a specification S:” obtained from SF by adding a
prophecy variable such that there exists a rejnement mapping from SiQ to Sr.

roof of Theorem 2
Given: AI.

A2.
83.
A4
A5.

Prove: Cl.

For i = 1, 2: Si= (i&, Fi, Ni, Li), Mi is the machine property of Si,
Pi = Mi CT Li, and Oi = r(II,(Pi)).
O&02.
S1 is machine closed.
St is fin.
S2 is internally continuous.
There exist specifications SF and StQ such that:

Cla. S: is obtained from Sr by adding a history variable.
Clb. SF” is obtained from SF by adding a prophecy variable.
C lc. There exists a refinement mapping f from SiQ to Sz.

Pj’: 1. Let SF equal (Z:‘, F:‘, N:?, L:), where
2:’ = {(last(al,), ~1~): n > 0 and UE P,}. (The history component h of any
state (s, h) is a finite prefix of a behavior in P, that ends in state s.)
F:‘={(s,h)&: IlhlJ=l}.
NF={((s, h),(s’, h’))EZFxZ:‘: h’=h-((s’))}.(AstepofSt’sstatemachine
simulates a step of Sr’s state machine and adds the new state to the history
component.)
L:’ = L7&(L,). (As required by I-IS.)

Then Cla holds.
pf: 1.1. Hl, H3, and H5 hold.

pf: Follows immediately from the definition of St. .

1.2. &,,(F:‘) E F,.
pf: Immediate from the definition of F:.

1.3. F, c_ I7[H](F:)
pf: For any s E F, , the sequence ((s, s, s, . . .}) E M, . Therefore, A3

and Lemma 1 imply that ((s)) is a prefix of a behavior in PI,

so b, W E #’ and s = &+]((s, WN.

1.4. II2 holds.
pf: 1.2 and 1.3.

Existence of rejinement mappings 279

1.5. H4 holds.
pf: For any (S&EN, and (s,~)EE~, let h’=h+‘)). Then A3

and Lemma 1 imply that h’ is the prefix of a behavior in P,,
so (s’, h’)KX: by definition of Zf, and ((s, h), (s’, h’))~ Nf
by definition of N:.

!. Let Sip equal (J$‘, Fy, NY, L:‘p), where
2:‘” equals the set of triples (s, h, @I,,,)) with (s, h) E Zf, a~ P2, m > 0,
and l7&,,) = l7& j, where we write (s, h, p) instead of ((s, h), p). (The
prophecy component p of (s, h, p) is an initial stutter-free prefix of a
behavior in P2 such th&t p and h are externally equivalent.)
F:” = {(s, h, p) E 2% (s, h) E F: and 11 p II= 1). (Note that this implies
SE FI and p={(t)) with ?E F2.)
NY is the set of pairs ((s, h, p), (s’, h’, p’)) in Z:I” x 2:‘” such that either
(a) p’=p- ((last(p’))) and either ((s, h), (s’, h’))E NF or (s, h) = (s’, h’), or
(b) p’=p and ((s, h),(s), h’))E Nf.
(A step of SFp’s state machine either increases the length of the prophecy
component by one and simulates a [possibly stuttering] step of 55:‘s state
machine, or else leaves the prophecy component unchanged and simu-
lates a nonstuttering step of SF’s state machine.)

Lf = l7&(L,). (As required by PS.)
Then Clb holds.
pf: 2.1.

2.2.

2.3.

2.4.

2.5.

Pl, P3, and P5 hold.
Bf: Immediate from the definition of §ip.
&,(F:P) c F:‘.
pf: Immediate from the definitions of Fy and F: .
For all (s, h, p) E II&(FF) there exist po, pl, . . . , p,, = p such that
(.F, h, po) E F:” and, for 0 s i < n, ((s, h, pi), (s, h, pi+l))E NY.
Pf: 2.3.1. Let (s, h, p) E I$,(F:), and let p = ((to, t, , . . . , t,)). Then

h = 0) and 17,(p) = &(((s))).
pf: By definitions of F: and Zy.

