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Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum,
include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws,
bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among
these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi, a
treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum trepo-
nemes revealed genes with potential involvement in human infectivity, whereas comparisons between
pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis
treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular
epidemiology with potential to detect more virulent strains, whereas genetic variability within a single
strain is related to its ability to elude the immune system of the host. Genome analyses also shed light
on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections.

� 2011 Elsevier B.V. Open access under CC BY-NC-ND license. 
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1. Introduction

The genus Treponema (Krieg et al., 2010) comprises several hu-
man pathogens that cause chronic infections including several spe-
cies of oral treponemes (e.g. Treponema denticola, Treponema
parvum, and Treponema putidum; Visser and Ellen, 2011). Another
member of the genus Treponema, Treponema pallidum subspecies
pallidum (TPA) is the causative agent of the sexually transmitted
disease syphilis, a chronic, multi-stage, human infection character-
ized by variable clinical symptoms. Compared to treponemes iso-
lated from the mouth (subgingival plaque), not a single strain of
T. pallidum has been steadily propagated under in vitro conditions.
Moreover, genome sequencing has revealed considerably larger
genomes of oral treponemes (e.g. 2.84 Mb for T. denticola, (Mac-
Dougall and Saint Girons, 1995; Seshadri et al., 2004) compared
to T. pallidum strains (1.14 Mb; Fraser et al., 1998). In this review,
we will focus on the genetic diversity of obligatory pathogenic T.
pallidum strains and on related uncultivable treponemes.

Pathogenic treponemes, similar to syphilis-causing TPA, include
T. pallidum subspecies pertenue (TPE), the causative agent of yaws,
T. pallidum subspecies endemicum (TEN), the causative agent of en-
demic syphilis, and Treponema carateum, the causative agent of
pinta. Besides these human pathogens, a rabbit pathogen, Trepo-
nema paraluiscuniculi, has been shown to be very similar to syphilis
treponeme (Strouhal et al., 2007). Pathogenic treponemes of this
group differ in two principal etiopathogenic parameters including
host range and degree of invasivity; with TPA being the most inva-
sive, TPE being moderately invasive and T. carateum being non-
invasive. T. paraluiscuniculi is not pathogenic to humans; whereas
TPA and TPE strains can infect both humans and rabbits (isolates
of T. carateum have not yet been described).

Sequencing of the whole TPA Nichols genome in 1998 (Fraser
et al., 1998), started an era of whole genome analyses of patho-
genic treponemes. Results, to date, have increased our understand-
ing of pathogenic treponemes and provided possibilities for
molecular diagnostics of syphilis and yaws. Moreover, whole gen-
ome sequences of uncultivable pathogens have been used in a
number subsequent studies (Brinkman et al., 2006, 2008; McGill
et al., 2010; McKevitt et al., 2003, 2005; Mikalová et al., 2010;
Šmajs et al., 2002, 2005; Strouhal et al., 2007; Titz et al., 2008;
Weinstock et al., 2000a).
2. Low level of genetic diversity in noncultivable pathogenic
treponemes

In many pathogenic bacteria, including both Gram-negative and
Gram-positive bacteria, pathogenicity islands are important bacte-
rial virulence determinants encoding a number of virulence factors
(Schmidt and Hensel, 2004). Genes present in the genomic islands
can be transferred from bacterium to bacterium via horizontal
gene flux and the foreign DNA can also be incorporated into the
host DNA. In addition, other mobile genetic elements, including
conjugative and other plasmids, bacteriophages, transposons, and
insertion elements can encode virulence factors. In contrast to this
strategy, several pathogenic bacteria appear not to contain patho-
genicity islands, including Mycobacterium spp., Chlamydia spp.,
most streptococcal species, and spirochetes. The common theme
of pathogenic bacteria lacking pathogenicity islands is adaptation
to a specific host environment, usually accompanied with genome
size reduction and loss of the ability to replicate outside a host.
Adaptation to a single or only a few hosts is usually accompanied
by reduced horizontal gene transfer. Moreover, several bacterial
pathogens have a highly clonal population structure (monomor-
phic bacterial pathogens), including Bacillus anthracis (Van Ert
et al., 2007), Burkholderia mallei (Godoy et al., 2003), Chlamydophila
pneumoniae (Rattei et al., 2007), Mycobacterium leprae (Monot
et al., 2005), Mycobacterium tuberculosis complex (Dos Vultos
et al., 2008), Salmonella enterica serovar Typhi (Kidgell et al.,
2002; Roumagnac et al., 2006) and Yersinia pestis (Achtman et al.,
1999, 2004). Many of these monomorphic bacteria have unknown
immediate ancestors (Achtman, 2008). One of the potential expla-
nations for such genetic monomorphism is the fact that humans
are often secondary hosts for monomorphic pathogenic bacteria
and therefore represent a rather recent branch off the main evolu-
tionary course of these bacteria (Achtman, 2008). The genome size
of pathogenic treponemes is much reduced, being approximately
one fourth to one fifth the size of the Escherichia coli genome. Path-
ogenic uncultivable treponemes can be classified as genetically
monomorphic bacteria (Achtman, 2008) in the process of adapta-
tion to a narrow host environment without known mechanisms
of horizontal gene transfer and no obvious ancestors. Relatively
subtle genetic changes are expected to determine the differences
in treponemal host specificity and pathogenicity (see Table 1).

Pathogenic uncultivable treponemes were originally considered
as separate species based on disease symptomatology and epide-
miology. Moreover, these bacteria clearly differed from nonpatho-
genic T. phagedenis and T. refringens treponemes (Miao and
Fieldsteel, 1978). Later, it became clear that TPA and TPE strains
were almost identical in DNA hybridization experiments (Miao
and Fieldsteel, 1980) and this fact led to reclassification of both
organisms into a single species (Smibert, 1984). Recent data from
the T. paraluiscuniculi genome analysis (Šmajs et al., 2011) revealed
that the genetic diversity between this strain and TPA strains, on a
genome wide scale, was less than 2% and thus T. paraluiscuniculi
represents a T. pallidum subspecies, rather than a new species. This
fact further supports the genetic compactness of uncultivable trep-
onemal pathogens and indicates that small genetic changes can re-
sult in profound changes in pathogenesis and host range.
Therefore, every nucleotide change should be considered to have
the potential for changing bacterial virulence.
3. Genetic differences between human T. pallidum pathogens
and the rabbit pathogen T. paraluiscuniculi

Spirochetes that cause rabbit genital lesions were first denoted
as Spirochaeta paralues-cuniculi (syphilis-like spirochete; Jacobs-
thal, 1920). Since that time, several papers have described rabbit
infections with this organism, occurring both in the wild, as well
as among laboratory animals; the pathogen has since been re-
named T. paraluiscuniculi (DiGiacomo et al., 1983, 1984, 1985;
Smith and Pesetsky, 1967). Rabbit venereal spirochetosis can be
sexually transmitted and leads to mucocutaneous lesions of the
genitoanal region, which are characterized by erythema, edema
and/or crusting ulcers. In fact, T. paraluiscuniculi appears to be well
adapted to rabbits, which develop active infections resembling
syphilis in humans. However, unlike syphilis, no vertical transfer
of T. paraluiscuniculi in rabbits has been documented. T. paraluiscu-
niculi is not infectious to humans and the non-infectivity was
experimentally demonstrated via intradermal inoculation of three
volunteers (Graves and Downes, 1981; Levaditi et al., 1921). In
contrast to humans, intradermal inoculation of rabbits with T. par-
aluiscuniculi leads to chronic lesions with a serological response to
T. paraluiscuniculi.

