Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs

Carsten Thomassen
Department of Mathematics, Technical University of Denmark, Building 303, DK-2800, Lyngby, Denmark

Received January 22, 1997

In 1975, John Sheehan conjectured that every Hamiltonian 4-regular graph has
a second Hamiltonian cycle. Combined with earlier results this would imply that
View metadata, citation and similar papers at core.ac.uk

1. INTRODUCTION

A classical result of Cedric Smith (see [12]) says that every edge in a 3 -regular graph is contained in an even number of Hamiltonian cycles. So, if a 3-regular graph has a Hamiltonian cycle, then it has a second (in fact even a third) Hamiltonian cycle. In 1978 Andrew Thomason [9] extended Smith's theorem to all r-regular graphs where r is odd (in fact, to all graphs in which all vertices have odd degree). Sheehan [8] made the conjecture that every Hamiltonian 4-regular graph has a second Hamiltonian cycle. As every r-regular graph (r even) is the union of pairwise edge-disjoint spanning 2-regular graphs, Sheehan's conjecture combined with the results of Smith and Thomason implies that every Hamiltonian regular graph other than a cycle has a second Hamiltonian cycle. (Smith's theorem and Sheehan's conjecture were rediscovered by Chen [2].)

Besides being of interest in its own right, a second Hamiltonian cycle may have an application to the chromatic polynomial. If C is a Hamiltonian cycle in the graph G and e is an edge not in C but in a second Hamiltonian cycle, then, clearly, both $G-e$ and G / e are Hamiltonian. In [10] it is conjectured that every Hamiltonian graph of minimum degree at least 3 contains an edge e such that both $G-e$ and G / e are Hamiltonian. If true, the chromatic polynomial of a Hamiltonian graph cannot have a root between 1 and 2.

Reference [11] contains a general sufficient condition for the existence of a second Hamiltonian cycle. In [11] that condition is combined with a
result of Fleischner and Stiebitz [6] to show that every longest cycle in every 3 -connected, 3 -regular graph has a chord. An intermediate step verifies Sheehan's conjecture for those 4-regular graphs which are the union of a Hamiltonian cycle and pairwise disjoint triangles. In this note we prove the last statement of the abstract by combining the general condition in [11] with Lovász' Local Lemma [4].

2. RED-INDEPENDENT, GREEN-DOMINATING SETS AND A SECOND HAMILTONIAN CYCLE

Let G be a graph in which each edge is colored red or green. A vertex set S is called red-independent if no two vertices of S are joined by a red edge. We say that S is green-dominating if every vertex not in S is joined to a vertex in S by a green edge. With this notation we have:

Theorem 2.1 [11]. Let C be a Hamiltonian cycle in the graph H. Color all edges in C red and all edges not in C green. If H has a vertex set S which in both red-independent and green-dominating, then H has a second Hamiltonian cycle.

We shall establish the existence of the set S in a large class of regular graphs using the version of Lovász' Local Lemma [4] presented in [7, page 79].

Theorem 2.2 (Lovász' Local Lemma). Let $A_{1}, A_{2}, \ldots, A_{n}$ be events in a probability space. Let G be a graph with vertex set $A_{1}, A_{2}, \ldots, A_{n}$ such that, for each $i=1,2, \ldots, n, A_{i}$ is independent of any combination of events that are not neighbors of A_{i} in G. Suppose there exist positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$ less than 1 such that, for each $i=1,2, \ldots, n$, the probability $P\left(A_{i}\right)$ of A_{i} satisfies

$$
\begin{equation*}
P\left(A_{i}\right)<x_{i} \Pi\left(1-x_{j}\right) \tag{1}
\end{equation*}
$$

(where the product is taken over all j for which A_{j} is a neighbor of A_{i}).
Then

$$
P\left(\bar{A}_{1} \wedge \bar{A}_{2} \wedge \cdots \wedge \bar{A}_{n}\right)>0
$$

Theorem 2.3. Let H be a graph whose edges are colored red or green. Assume that the spanning red subgraph is r-regular and the spanning green subgraph is k-regular. If $r \geqslant 3$ and

$$
k>200 r \log r,
$$

(where log is the natural logarithm), then H has a vertex set S which is red-independent and green-dominating.

Proof. Let p be a fixed real number, $0<p<1$. We define a probability space on all colorings of $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in colors 0 and 1 . We define the probability of a coloring where a particular set of q vertices have color 1 and the remaining vertices have color 0 as

$$
p^{q}(1-p)^{m-q}
$$

For each red edge e of H we let A_{e} denote the event that the ends of e both have color 1 .