2.3.2. Let pi =((to, l . . , ti)). Then nE(pi) 2: IIE(h).
Pf: By 2.3.1.

2.3.3. (s, h,po)E F:P and ((s, h,pi), (s, h,pi+l))E N:P for 0s i<

k: By 2.3.2 and the definitions of FfP and N:‘P.
P2 holds.
Pf: By 2.2 and 2.3.
P4 holds.
Given: A2.5.1. ((s, h), (s’, h’))E Nf and (s’, h’,p’) E z:“-

Prove: C2.5.1. There exist p, pb, . . . , p;-, . p; = p’ in &J such that

((s, h,p), (s', h’,ph))E NY and, for 0~ i<n,

((s’, h’, p:), W, h’, p:+,)k N?‘.

280

2.6.

M. Abadi, L. Lamport

pf: 2.5.1. p’=@al,,,) for some UE P2, and l&(p’)-&(h’).
Pf: By A2.5.1 and the definition of 2:“.

2.5.2. h’ = h l ((s’)),
pf: By A2.5.1 (((s, h), (s’, h’)) E IV:‘) and the definition

of Iv:‘.
2.5.3. Let p be the longest prefix of p' such that I& (p) = l&(h).

pf: The existence of p follows from 2.5.1 and 2.5.2.
2.5.4. p’=p- ({to,. . . , tJ) where IT&)=&(d) for OS% n.

Pf: By 2.5.3, 2.5.1, and 2.5.2.
2.5.5. Let pi =p l ((to,. . . , ti)). Then (s', h’, p:) E ZF for 0~ is

>: By 2.5.4 and 2.5.1, we have II&p:) = l&(h’). The
result then follows from the definition of Zy, since
A2.5. I implies (s’, h’) E 2:.

2.5.6. C2.5.1 holds.
pf: Follows easily from 2.5.5,2.5.1, and the definition of IV?.

P6 holds.
Given: A2.6.1. (s, h)df.
Prove: C2.6.1. {p: (s, h, p) E Zy, is finite.

C2.6.2. There exists p E & such that (s, h, p) E C y.
pf: 2.6.1.

2.6.2.

Choose + E P, such that h = I&, and let q = &(+).
pf: + exists by A2.6.1 and the definition of 2:.
C2.6.1 holds.
w: By definition of C :” and 7 (in 2.6.1), A4, and

Definition 1.
2.6.3.

2.6.4.

Choose a E P2 such that I& (a) = 7.
Pf: Such a u exists since q E 0, (by 2.6.1) and 0, c O2
(by A2).
C2.6.2 holds.
pf: By 2.6.3 and the definition of q (in 2.6.1), we ca

choose m such that IT&&) = n,(h). Let p =
b(al,). The definition of Zy implies that (s, h, p) E
izhp 1 l

3. Define f: 2:" + & by f((s, h, p)) = lust{p). Then f is a refinement mapping.
Pj: 3.1. f satisfies Rl.

pf: By definition of .Zy, if (s, h,p)dy then (s, h)d:’ and
&(p)=&(h). But (s, h)d: implies s=lust(h) (by
definition of Z:‘), so &(p)=&(h) implies &(s)=

&(lWp)).
3.2. f satisfies R2.

w: By definition of FhP 1 , its elements are of the form (s, ((s)), ((I)))
where t E F,, so f ((s, !(s)), ((t)))) = t E Fz.

3.3. .f satisfies R3.
Giveri: A3.3.J. ((s, h,p), (s', h’,p’))E NY.

Existence of rejkemen t mappings 281

3.4.Z. For all n > 0, f(r)ln =pn.

w . .

3.4.4. FOI

pf:

BY A3.491, ((Si, hi, pi), (Si+l, hi+, 3 pi+l))E N:P or

tsi, %9 Pi) = (Si+l, hi+l,pi+,) for all ia0. By
definition of NF, this implies pi+1 = pi or pi+1 =
pi l ((ht(pi))) for all i. A simple induction proof then
shows that p,, -((last(p,,), . . . , last(p,))).
all n 5 0 there exists $ln E P, such that &In =f(&.
By definition of C :“, there exists a sequence & such
that p,, l tp,, E P2. Let +,, = f(r)l,, l t),,. By 3.4.3, +,, =
pn l fpn, so +bn is in P2.

Prove: C3.3.1. (last(p), last(p’))c lVz or Icst(j-) = last(p’).
pf: By definition of N, , A3.3.1 implies p’ = ((tr,, . . . , a,,)) for some

infinite sequence ((to, tl , . . .)) E P2, and either p = p’, in which
case C3.3.1 is immediate, or p = ((to,. . . , tn-J). In the latter
case, we must prove (tn_1, t,,) E A$. However, this follows
immediately from the fact that ((to, t, , . . .)) E Pz E M2 and the
definition of the machine property of a specification.