Previous studies indicated that the 50 and 30 flanking regions of
the 15-kDa lipoprotein gene (tpp15) distinguished the human
pathogens from T. paraluiscuniculi strains (Centurion-Lara et al.,
1998), thus providing the first evidence of genetic differences be-
tween these pathogens. Other studies (Giacani et al., 2004; Gray
et al., 2006) identified heterogeneity in the paralogous tpr genes.
Whole genome fingerprinting and microarray DNA analysis of



Table 1
Genetic identity among treponemal strains compared to the Nichols strain based on whole genome sequencing (WGS) or whole genome fingerprinting (WGF).

Strain Place and year of
isolation (reference)

Genome size as revealed
by WGS (nt)

Estimated genome size
by WGF (kb)

Reference (GenBank
Accession No.)

Estimated genome sequence
identity with Nichols (%)*

TPA Nichols Washington, DC; 1912 1138,011 Fraser et al. (1998)
(AE000520.1)

100
Nichols and Hough (1913) 1139,631**

TPA Chicago Chicago?; 1951 1139,281 Giacani et al. (2010a)
(CP001752.1)

99.95
Turner and Hollander
(1957)

TPA DAL-1 Dallas; 1991 1139.9 Mikalová et al. (2010) 99.97***

Wendel et al. (1991)
TPA SS14 Atlanta; 1977 1139,457 Matějková et al. (2008)

(CP000805.1)
99.89

Stamm et al. (1983)
TPA Mexico A Mexico; 1953 1140.0 Mikalová et al. (2010) 99.88***

Turner and Hollander
(1957)

TPE Samoa D Western Samoa; 1953 1139,330 Čejková et al. (2011)
(CP002374)

99.65
Turner and Hollander
(1957)

TPE CDC-2 Akorabo, Ghana; 1980 1139,744 Čejková et al. (2011)
(CP002375)

99.64
Liska et al. (1982)

TPE Gauthier Congo; 1960 1139,441 Čejková et al. (2011)
(CP002376)

99.67
Gastinel et al. (1963)

Fribourg-Blanc Guinea; 1966 1140.4 Mikalová et al. (2010) 99.57***

Fribourg-Blanc and
Mollaret (1969)

T. paraluiscuniculi
Cuniculi A

Baltimore; ? 1133,390 Šmajs et al. (2011)
(CP002103)

98.10
Jacobsthal (1920)

* Genome sequence identity was calculated from whole genome sequence alignments including gaps in alignments.
** The published genome sequence (Fraser et al., 1998) was modified by addition of insertion of a tprK-like sequence (1.3 kb) in the intergenic region between TP0126 and
TP0127 (Šmajs et al., 2002) and by addition of seven repetitive sequences (60 bp) in the arp gene (TP0433–TP0434).
*** Identity based on whole genome fingerprinting (Mikalová et al., 2010).
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the T. paraluiscuniculi Cuniculi A strain revealed indels and promi-
nent sequence changes in 38 gene homologs and six intergenic re-
gions of the Cuniculi A genome compared to the genome of T.
pallidum subsp. pallidum Nichols (Strouhal et al., 2007). Interest-
ingly, most of the observed differences were identified in tpr genes
or in their vicinity. In addition to tpr genes, sequence analysis of
heterologous chromosomal regions identified 14 additional genes
with frameshift mutations (Strouhal et al., 2007). Harper et al.
(2008a) identified over 50 nucleotide changes between TPA strains
and T. paraluiscuniculi; additionally, differences were also observed
in the arp gene (Harper et al., 2008b). The genome sequence of T.
paraluiscuniculi, strain Cuniculi A, was recently determined (Šmajs
et al., 2011) using a combination of several high-throughput
sequencing methods. An unrooted tree constructed from whole
genome sequence alignments is shown in Fig. 1A. The T. paraluiscu-
niculi genome was found to contain a high number of pseudogenes
and gene fragments (51) and the genome size was reduced com-
pared to the TPA and TPE genomes. The Cuniculi A genome
(1133,390 bp) is 4.6, 5.9, and 6.1 kb smaller than the genome sizes
of TPA Nichols (1138,006 bp) (Fraser et al., 1998), TPA Chicago
(1139,281 bp; Giacani et al., 2010a), and TPA SS14 (1139,457 bp;
Matějková et al., 2008), respectively. Since it is known that at least
part of the Nichols population contains a 1.3 kb tprK-like insertion,
localized in the intergenic region between TP0126 and TP0127
gene (Šmajs et al., 2002), and that the arp gene (TP0433–TP0434)
contains 14 repetitive sequence (Pillay et al., 1998) motifs (60 bp
in length) instead of the seven repetitions reported by Fraser
et al. (1998), the Cuniculi A genome is, in fact, 6.2 kb smaller than
the Nichols genome. Compared to TPA Nichols, Chicago, and the
SS14 genomes, whole genome nucleotide diversity between these
genomes and the Cuniculi A genome (p ± SD) ranged from
0.01016 ± 0.00508 to 0.01028 ± 0.00514, indicating an extremely
close relatedness between the human non-pathogenic strain and
syphilis strains.

Sequencing of T. paraluiscuniculi genome (Šmajs et al., 2011) al-
lowed identification of groups of treponemal genes, important in
TPA strains for infection of human hosts. Two features stand out;
first, 134 (13.2%) of Cuniculi A genes encoded identical proteins
compared to Nichols proteins, indicating negative selection of cor-
responding genes and conservation of proteins. These proteins
were mostly involved in translation and general metabolism; how-
ever, for 35 of them, no function was predicted, suggesting as yet
unknown essential functions in treponemal metabolism. Second,
84 Cuniculi A genes (32 with predicted function) were found to
contain frameshifts or major deletions or other major sequence
changes (defined as changes causing continuous amino acid
replacements comprising 10 and more residues or 20 and more
dispersed amino acid replacements). When counting the number
of affected genes in different functional groups and comparing
them to the number of affected genes linked to the general metab-
olism group, three groups of genes including (i) virulence factors,
(ii) genes with an unknown function and (iii) genes involved in
DNA metabolism, contained significantly more frameshifts and
major sequence changes. Since the median transcript levels, during
experimental TPA Nichols rabbit infection (Šmajs et al., 2005) of af-
fected genes with unknown function, was considerably higher than
the median gene expression rate of all genes of unknown function
(1.46 versus 0.86), these genes represent promising candidates for
important virulence factors of T. pallidum. Moreover, affected genes
linked to DNA metabolism could suggest their possible role in the
acceleration of T. paraluiscuniculi evolution.
4. Genetic differences between human T. pallidum subspecies
pallidum and T. pallidum subspecies pertenue pathogens

T. pallidum ssp. pertenue (TPE) is the causative agent of yaws, a
tropical disease with an estimated prevalence of about 2 million
cases worldwide (World Health Organization, 1998). TPE was dis-
covered in 1905 (Castellani, 1905) and unlike syphilis, yaws is not
vertically transmitted and is mostly characterized by skin, joint,
soft tissue and bone affections. In general, yaws treponemes are



Fig. 1. (A) An unrooted tree constructed from whole genome sequence alignments using the maximum parsimony method. The bar scale corresponds to 1000 nt changes.
Bootstrap values based on 1000 replications are shown next to branches. The tree is very similar to that obtained following analysis of binary restriction target site data
(Mikalová et al., 2010). (B) An unrooted tree constructed from concatenated nucleotide sequences of TP0136, TP0326, TP0488, and TP0548 genes using the maximum
likelihood method. The length of sequenced regions ranged from 8342 to 8412 nucleotides. The bar scale corresponds to 0.01 nt changes per site. Bootstrap values based on
1000 replications are shown next to branches. The TPA strains cluster into two separate groups, one containing the Nichols and the second the SS14 strain. In addition to
strains listed in the Table 1, TPA strains Grady, Philadelphia 1, Philadelphia 2, MN-3, and Bal-73-01 are shown.
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considered less virulent compared to syphilis treponemes and this
fact is likely encoded in the TPE genome.