Clearly

$$
P\left(A_{e}\right)=p^{2} .
$$

For each vertex v of H, let A_{v} denote the event that v and the vertices of H joined to v by green edges all have color 0 . Clearly

$$
P\left(A_{v}\right)=(1-p)^{k+1} .
$$

The existence of S will follow from a proof that there is a positive probability that neither of the events A_{e} or A_{v} defined above occur. For this we use Theorem 2.2.

Let G be the graph whose vertices are the events A_{e}, A_{v} defined above such that two events are neighbors in G if and only if the corresponding vertex sets intersect. Clearly, G satisfies the assumption of Theorem 2.2.

We shall now associate real numbers to the events so that (1) in Theorem 2.2 is satisfied.

To each event A_{e} we associate a real number $x(0<x<1)$, and to each event A_{v} we associate a real number $y(0<y<1)$. For each event of the form A_{e}, condition (1) is implied by

$$
\begin{equation*}
p^{2}<x(1-x)^{2 r-2}(1-y)^{2 k+2} \tag{2}
\end{equation*}
$$

For each event of the form A_{v} condition (1) is implied by

$$
\begin{equation*}
(1-p)^{k+1}<y(1-x)^{(k+1) r}(1-y)^{k^{2}} . \tag{3}
\end{equation*}
$$

Now, if $p=1 / 5 r, x=1 / 10 r^{2}$ and $y=1 / k^{2}$, then (2) is satisfied for all $k \geqslant 10$, and (3) is satisfied for $k>200 r \log r$.

Theorem 2.3 is formulated for $r \geqslant 3$ only. We now consider the cases $r=1,2$.

3. THE CASE $r=2$

If we combine the proof of Theorem 2.3 with Theorem 2.1 we get
Theorem 3.1. If G has a Hamiltonian cycle and is m-regular with $m \geqslant 300$, then G has a second Hamiltonian cycle.

Proof. If $r=2, k=298$, and p, x, y are as in the proof of Theorem 2.3, then (2) and (3) are satisfied.

The constant 300 in Theorem 3.1 can be lowered to a number closer to 200 than 300 . With a better choice of p, x, y it can be further improved. A referee says that Theorem 2.3 works for $r=2$ and $k=80$ by taking $y=0,0001$, $x=(0,179)^{2}$ and $p=0,171$. Adrian Bondy (private communication) says that it works for $k=71$ by taking $y=(0,89)^{72}, x=(0,25)^{2}$ and $p=0,2305$.

If C is a (red) Hamiltonian cycle in a 4-regular graph G and $G-E(C)$ is the union of (green) cycles of length 4 , then a green-dominating set must contain at least half of the vertices of G. So, if it is also red-independent it must contain every second vertex of C. But, it is easy to construct G such none of the two sets consisting of every second vertex of C is greendominating. Therefore, Sheehan's conjecture can not be obtained by the method of this paper. But, perhaps the 4-regular case is the only case that needs a special method.

Problem 3.2. Does Theorem 2.3 hold for $r=2$ and $k=4$?

A Hamiltonian graph of minimum degree 3 need not contain any second Hamiltonian cycle, see [3,5]. Bondy [1, Problem 7.14] asked if Sheehan's conjecture extends to graphs of minimum degree 4 . It would also be of interest to verify this for 10^{10}, say, instead of 4 . A result of this type does not seem to follow from the method of this note since Theorem 2.3 does not extend to graphs of large minimum degree k even for $r=1$. To see this, let $e_{1}, e_{2}, \ldots, e_{k}$ denote k red edges with no end in common. For each choice $x_{1}, x_{2}, \ldots, x_{k}$, where x_{i} is an end of e_{i} for $i=1,2, \ldots, k$, we add two vertices v_{1}, v_{2}, joined by a red edge such that both v_{1}, v_{2} are joined to precisely $x_{1}, x_{2}, \ldots, x_{k}$ by green edges. The resulting graph has green minimum degree k and it has no red-independent, green-dominating set.

Adrian Bondy and Bill Jackson (private communication) have shown that there exists a constant c such that the following holds: If H is a graph with n vertices and with minimum degree $c \log n$, and the edges of H are colored red and green such that the red edges form a Hamiltonian cycle, then H has a red-independent, green-dominating set. By the above construction this is best possible except for the value of c.

4. THE CASE $r=1$

Theorem 4.1. If the edges of a 3-regular multigraph with no loops are colored red and green such that the red subgraph is a perfect matching, then G has a red-independent green-dominating set of vertices S.