3.4. f satisfies R4.
Given: A3.4.1. 7=(((s0, hO,pO), (sl, h,,p,), . . .))E P:“.
Prove: C3.4.1. f(r) =((last(p,), last(p,), . . .}}c L2.
pf: 3.4.1. Let o = ((so, sl, . . .)). Then IT,&) = I& (a).

pf: Follows immediately from Rl (by 3.1).
3.4.2. &(a) E 0,.

pf: Cla (proved in l), Clb (proved in 2), and Proposi-
tions 4 and 5 imply that I& (7) E 01, so 3.4.2 follows
from 3.4.1.

3.4.5. C3.4.1 holds.
PJ: 3.4.4 implies that lim +,, =f(T) and & E P2. By 3.4.1,

3.4.2, Rl (proved in 3.1), and A2, we have
ITE (f(7)) E Oz. Since S2 is internally continuous (by
AS) and the +,, are in P2 (by 3.4.4), Definition 2
implies that f! r) E P2. This proves C3.4.1, since P2 E
L2 (by Al).

End Proof of Theorem 2

The converse of this completeness theorem is not true. For instance, no matter
how pathological a specification is, we can use the identity refinement mapping to
prove that it implements itself.

The hypotheses of the internal continuity and finite invisible n0ndeterminis.m 9
2 can be removed from our completeness theorem by generalizing the definition

of a prophecy variable- namely, by replacing condition P6 with the explicit require-
ment that the external1 visible behaviors of p be the same as those of
is proved by defining : as in the proof of Theorem 2, and defining

Zy is the set of 4-tuples (s, h, n, T) with (s, h)E IIf, TE P2, and

282 M. Abadi, L. Lamport

Fy is the set of all states of the form (s, h, 1,~) -
IV:” is the set of pairs ((s, h, n, T), (s’, h’, n + 1, 7)) with either ((s, h), (s’, h’))E IV:

or (s, h) = (s’, h’).

The refinement mapping is defined by letting f((s, h, n, 7)) be the nth element of

Mowever, the condition that replaces P6 asserts that specification Sp implements S,
which is precisely the type of condition we are trying to prove in the first place.
This generalization of Theorem 2 is therefore of little practical value, so we will not
bother to state it and prove it formally.

There is one simple way to strengthen the completeness theorem that is of some
interest. The specification Sz is fin and internally continuous iff the property Pz that
it define ; is fi.1 and internally continuous. We can weaken the hypothesis by requiring
only that there exist a fin and internally continuous property Pi contained in Pz

that induces the same externally visible property as P,. Let S& be the specification
obtained from S2 by replacing Lz with Lz n Pi. The correctness of this result follows
easily from Theorem 2 by replacing ST with 55:.

8. Whence and whither?

Refinement mappings are not new. They form the basis of the methods advocated
by Lam and Shankar [8] and by us 171, and they are used by Lynch and Tuttle [9]
to prove that one automaton implements another. Lam and Shankar use history
variables and Lynch and Tuttle use possibility mappings, which combine refinement
mappings with history variables. As far as we know, prophecy variables are new.

None of this work addresses the issue of completeness. Jonsson [4] and Stark
[131 did prove completeness results similar to ours, but for smaller classes of
specifications. Recently, Merritt [101 recast our results in an automata-theoretic
framework.

Complete methods for checking that a program implements a specification,
without constructing refinement mappings, have been developed. Some of the most
general are those of Alpern and Schneider [23, Manna and Pnueli [l I], and Vardi
[14]. Their methods differ from our approach in at least two important ways:

They do not consider behaviors with different amounts of “stuttering” to be
equivalent, so their definition of what constitutes a correct implernentation is
more restrictive.
They require constructing the negation of specifications. In practice, the negation
of a specification may be hard to find and hard to understand.

Because of these differences, the methods may not offer practical alternatives to the
use of refinement mappings for proving correctness.

Our exposition has been purely semantic. We have considered specifications, but
not the languages in which they are expressed. We proved the existence of refinement
mappings, but said nothing about whether they are expressible in any language. Wz

Existence of refinement mappings 283

do not know whr+ languages can describe the necessary auxiliary variables and
resulting refineme 6: mappings.