DNA hybridizations performed with TPA and TPE strains, in
1980, revealed that TPE strain Gauthier and TPA strain Nichols
were identical within the limits of the resolution of the technique
(i.e. about 2% of the genome differences; Miao and Fieldsteel,
1980). This observation resulted in reclassification of both organ-
isms into a single species (Smibert, 1984).

The first papers describing genetic differences between syphilis
and yaws treponemes appeared about 20 years ago (Noordhoek
et al., 1989, 1990). However, the observed difference in gene
TP1038 (tpf-1 gene in TPA, tyf-1 gene in TPE) at position 122, be-
tween TPA Nichols and TPE CDC 2575, was not specific for TPE
strains. Walker et al. (1995) cited unpublished data indicating a
difference in the 16S rRNA gene between a single TPA and a single
TPE strain. Later, Centurion-Lara et al. (1998) and Stamm et al.
(1998) described genetic changes differentiating TPA and TPE
strains in the 50 and 30 flanking regions of tpp15 and in the tprJ
gene, respectively. Differences between TPA and TPE strains were
also found in the gpd gene (TP0257) at position 579, by Cameron
et al. (1999), in tp92 (Cameron et al., 2000), and in tprI and tprC
genes (Centurion-Lara et al., 2006).

Harper et al. (2008a) found over a dozen nucleotide changes dif-
ferentiating TPA and TPE strains and also TPA and TEN strains.
Moreover, genetic analysis of the arp gene revealed repeat motifs
differentiating venereal and non-venereal strains (Harper et al.,
2008b).

The work of Mikalová et al. (2010) compared genomes of four
TPA treponemes (Nichols, SS14, DAL-1 and Mexico A) to three
TPE strains (Samoa D, CDC-2 and Gauthier), and the Fribourg-Blanc
isolate (Fribourg-Blanc and Mollaret, 1969) using the whole gen-
ome fingerprinting technique (WGF; Strouhal et al., 2007; Wein-
stock et al., 2000a). Restriction target site analysis comprising
detection of 1773 individual restriction sites, found a similar struc-
ture in all investigated genomes. The unclassified simian Fribourg-
Blanc was found to cluster with TPE strains but not with TPA
strains. Most of the identified genetic differences between TPA
and TPE strains were localized in six chromosomal regions, mostly
around tpr genes. Based on WGF data, the estimated genome se-
quence identity between TPA and TPE strains were considered to
be 99.63% or higher.
Complete genome sequences of three TPE strains (Samoa D,
CDC-2, and Gauthier) were determined using next-generation
sequencing techniques (Čejková et al., 2011). The genome lengths
ranged between 1139,330 bp and 1139,744 bp and a similar gen-
ome structure was found among TPE strains as well as between
TPA and TPE strains. The overall identity between TPA and TPE
genomes was found to be over 99.64% (Table 1). Compared to four
TPA strains (Nichols, DAL-1, SS14, and Chicago), changes consis-
tently present in all three TPE strains were considered potentially
responsible for the increased virulence of syphilis strains. Sequenc-
ing of 3 pertenue genomes (Čejková et al., 2011) revealed 692 out of
983 TPE protein-coding genes (70.4%) to encode identical proteins
or identical proteins with strain specific changes, 194 (19.7%)
genes to encode proteins with 1 amino acid substitution, and 97
(9.9%) TPE genes to encode proteins containing two or more amino
acid replacements and/or other major sequence changes. Similar to
results found in the Cuniculi A genome, increased numbers of af-
fected genes were found among hypothetical genes and genes
encoding predicted virulence factors.

Since the divergent proteins comprised mostly those predicted
as virulence factors, hypothetical genes with major sequence
changes consistently present in all TPE and TPA strains, are candi-
dates for important virulence factors of syphilitic treponemes. This
prediction is supported by the relatively high transcription rate of
the genes in TPA Nichols during experimental rabbit infections
(Šmajs et al., 2005). Interestingly, several of these genes were also
found to be altered in T. paraluiscuniculi Cuniculi A, suggesting their
role in syphilis pathogenesis (Šmajs et al., 2011).
5. Genetic differences between human T. pallidum subspecies
pallidum and the Fribourg-Blanc isolate

Genetic differences between TPA strains and the Fribourg-Blanc
isolate have been studied in several previous studies (Gray et al,
2006; Harper et al., 2008a,b) and also in the whole genome finger-
printing study by Mikalová et al. (2010). The Fribourg-Blanc trepo-
neme was isolated in 1966, from a baboon in Guinea, Africa.
Although infected baboons showed no signs of infection, the trepo-
nemes isolated from these animals were able to infect hamsters
(Fribourg-Blanc and Mollaret, 1969). Moreover, experimental
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infection, using humans, revealed that humans could also be in-
fected (Smith, 1971; Smith et al., 1971). A close relationship be-
tween the Fribourg-Blanc treponemes and TPE strains has been
found by Gray et al. (2006), based on the phylogeny of the tprC
and tprI genes. The WGF study (Mikalová et al., 2010) grouped
TPA strains into a separate cluster compared to TPE strains. The Fri-
bourg-Blanc isolate was clustered with TPE strains, although it
clustered more distantly than other TPE strains (Mikalová et al.,
2010). Interestingly, the Fribourg-Blanc treponemes were shown
to contain the largest genome (1140.4 kb) of all uncultivable trepo-
nemes characterized on the genome level. However, due to identi-
fied duplication of DNA in the intergenic region between TP0696
and TP0697 it is unlikely that the Fribourg-Blanc isolate harbors
any unique DNA region that is missing in the TPA and TPE strains
(Mikalová et al., 2010).
6. Genetic differences among T. pallidum subspecies pallidum
strains

Mapping of the genetic diversity among TPA strains is an impor-
tant step in molecular typing and in epidemiology of syphilitic
strains. Genetic differences among TPA type strains were first iden-
tified in the tprD gene (Centurion-Lara et al., 2000a) and in the
TP0126–TP0127 intergenic region (Marra et al., 2006). In addition
to genetic changes among TPA strains, phenotypic differences com-
prising neuroinvasivity were observed among TPA strains (Tantalo
et al., 2005). The WGF analysis revealed several differences among
the Nichols, DAL-1, SS14, and Mexico A strains (Mikalová et al.,
2010). The estimated sequence identity among TPA strains based
on WGF data was 99.92% or higher.

Sequencing of the complete genome of TPA SS14 (Matějková
et al., 2008) and the Chicago strain (Giacani et al., 2010a) revealed
a full list of nucleotide changes among these genomes. When com-
pared to the Nichols strain, sequencing of the SS14 strain revealed
327 single nucleotide changes, 14 deletions and 18 insertions.
However, this set excludes changes found in the highly variable
tprK gene (Matějková et al., 2008). In general, the observed genetic
diversity among TPA strains is similar to the genetic diversity seen
in other monomorphic bacterial species, including B. anthracis
(Pearson et al., 2004), S. enterica serovar Typhi (Roumagnac et al.,
2006), and Y. pestis (Achtman et al., 2004).