Moreover,
(i) if v is any vertex of G, then S can be chosen such that $v \in S$, and
(ii) if e is any green edge of G and we insert a new vertex u of degree 2 on e, then the resulting graph G^{\prime} has a red-independent greendominating set S such that $u \notin S$.

Proof (by Induction on $|V(G)|$). We call the vertex v in (i) the special vertex and the vertex u in (ii) the dummy vertex. If $|V(G)| \leqslant 4$, the statement is easily verified so assume that $|V(G)| \geqslant 5$. We may also assume that G is connected.

Consider first the case where G has two vertices x_{1}, x_{2} joined by two edges. Let y_{1} (respectively y_{2}) be the neighbor of x_{1} (respectively y_{2}) distinct from x_{2} (respectively x_{1}). If $y_{1} \neq y_{2}$, then we delete x_{1}, x_{2} and add the edge $y_{1} y_{2}$ and complete the proof be induction. (The color of $y_{1} y_{2}$ is that of $y_{1} x_{1}$) If $y_{1}=y_{2}$, then we let x_{3} denote the neighbor of y_{1} distinct from x_{1}, x_{2}. We may assume that x_{3} is not incident with a double edge as this case has been disposed of. The edge $y_{1} x_{3}$ is red.

We now delete x_{1}, x_{2}, y_{1}. If we thereby delete the special vertex or the edge with the dummy vertex, we think of x_{3} as a new dummy vertex. Otherwise, we also delete x_{3} and add a green edge between the two neighbors. Now the proof is easily completed by induction. So we may assume that G has no multiple edges.

If G has a special vertex v, then we let u denote the vertex joined to v by a red edge. We now delete v and add a green edge between the two neighbors of v distinct from u. We apply induction to the resulting graph. We may therefore assume that G has no special vertex. In other words, it remains only to prove (ii). Let C be the green cycle of G containing u, and let C^{\prime} be the corresponding cycle in G^{\prime}. (Note that C may have red chords.)

Consider first the case where C has even length. Recolor every second edge of C by the color blue such that e remains green. We delete C and replace every maximal path which is alternately colored red and blue by a new red edge. We apply the induction hypothesis to the resulting graph.

Each new red edge e^{\prime} corresponds to a red-blue path P. We may assume that S contains precisely one end of e^{\prime}. That vertex will also be in the final S. Moreover, the final S will contain every second vertex of P. By an appropriate choice of a special vertex we may assume that at least one end of e is in the final S. This completes the proof when C has even length.

Consider finally the case where C has odd length. We now recolor each second edge of C^{\prime} blue. Note that there is precisely one maximal blue-red path P_{0} starting at u. We delete C^{\prime} and replace each maximal blue-red path other that P_{0} by a new red edge. We think of the end of P_{0} other than u as a new dummy vertex. We now complete the proof as in the previous case.

REFERENCES

1. J. A. Bondy, Basic graph theory, in "Handbook of Combinatorics" (M. Grötschel, L. Lovász, R. L. Graham, Eds.), pp. 3-110, Amsterdam, North-Holland, 1995.
2. C. C. Chen, On edge-hamiltonian property of Cayley graphs, Discrete Math. 72 (1988), 29-33.
3. R. C. Entringer and H. Swart, Spanning cycles of nearly cubic graphs, J. Combin. Theory Ser. B 29 (1980), 303-309.
4. P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Colloq. Math. Soc. János Bolyai 10 (1973), 609-627.
5. H. Fleischner, Uniqueness of maximal dominating cycles in 3-regular graphs and of Hamiltonian cycles in 4-regular graphs, J. Graph Theory 18 (1994), 449-459.
6. H. Fleischner and M. Stiebitz, A solution to a colouring problem, Discrete Math. 101 (1992), 39-48.
7. R. L. Graham, B. L. Rotschild, and J. H. Spencer, "Ramsey Theory," Wiley, New York, 1980.
8. J. Sheehan, The multiplicity of Hamiltonian circuits in a graph, in "Recent Advances in Graph Theory" (M. Fiedler, Eds.), pp. 447-480, Academia, Prague, 1975.
9. A. G. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Ann. Discrete Math. 3 (1978), 259-268.
10. C. Thomassen, On the number of Hamiltonian cycles in bipartite graphs, Combin. Probab. and Comput. 5 (1996), 437-442.
11. C. Thomassen, Chords of longest cycles in cubic graphs, J. Combin. Theory Ser. B $7 \mathbf{7 1}$ (1997), 211-214.
12. W. T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 21 (1946), 98-101.