Our results also raise the question of what properties can be described by
pec&zations that are fin and internally continuous. If the specification language
is expressive enough, then all properties can be defined by specifications without
internal state, which are trivially fin and inter_nalQ continuous. At the other extreme,
one can easily invent artificially impoverished languages that do not allow any fin
or internally continuous specifications. The question becomes interesting only for
interesting specification languages, such as various forms of temporal logic. In
addition, recall that the hypotheses of our completeness theorem can be weakened
by requiring only that S & complete property be equivalent to a fin and internally
continuous subproperty. This raises the more general question of what expressible
properties have equivalent fin and continuous subproperties.

Acknowledgment

The first example we saw that demonstrated the inadequacy of history variables
is due to Herlihy and Wing [3]. The introduction of prophecy variables was based
on a suggestion of Jim Saxe, who also provided many useful suggestions for
improving the exposition. We wish to thank Pierre Wolper for making clear whence
our ideas came and Gordon Plotkin for making clear that whither they will lead is
not an easy question, since he could not answer it on the spot.

References

[I] B. Alper. and F.B. Schneidti, Recognizing safety and livertess, Technical Report TR86-727,

Department of Computer Science, Cornell University, January 1986.
[2] B. Alpern and F.B. Schneider, Proving boolean combinations of deterministic properties, in: Proc.

2nd Symp. on Logic in Computer Science (IEEE, 1987) 131-137.
[3] M.P. Herlihy and J.M. Wing, Axioms for concurrent objects, in: Proc. 24th Ann. ACM SIGPLAN-

SIGACT Symp. on Principles of Programming Languages, Munich (ACM, 1987) 13-26.
[4] B. Jonsson, Compositional verification of distributed systems, Ph.D. thesis, C’ppsaia University, 1987.
[51 D.E. Knuth, Fundamental Algorithms. The Art of Computer Programming, Vol. 1,2nd edn. (Addison-

Wesley, Reading, MA, 1973).
[6J L. Lamport, Proving the correctness of multiprocess programs, IEEE Trans. Software Engineering

3(2) (1977) 125-143.
[7] L. Lamport, Specifying concurrent program modules, ACM Trans. Programming Languages and

Systems 5(2) (1983) 190-222.
[83 S.S. Lam and A. Udaya Shankar, Protocol verification via projections, IEEE Trans. Sofiw*are

Engineering lO(4) (1984) 325-342.
[9] N. Lynch and M. Tuttle, Hierarchical correc’ness proofs for distributed algorithms, in: Proc. 6th

Symp. on the Principles of Distributed Computing (ACM, 1987) 137- 151.
[lo] M. Merritt, Complleteness theorems for automata, in: J.W. de Bakker, W.-P. de Roever and G.

Rozenberg, eds., Stepwise ReJinement of Distributed Systems: Models, Fort,;aJisms, Correctness,

Lecture Notes in Computer Science 430 (Springer, Berlin, 1999) 544-560.
[1 l] Z. Manna and A. Pnueli, Spectfication and verification of concurrent programs by V-automata, in:

Proc. 14th Symp. on the Principles of Programming Languages (ACM, 1987) I- 12.

284 M. Ahadi, L. Lamport

WI

1131

WI

S. Owicki, Axiomatic proof techniques for parallel prograrns. Ph.D. thesis, Cornell University,

August 1975.
E. W. Stark, Proving entailment between conceptual state specifications, Theore?. Comput. Sci. 56(1)
(1988) 135-154.
M. Vardi, Verification of concurrent programs: the automata-theoretic framework, in: froc. 2nd
Symp. on Logic in Computer Science (IEEE, 1987) 167-176.

ndex of Notations onventions

The externally visible component of a state
.4 refinement mapping
A history variable
A prophecy variable
States
Internal components of states
The set of initial states of a state machine
A supplementary property
.4 property, usually generated by a state machine
The next-state relation of a state machine
An externally visible property
A complete property
A set-typically a set of sequences
A specification
Ext,ornally visible behaviors
Sequences, usually representing complete behaviors
The set u)l all behaviors equivalent to u up to stuttering
The set of all behaviors equivalent to behaviors in S up to stuttering
The projection from states onto their external components
The projection from states that eliminates the X component
A set of states
A set of externally visible states
A set of internal states
The set of all infinite sequences of elements Z
The sequence whose first element is sI , whose second element is s2, etc.

The stutter-free form of u
Equivalence of sequences up to stuttering
The concatenstion of the sequences u and r
The prefix of sequence u of length m
A pair of states that is an element of the next-state relation of a state machine
The closure of the set S