Nucleotide diversities computed between pairs of whole gen-
ome TPA sequences are shown in Table 2. The diversity between
the Nichols and Chicago strains was estimated to more than
150 nt changes and one larger insertion (Giacani et al., 2010a).
Since this insertion was already identified in a part of Nichols pop-
ulation (Šmajs et al., 2002; Matějková et al., 2008; Mikalová et al.,
2010), it does not represent a real difference between both gen-
omes. Moreover, the real number of nucleotide changes differenti-
ating both Nichols and Chicago genomes are likely to be
considerably lower (dozens of nucleotide changes) as a result of
sequencing errors present in the Nichols genome. The diversity be-
tween SS14 and Mexico A genomes (�80 nucleotide changes; Pět-
rošová, unpublished results) is also small, while the diversity
between Nichols and SS14 groups (several hundred nucleotide
changes) is moderately larger. This clustering was also observed
from genome comparisons of 8.3–8.4 kb concatenated nucleotide
sequences comprising variable chromosomal regions (see Fig. 1B).

Several studies have mapped the genetic diversity among TPA
DNA isolated from clinical material of syphilis patients. The first
typing system for detection of genetic diversity (Pillay et al.,
1998) revealed 16 subtypes among 46 typeable DNA samples, iso-
lated from laboratory strains and clinical specimens from the USA,
Madagascar, and South Africa, based on the detected number of
repetitions in the arp gene and RFLP polymorphisms in amplified
tpr genes. Similar analysis of 45 typeable samples, from Arizona,
USA, yielded 10 genotypes (Sutton et al., 2001) and both studies to-
gether revealed 22 different TPA subtypes. The work of Pillay et al.
(2002) described 35 TPA subtypes among 161 typeable specimens,
from South Africa, yielding a total of 44 subtypes identified world-
wide. Pope et al. (2005) mapped molecular subtypes among 23
typeable specimens, isolated in North and South Carolina, and
identified seven subtypes. Molepo et al. (2007) identified four sub-
types in 13 typeable samples from patients with neurosyphilis.
Florindo et al. (2008) identified three subtypes among 42 typeable
specimens from Lisbon, Portugal. Cole et al. (2009) identified six
subtypes among 58 typeable specimens from Scotland. Martin
et al. (2009a) typed 36 samples from Shanghai, China and identi-
fied four subtypes, and Martin et al. (2010) typed 43 samples in
western Canada with four identified subtypes. Altogether, more
than 50 individual subtypes in 467 typeable treponemal samples
have been isolated from patients. The work of Katz et al. (2010)
added to the original CDC typing system (Pillay et al., 1998) anal-
ysis of TP0279 (rpsA gene) where the number of repeats in the G
homopolymer was used for further typing. Among 69 specimens
isolated in San Francisco, eight individual subtypes were identified.

Moreover, several studies mapped mutations causing macrolide
resistance among TPA clinical samples (Katz et al., 2010; Lukehart
et al., 2004; Martin et al., 2009a,b; Matějková et al., 2009; Mitchell
et al., 2006; Tipple et al., 2011; Van Damme et al., 2009) and an
alarming increase in the number of patients infected with TPA
strains harboring the A2058G mutation has been detected in USA
(Katz et al., 2010; Mitchell et al., 2006). Another mutation
(A2059G) leading to macrolide resistance was described recently
(Matějková et al., 2009) and a similar frequency of both A2058G
and A2059G were found in clinical samples isolated from syphilis
patients in the Czech Republic (Woznicová et al., 2010; Flasarová
et al., 2011). Both A2058G and A2059G mutations were found also
in clinical samples isolated in the USA (Chen et al., 2011).

Recently, 15 TPA isolates and clinical specimens isolated from
158 syphilis patients in the USA, China, Ireland, and Madagascar
were typed with an improved version of the CDC typing system
(Marra et al., 2010), which added TP0548 gene sequencing analysis
(Flasarová et al., 2006; Woznicová et al., 2007) to the originally de-
scribed typing system. Compared to the original CDC typing system
(Pillay et al., 1998), which identified 14 subtypes, 25 straintypes
were identified with the improved version (Marra et al., 2010).
As shown with molecular typing studies, genetic diversity within
TPA strains is geographically specific, suggesting human popula-
tion-specific sets of TPA strains.
7. Genetic differences within individual T. pallidum subspecies
pallidum strains

To date, several examples of treponemal intrastrain heterogene-
ity have been published indicating that genetically distinct sub-
populations of individual TPA strains exist during infection of
human or animal hosts. Stamm and Bergen (2000) identified intra-
strain genetic heterogeneity in the tprK of the Nichols and SS14
TPA strains. In addition, variability was also found in the tprJ of
the SS14 strain (Stamm and Bergen, 2000). Centurion-Lara et al.
(2000a) found intrastrain heterogeneity in the tprK genes of an
additional three TPA strains (Sea 81-4, Bal 7, Bal 73-1). tprK se-
quences found in treponemes isolated from syphilis patients with
primary chancres were diverse, but clustered within a sample
and not among samples (LaFond et al., 2003). In addition, sequenc-
ing of tprK from DNA samples (corresponding to V3–V5 regions of
TprK), isolated from patients with syphilis, revealed 48 samples
(out of 279) with multiple tprK sequences in one sample (Heymans



Table 2
Nucleotide diversities between individual pairs of Nichols, SS14, Chicago and Mexico
A genomes.

Genomes Nucleotide diversity
(p)

Standard deviation of nucleotide
diversity

Nichols*–
Chicago

0.00004 0.00002

Nichols*–SS14 0.00062 0.00031
Nichols*–

Mexico A
0.00072 0.00036

SS14–Chicago 0.00061 0.00030
SS14–Mexico A 0.00015 0.00008
Chicago–

Mexico A
0.00068 0.00034

* Resequenced version (Pospíšilová, unpublished results).
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et al., 2009); indicating that individual patients often contain mul-
tiple TPA strains expressing variants of the tprK gene.

Another region with a variable presence of the 1.3-kb DNA se-
quence was found in the Nichols intergenic region between
TP0126 and TP0127. The library of TPA DNA constructed in E. coli
contained 6 out of 21 clones with the 1.3 kb insertion and 15 with-
out it (Šmajs et al., 2002). DNA regions corresponding to the 1.3 kb
sequence, similar to the tprK gene, were found in all TPA (SS14,
DAL-1, Mexico A) and TPE genomes (Samoa D, Gauthier, CDC-2, Fri-
bourg-Blanc) that have been tested (Mikalová et al., 2010).

Except for the variable regions of the tprK gene or tprK-similar
sequences, sequencing of the complete TPA SS14 genome has re-
vealed at least 43 nucleotide positions in which the sequence var-
ied within one treponemal strain (Matějková et al., 2008). Multiple
intrastrain variants were detected in additional tpr genes (tprC,I,J),
in the intergenic region between tprI and tprJ, in TP0402 (flagellum
specific ATP synthase), TP0971 (membrane antigen), and TP1029
(hypothetical protein). However, the genome of the SS14 strain
was not analyzed systematically for intrastrain heterogeneity and
therefore, additional variable genetic loci can be expected (Matěj-
ková et al., 2008).

8. Biological relevance of identified genetic changes

Syphilis is a multi-stage disease that is capable of being sexually
transmitted, has the potential to invade the central nervous sys-
tem, and, when untreated in woman, can lead to frequent transpla-
cental congenital infections. In contrast, yaws is a disease with
predominant cutaneous or mucocutaneous and bone manifesta-
tions (Antal et al., 2002). Although both diseases are distinguished
on the basis of epidemiological characteristics and clinical symp-
toms, these differences do not appear to be fundamental. Yaws
can progress to central nervous system and cardiovascular infec-
tions as well as to congenital infections (Román and Román,
1986). Moreover, the transmission route of syphilis and yaws ap-
pears to reflect opportunity, rather than inherent differences be-
tween TPA and TPE strains (Mulligan et al., 2008). Although
experimental infection with TPA or TPE strains did not result in
complete cross-protection, suggesting differences in the pathogen-
esis of syphilis and yaws (Miller, 1973; Schell et al., 1982), a similar
situation was also found with different TPA strains (Turner and
Hollander, 1957). In general, the invasivity of TPE strains appears
to be intermediate compared to the more invasive TPA strains
and the less invasive T. carateum (Antal et al., 2002).

The small genome size of TPA strains (Fraser et al., 1998; Giaca-
ni et al., 2010a; Matějková et al., 2008) appears to be the reason for
the drastic reduction of treponemal metabolic activities resulting
in long generation times (longer than 30 h; Fieldsteel et al.,
1981), sensitivity to oxygen and growth temperature (Stamm
et al., 1991) and obligatory host-dependent growth. In contrast
to reduced metabolic activities, TPA is an extremely successful
pathogen characterized by a low infection dose for humans (as
low as about 10 treponemes with a median infection dose of 57
bacteria; Magnuson et al., 1956), the ability to infect any type of
human tissue, immune escape resulting in persistence in the host
for years or even decades, and the ability to cross the placenta
and infect the fetus. Despite efficient host infection, no clearly
identified virulence factors have been identified on the basis of se-
quence analyses of the genomes except for several genes encoding
putative hemolysins. However, recombinant expression of these
genes in E. coli did not result in a hemolytic phenotype, suggesting
another primary role for these genes other than cytolysis (Wein-
stock et al., 2000b; Šmajs, unpublished results). These data indicate
the presence of a new, yet unknown, repertoire of genes encoding
virulence determinants specific for treponemal/spirochetal
pathogens.

8.1. Potential virulence factors determining host specificity of
treponemal infections

In general, TPA strains are characterized by low toxicity and
high invasiveness, caused, at least to certain extent, by the cork-
screw-like motility of treponemes, which allows them to penetrate
low viscosity human tissues. Several genes encoding components
of treponemal chemotactic sensory systems suggest a possible role
for chemotaxis in treponemal pathogenesis.

Differences in specific genes between (collectively) the gen-
omes of TPA strains and the Cuniculi A genome are likely to include
genes involved in infectivity of TPA strains in humans (for list of
genes see Šmajs et al., 2011). In addition, genetic differences be-
tween TPA genomes and both the T. paraluiscuniculi and TPE gen-
omes (e.g. tprA,C,D,F,I,J,K,L; recQ; TP0136; tp92, arp; mcp; and
hypothetical genes) may be involved in determination of syphi-
lis-specific symptomatology (i.e. invasion of the central nervous
system, sexual transmission, and transplacental transmission).

Sequencing of the rabbit pathogen, which is unable to infect hu-
mans, has revealed dozens of genes with major sequence changes
with the potential to significantly affect their function (Šmajs et al.,
2011). Although there is no direct evidence on the role of these
genes in treponemal host specificity (Fig. 2), at least three lines
of indirect evidence support this prediction: (i) these genes are ac-
tively transcribed during experimental rabbit infections (Šmajs
et al., 2005, 2011), (ii) predicted positive evolution of some of these
genes in TPE–TPA comparisons (15 genes under positive selection
after exclusion of genes with possible recombination events and
frameshift mutations (Čejková et al., 2011) and the neutral evolu-
tion of several of these genes in TPA – T. paraluiscuniculi compari-
sons suggesting their importance in human pathogens and their
decay in the rabbit pathogen, and (iii) higher numbers of these
genes in the group of predicted virulence genes compared to genes
encoding components of general metabolism. One of the best stud-
ied genes, arp, contains a variable number of repetitive 60 bp se-
quences in its central region (Pillay et al., 1998) and the
variability was also found in the sequence motif (Liu et al., 2007).
Moreover, the repetitive motifs of Arp proteins were found to be
immunogenic and to contain a fibronectin-binding domain (Liu
et al., 2007). Proteins containing tandem repetitions are often outer
membrane virulence factors that help the pathogen survive within
the host (Denoeud and Vergnaud, 2004). These same proteins have
been identified in the genomes of Haemophilus influenzae (Hood
et al., 1996), Neisseria meningitidis (Saunders et al., 2000) and
Mycoplasma hyorhinis (Citti et al., 1997). Harper et al. (2008b) clas-
sified the repetitive motifs of the arp gene into several groups and
correlated the variability of repetitive motifs with sexual transmis-
sion. Similar variability in the number of invariant repetitions was
found in the TP0470 gene (Mikalová et al., 2010; Strouhal et al.,



D. Šmajs et al. / Infection, Genetics and Evolution 12 (2012) 191–202 197
2007). Moreover, the conserved hypothetical protein TP0470 was
found to be immunogenic (Brinkman et al., 2006; McKevitt et al.,
2005).

8.2. Potential virulence factors determining invasivity of treponemal
infections

Genes specifically affected in TPE genomes (TP0671 encoding
ethanolamine phosphotransferase, hypothetical genes) could code
for factors increasing invasivity of TPA strains (Fig. 2). Except for
the tpr genes, only TP0077, TP0326, TP0520, and TP0936 were
among the predicted virulence factors on a list containing 67 pos-
sible virulence factors (Weinstock et al., 1998). This discrepancy
likely reflects our insufficient understanding of the pathogenesis
of TPA and TPE infections. The Campylobacter jejuni phosphoetha-
nolamine transferase modifies the lipooligosaccharide lipid anchor
(lipid A) and the flagellar rod protein, FlgG (Cullen and Trent,
2010). Since treponemes do not contain lipopolysaccharides, it
may be involved in the modification of the proteins encoded by
the flgG-1 and flgG-2 genes (TP0960, TP0961) that are present in
both syphilis and yaws treponemes.

8.3. Positive selection of treponemal genes

The genomic data provides sequence information that can be
used for prediction of genes involved in pathogenesis by estima-
tion of selection type. The type of selection has been predicted
A

B

Fig. 2. (A) Genes of T. paraluiscuniculi Cuniculi A and TPE with predicted cell function w
containing internal frameshifts and/or major sequence changes (Šmajs et al., 2011) and
sequence changes when compared to TPA genes (Čejková et al., 2011). (B) Genes of T. para
compared to the Nichols orthologs. Same criteria were used as in panel A.
for several treponemal genes based on available sequences from
T. paraluiscuniculi, TPE and TPA strains. As shown in Table 3, a po-
sitive selection type was identified between several orthologous
sequences. The predicted type of selection together with an
assumption that T. paraluiscuniculi is a descendant of TPA or TPE
strains in the process of adaptation to rabbits (Šmajs et al.,
2011), can be used for identification of genes involved in the path-
ogenesis of particular treponemal diseases. The tp92 (TP0326) gene
is under positive selective pressure (Table 3) in TPE and TPA trepo-
nemes and therefore has a potential role in syphilis and/or yaws
pathogenesis. In contrast, this gene in the Cuniculi A strain is under
purifying (negative) selection, indicating its important cellular
function but no major role in adaptation to rabbits or immune es-
cape during rabbit syphilis. In contrast, the arp (TP0433) gene ap-
pears to have been positively selected in the Cuniculi A strain
(Harper et al., 2008b) compared to TPA/TPE strains, indicating its
possible role in rabbit syphilis. The mcp (TP0488) gene appears
to be positively selected in TPA – TPE comparison, suggesting a role
in adaptation of the yaws and/or syphilis treponemes.

Of 78 investigated TPE divergent genes, positive selection in 15
orthologous genes has been predicted. The positively selected
genes were often found to encode exported or membrane proteins
including predicted lipoproteins and outer membrane proteins
suggesting that these proteins may be responsible for differences
in pathogenesis between syphilis and yaws (Čejková et al., 2011).
Predicted positive selection in metabolic, transport, and cell-pro-
cess genes suggests that positive selection of these genes could
ith major sequence changes compared to the Nichols orthologs. Cuniculi A genes
TPE genes encoding proteins with six or more amino acid changes and/or major

luiscuniculi Cuniculi A and TPE with unknown function with major sequence changes
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be correlated to adaptive processes, such as climate adaptation of
treponemes.

8.4. Lack of intrastrain adaptive mutations

Sequencing of the Cuniculi A genome revealed gene fusions
compared to the originally annotated Nichols genome (Fraser
et al., 1998) where 52 Nichols orthologs were fused into 25 genes
in the Cuniculi A genome (Šmajs et al., 2011). Ongoing resequenc-
ing of the Nichols genome (Pospíšilová, personal communication)
has revealed that most of the observed gene fusions are also pres-
ent in the Nichols genome. Since the Nichols strain was originally
isolated in 1912 from a patient with neurosyphilis (Nichols and
Hough, 1913) and, since then, propagated in rabbits, questions
regarding newly emerged, adaptive, nucleotide changes important
for rabbit infectivity have appeared. Despite extended propagation
in rabbits, the Nichols strain is still virulent as demonstrated by
human inoculations (Magnuson et al., 1956) as well as accidental
infections of laboratory personnel (Chacko, 1966; Fitzgerald
et al., 1976). Since whole genome sequencing of the Nichols strain
(Fraser et al., 1998) and Nichols resequencing (Nichols 4787, S.J.
Norris) used different Nichols preparations, we examined highly
related TPA genomes (Chicago, DAL-1, and Mexico A) for the pres-
ence of the newly identified changes (Šmajs et al., 2011). Since sim-
ilar sets of nucleotide changes were also found in TPA Chicago
(Giacani et al., 2010a) and the preliminary DAL-1 and Mexico A
genomes (unpublished data), the potential presence of recently
emerged intrastrain adaptive mutations in the Nichols genome
was excluded. Instead, the observed changes represent sequencing
errors in the published Nichols genome (Fraser et al., 1998; Šmajs
et al., 2011).

8.5. Variability in tpr genes and their possible function in treponemal
infections

In treponemal genomes, there are 12 paralogous genes (or pseu-
dogenes) classified into three subfamilies (subfamily I, tprC,D,F,I; II,
tprE,G,J; and III, tprA,B,H,K,L). Several of these proteins, belonging to
all three subfamilies, have been recently predicted as outer mem-
brane proteins (TprB,C,D,E,F,I,J; Cox et al., 2010). In addition to
these proteins, Centurion-Lara et al. (1999) showed that tprK en-
codes an outer membrane protein, although others have ques-
tioned this finding (Hazlett et al., 2001). Recently, Giacani et al.
(2010b) showed that the host immune response selects new TprK
variants during experimental infection which is consistent with
the surface localization of TprK. Subfamily II tpr genes are ex-
pressed differently in different TPA isolates with G homopolymers
of variable length in the promoter regions (Giacani et al., 2007,
2009). Since most of Tpr proteins elicit an antibody response and
expression of tpr genes is time and strain specific, their role in per-
sistence of treponemal infections in immunocompetent host has
been suggested (Leader et al., 2003). TprK protein is the most var-
iable treponemal protein having several variants within one strain
of TPA (except for the rabbit propagated Nichols strain; LaFond
et al., 2006). Moreover, it has been shown that most variable re-
gions of TprK showed increased sequence diversity upon rabbit
experimental infection (LaFond et al., 2003). The extreme variabil-
ity of the tprK gene is generated through a gene conversion mech-
anism (Centurion-Lara et al., 2004) causing TprK to undergo
antigenic variation, which may in turn promote chronic infection.
Whereas T-cells recognize conserved regions of TprK, antibodies
are directed against the variable regions (Morgan et al., 2002a).
Immunization with recombinant Nichols TprK led to partial pro-
tection against a Nichols challenge, but provided less protection
against TPA with heterologous TprK (Centurion-Lara et al., 1999;
Morgan et al., 2002b, 2003). The fact that tpr genes are the most
variable gene family in treponemal strains, suggests (Centurion-
Lara et al., 2000a,b) their role in pathogenesis of treponematoses
as well as in host specificity. The variability of tprK appears to be
one of principal mechanisms of immune evasion allowing reinfec-
tion of hosts that had already been previously infected (Palmer
et al., 2009).
9. Origin of syphilis and evolution of pathogenic treponemes

Most of the work on syphilis origin and evolution is based on
paleontological findings; however, several studies have already
started to use genetic data. The work of Gray et al. (2006) analyzed
6 tpr genes in TPA, TPE, TEN, the Fribourg-Blanc isolate and T. par-
aluiscuniculi strains and identified intragenomic recombination as
an important mechanism of tpr gene evolution. Moreover, this
work does not support the origin of TPA strains in recent history
(less than 500 years). The work performed by Harper et al.
(2008a) involved genetic analyses of 21 chromosomal regions of
several (26) treponemal strains and isolates. This work proposes
that T. pallidum as a species originated in the Old World as a
non-venereal infection and then spread to the New World as yaws.
Consequently, treponemal strains from the Americas were intro-
duced to Europe and became the syphilis-causing strain. However,
evolutionary order with respect to TPA and TPE strains cannot be
unambiguously inferred from this analysis (Mulligan et al., 2008),
especially in the light of genome decay identified in T. paraluiscuni-
culi (Šmajs et al., 2011), which suggests that T. paraluiscuniculi is a
descendant of an ancestor of pallidum and pertenue strains rather
than the opposite. Measurement of evolution rate in treponemes
and its comparison with paleopathological evidence and with evo-
lution rates of other bacteria is consistent with the divergence of
syphilis from other human treponematoses 5 – 16.5 thousand
years ago (de Melo et al., 2010).

Historically, there have been several hypotheses on the origin of
syphilis, including the Columbian, Pre-Columbian, Alternative and
the Unitarian hypotheses. Whereas the Columbian hypothesis pre-
sumed the existence of syphilis in America with subsequent import
by Columbus’ crew into Europe (Mays et al., 2003; Naranjo, 1994),
the Pre-Columbian hypothesis assumed the existence of syphilis
and other treponematoses in the Old and New World a long time
before Columbus’ era and the misidentification of pre-Columbian
syphilis cases as leprosy or other diseases (Meyer et al., 2002; Pow-
ell and Cook, 2005). According to the Unitarian hypothesis, all trep-
onemal diseases (syphilis, yaws, bejel, and pinta) are caused by the
identical microorganism and disease symptomatology reflects dif-
ferences in climate and social factors (Powell and Cook, 2005). The
Alternative theory suggests trans-species transmission of syphilitic
treponemes from African baboons (Livingstone, 1991).

Based on consistent genetic differences found between strains
causing yaws and syphilis (Gray et al., 2006; Harper et al.,
2008a,b; Čejková et al., 2011), the Unitarian hypothesis can be re-
jected. The genetic distance between TPA and TPE strains appears
to be inconsistent with a recent emergence of syphilis in the
15th century and TPA strains appear to be at least several thousand
years old (de Melo et al., 2010; Gray et al., 2006). However, one
cannot exclude a very rapid adaptation of a parasite to its host un-
der the right circumstances.

Since bone alterations caused by syphilis, yaws and bejel are
distinctive for these diseases (Rothschild, 2005) and the osseotype
of syphilis in pre-Columbian era was found in the New World but
not in Europe, Africa or Asia (Rothschild, 2005; Rothschild and
Rothschild, 2000), transmission of syphilis by Columbus’ crew into
Europe is a plausible explanation. However, other authors suggest
the presence of syphilis in other parts of the world, in addition
to the New World, in pre-Columbian era (de Melo et al., 2010).



Table 3
Three selected genes with predicted type of selection derived from orthologous gene sequence comparisons.

Gene Type of predicted selection* between (No. of polymorphic sites; statistical significance)

Cuniculi A/Nichols Cuniculi A/Samoa D Cuniculi A/SS14 Samoa D/Nichols Samoa D/SS14 SS14/Nichols

tp92 (TP0326) Purifying
(57; p = 0.017)

Purifying
(56; p = 0.008)

Purifying (63; p = 0.037) (10; p = 0.502) Positive
(21; p = 0.047)

Positive
(12; p = 0.037)

arp (TP0433) Positive (73; p = 0.000) Positive (58; p = 0.000) Positive (75; p = 0.000) Positive (7; p = 0.015) Positive (11; p = 0.008) **(10; p = 0.325)
mcp (TP0488) (71; p = 0.153) (55; p = 0.557) (68; p = 0.142) Positive (34; p = 0.000) Positive (31; p = 0.015) Positive? (4; NA)

NA, not applicable.
* Neutral selection not shown.
** TPA strains (and clinical isolates) are known to differ in the number of repetitions in the arp genes (Pillay et al., 1998; Pope et al., 2005; Molepo et al., 2007; Florindo et al.,
2008; Cole et al., 2009; Martin et al., 2009a; Marra et al., 2010). Positive selection thus appears to operate on a repetition number level.
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Support for the Alternative hypothesis (Livingstone, 1991) comes
from the fact that concurrently with Columbus’ expeditions, explo-
ration of the African continent was also intensifying, which could
have increased exposure to a possible reservoir of yaws trepo-
nemes in the human (and primate) populations of Africa.

Although our knowledge regarding the evolution of syphilis
treponemes is rather fragmentary, there are several points re-
vealed by genetic and genomic studies: (i) there is a close genetic
relationship between the Fribourg-Blanc isolate and yaws strains
(Gray et al., 2006; Harper et al., 2008a; Mikalová et al., 2010) as
well as between treponemes causing infections in wild baboons
and TPE strains (Knauf et al., 2011), which indicates a common ori-
gin of these treponemes. Moreover, the Fribourg-Blanc treponeme
has the largest genome amongst the investigated TPA and TPE
strains (Mikalová et al., 2010), (ii) genetic diversity between TPA
and TPE strains is consistent with TPA evolution of several thou-
sand years (de Melo et al., 2010; Gray et al., 2006), and (iii) patho-
genic treponemes evolve by decreasing genome size while
adapting to their hosts (Šmajs et al., 2011). The available genetic
and genomic data are thus inconsistent with any of the remaining
theories regarding the origin of syphilis, but may combine some as-
pects of all of them in the origin of the African baboon treponemal
strains, in evolution of TPA strains for several thousand years and
in sudden import of TPA strains from the New World by Columbus’
crew into Europe.
10. Targets for molecular detection and typing of TPA and TPE
strains

Except for tpr genes and the arp gene, TP0136, TP0548, TP0326
and TP0488 genes were identified as those with the greatest nucle-
otide differences among TPA strains tested, including Nichols,
SS14, DAL-1, Mexico A, Grady, MN-3, Philadelphia 1, Philadelphia
2, and Bal-73-01 (Šmajs, unpublished results). All the investigated
strains clustered in two subclusters containing either the Nichols
or the SS14 strain (Fig. 1B). Together with the 23S rDNA locus,
the TP0136 and TP0548 have already been tested for typing of
syphilis causing strains isolated in the Czech Republic. Out of type-
able treponemal DNA samples taken from 64 patients, nine differ-
ent genotypes were identified (Flasarová et al., 2011). More
importantly, the identified genotypes were found to independently
combine with each other and also with the number of repetitions
in the arp gene and the restriction profile of tprEGJ genes (Pillay
et al., 1998). The recently improved CDC typing system combines
arp and tprEGJ gene typing (Pillay et al., 1998) with analysis of rpsA
gene G repeats (TP0279) (Katz et al., 2010) or with sequencing of
part of the TP0548 gene (Marra et al., 2010). Since human popula-
tions are partially separated based on geographic origin, religion,
native language, etc. (e.g. T. pallidum DNA from patients in Mada-
gascar shared only one out of six subtypes identical to those iso-
lated from the USA patients, Marra et al., 2010), it is likely that
population-specific typing systems would be needed for precise
epidemiological mapping of syphilis.

Whole genome analyses of TPE strains (Mikalová et al., 2010)
and subsequent whole genome sequencing (Čejková et al., 2011)
revealed several regions suitable for a molecular diagnosis of the
yaws causing strains including TP0266 and TP0316 genes, inter-
genic region (IGR) between TP0548–TP0549, and TP1030–TP1031
genes. The observed indels ranged between 33 and 635 nt in length
and can be found in the Samoa D genome (GenBank Accession No.
CP002374). However, these regions need to be analyzed in a larger
number of TPE strains. Interestingly, all of these indels were also
found in the Fribourg-Blanc genome. However, several specific in-
dels differentiate the Fribourg-Blanc isolate from other individual
TPE strains (Mikalová et al., 2010). Whole genome sequencing of
the TEN strain, Bosnia A, that is in progress (Šmajs, unpublished
data) has already revealed indels in IGR TP0085-TP0086, and in
genes TP0136, TP0326, and TP0865, ranging between 13bp and
0.06 kbp, which differentiate the bejel treponeme from both the
TPA and TPE strains. Further work will test TPE and TEN specific
molecular signatures as targets for specific molecular detection
of yaws and bejel treponemes.

11. Conclusions

We are still some distance from understanding of the genetic
basis of syphilis pathogenesis and of the strategies that T. pallidum
uses to survive, invade and adapt in human hosts, especially when
we consider its ability to cause, when untreated, life-long infec-
tions and the ability to infect all human tissue types. In spite of
our relative lack of understanding with regard to the pathogenesis
of T. pallidum, it is nonetheless easy to treat T. pallidum infections
with antibiotics. Because of this and other features, such as a rela-
tively short incubation period, it should be theoretically possible to
eradicate syphilis (Rompalo, 2001) in the relatively near future. Fu-
ture will reveal if the discovery of T. pallidum molecular cell strat-
egies in pathogenesis of human infection will come sooner than
the syphilis eradication or vice versa.
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Mikalová, L., Strouhal, M., Čejková, D., Zobaníková, M., Pospíšilová, P., Norris, S.J.,
Sodergren, E., Weinstock, G.M., Šmajs, D., 2010. Genome analysis of Treponema
pallidum subsp. Pallidum and subsp. pertenue strains: most of the genetic
differences are localized in six regions. PLoS One 5, e15713.

Miller, J.N., 1973. Immunity in experimental syphilis. VI. Successful vaccination of
rabbits with Treponema pallidum, Nichols strain, attenuated by -irradiation. J.
Immunol. 110, 1206–1215.
Mitchell, S.J., Engelman, J., Kent, C.K., Lukehart, S.A., Godornes, C., Klausner, J.D.,
2006. Azithromycin-resistant syphilis infection: San Francisco, California,
2000–2004. Clin. Infect. Dis. 42, 337–345.

Molepo, J., Pillay, A., Weber, B., Morse, S.A., Hoosen, A.A., 2007. Molecular typing of
Treponema pallidum strains from patients with neurosyphilis in Pretoria, South
Africa. Sex. Transm. Infect. 83, 189–192.

Monot, M., Honoré, N., Garnier, T., Araoz, R., Coppée, J.-Y., Lacroix, C., Sow, S.,
Spencer, J.S., Truman, R.W., Williams, D.L., Gelber, R., Virmond, M., Flageul, B.,
Cho, S.-N., Ji, B., Paniz-Mondolfi, A., Convit, J., Young, S., Fine, P.E., Rasolofo, V.,
Brennan, P.J., Cole, S.T., 2005. On the origin of leprosy. Science 308, 1040–1042.

Morgan, C.A., Lukehart, S.A., Van Voorhis, W.C., 2002a. Immunization with the N-
terminal portion of Treponema pallidum repeat protein K attenuates syphilitic
lesion development in the rabbit model. Infect. Immun. 70, 6811–6816.

Morgan, C.A., Lukehart, S.A., Van Voorhis, W.C., 2003. Protection against syphilis
correlates with specificity of antibodies to the variable regions of Treponema
pallidum repeat protein K. Infect. Immun. 71, 5605–5612.

Morgan, C.A., Molini, B.J., Lukehart, S.A., Van Voorhis, W.C., 2002b. Segregation of B
and T cell epitopes of Treponema pallidum repeat protein K to variable and
conserved regions during experimental syphilis infection. J. Immunol. 169, 952–
957.

Mulligan, C.J., Norris, S.J., Lukehart, S.A., 2008. Molecular studies in Treponema
pallidum evolution: toward clarity? PloS Negl. Trop. Dis. 2, e184.

Naranjo, P., 1994. On the American Indian origin of syphilis: fallacies and errors.
Allergy Proc. 15, 89–99.

Nichols, H.J., Hough, W.H., 1913. Demonstration of Spirochaeta pallida in the
cerebrospinal fluid. JAMA, J. Am. Med. Assoc. 60, 108–110.

Noordhoek, G.T., Hermans, P.W., Paul, A.N., Schouls, L.M., van der Sluis, J.J., van
Embden, J.D., 1989. Treponema pallidum subspecies pallidum (Nichols) and
Treponema pallidum subspecies pertenue (CDC 2575) differ in at least one
nucleotide: comparison of two homologous antigens. Microb. Pathog. 6, 29–42.

Noordhoek, G.T., Wieles, B., van der Sluis, J.J., van Embden, J.D., 1990. Polymerase
chain reaction and synthetic DNA probes: a means of distinguishing the
causative agents of syphilis and yaws? Infect. Immun. 58, 2011–2013.

Palmer, G.H., Bankhead, T., Lukehart, S.A., 2009. ‘Nothing is permanent but change’ –
antigenic variation in persistent bacterial pathogens. Cell. Microbiol. 11, 1697–
1705.

Pearson, T., Busch, J.D., Ravel, J., Read, T.D., Rhoton, S.D., U’Ren, J.M., Simonson, T.S.,
Kachur, S.M., Leadem, R.R., Cardon, M.L., Van Ert, M.N., Huynh, L.Y., Fraser, C.M.,
Keim, P., 2004. Phylogenetic discovery bias in Bacillus anthracis using single-
nucleotide polymorphisms from whole-genome sequencing. Proc. Natl Acad.
Sci. USA 101, 13536–13541.

Pillay, A., Liu, H., Chen, C.Y., Holloway, B., Sturm, A.W., Steiner, B., Morse, S.A., 1998.
Molecular subtyping of Treponema pallidum subspecies pallidum. Sex. Transm.
Dis. 25, 408–414.

Pillay, A., Liu, H., Ebrahim, S., Chen, C.Y., Lai, W., Fehler, G., Ballard, R.C., Steiner, B.,
Sturm, A.W., Morse, S.A., 2002. Molecular typing of Treponema pallidum in South
Africa: cross-sectional studies. J. Clin. Microbiol. 40, 256–258.

Pope, V., Fox, K., Liu, H., Marfin, A.A., Leone, P., Seña, A.C., Chapin, J., Fears, M.B.,
Markowitz, L., 2005. Molecular subtyping of Treponema pallidum from North
and South Carolina. J. Clin. Microbiol. 43, 3743–3746.

Powell, M.L., Cook, D.C., 2005. The myth of syphilis: The natural history of
treponematosis in North America. University Press of Florida, Gainsville, p. 544.

Rattei, T., Ott, S., Gutacker, M., Rupp, J., Maass, M., Schreiber, S., Solbach, W., Wirth,
T., Gieffers, J., 2007. Genetic diversity of the obligate intracellular bacterium
Chlamydophila pneumoniae by genome-wide analysis of single nucleotide
polymorphism: evidence for highly clonal population structure. BMC
Genomics 8, 355.

Román, G.C., Román, L., 1986. Occurence of congenital, cardiovascular, visceral,
neurologic, and neuro-ophthalmologic complications in late yaws: a theme for
future research. Rev. Infect. Dis. 8, 760–777.

Rompalo, A.M., 2001. Can syphilis be eradicated from the world? Curr. Opin. Infect.
Dis. 14, 41–44.

Rothschild, B.M., 2005. History of syphilis. Clin. Infect. Dis. 40, 1454–1463.
Rothschild, C., Rothschild, B.M., 2000. Occurrence and transitions among the

treponematoses in North America. Chungara, Revista de Antropologia Chilena
32, 147–155.

Roumagnac, P., Weill, F.-X., Dolecek, C., Baker, S., Brisse, S., Chinh, N.T., Le, T.A.H.,
Acosta, C.J., Farrar, J., Dougan, G., Achtman, M., 2006. Evolutionary history of
Salmonella typhi. Science 314, 1301–1304.

Saunders, N.J., Jeffries, A.C., Peden, J.F., Hood, D.W., Tettelin, H., Rappuoli, R., Moxon,
E.R., 2000. Repeat-associated phase variable genes in the complete genome
sequence of Neisseria meningitidis strain MC58. Mol. Microbiol. 37, 207–215.

Schell, R.F., Azadegan, A.A., Nitskansky, S.G., LeFrock, J.L., 1982. Acquired resistance
of hamsters to challenge with homologous and heterologous virulent
treponemes. Infect. Immun. 37, 617–621.

Schmidt, H., Hensel, M., 2004. Pathogenicity islands in bacterial pathogenesis. Clin.
Microbiol. Rev. 17, 14–56.

Seshadri, R., Myers, G.S., Tettelin, H., Eisen, J.A., Heidelberg, J.F., Dodson, R.J.,
Davidsen, T.M., DeBoy, R.T., Fouts, D.E., Haft, D.H., Selengut, J., Ren, Q., Brinkac,
L.M., Madupu, R., Kolonay, J., Durkin, S.A., Daugherty, S.C., Shetty, J.,
Shvartsbeyn, A., Gebregeorgis, E., Geer, K., Tsegaye, G., Malek, J., Ayodeji, B.,
Shatsman, S., McLeod, M.P., Šmajs, D., Howell, J.K., Pal, S., Amin, A., Vashisth, P.,
McNeill, T.Z., Xiang, Q., Sodergren, E., Baca, E., Weinstock, G.M., Norris, S.J.,
Fraser, C.M., Paulsen, I.T., 2004. Comparison of the genome of the oral pathogen
Treponema denticola with other spirochete genomes. Proc. Natl Acad. Sci. USA
101, 5646–5651.



202 D. Šmajs et al. / Infection, Genetics and Evolution 12 (2012) 191–202
Šmajs, D., McKevitt, M., Howell, J.K., Norris, S.J., Cai, W.W., Palzkill, T., Weinstock,
G.M., 2005. Transcriptome of Treponema pallidum: gene expression profile
during experimental rabbit infection. J. Bacteriol. 187, 1866–1874.

Šmajs, D., McKevitt, M., Wang, L., Howell, J.K., Norris, S.J., Palzkill, T., Weinstock,
G.M., 2002. BAC library of T. Pallidum DNA in E. coli. Genome Res. 12, 515–522.
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