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In 1975, John Sheehan conjectured that every Hamiltonian 4-regular graph has
a second Hamiltonian cycle. Combined with earlier results this would imply that
every Hamiltonian r-regular graph (r�3) has a second Hamiltonian cycle. We shall
verify this for r�300. � 1998 Academic Press

1. INTRODUCTION

A classical result of Cedric Smith (see [12]) says that every edge in a
3-regular graph is contained in an even number of Hamiltonian cycles. So,
if a 3-regular graph has a Hamiltonian cycle, then it has a second (in fact
even a third) Hamiltonian cycle. In 1978 Andrew Thomason [9] extended
Smith's theorem to all r-regular graphs where r is odd (in fact, to all graphs
in which all vertices have odd degree). Sheehan [8] made the conjecture
that every Hamiltonian 4-regular graph has a second Hamiltonian cycle.
As every r-regular graph (r even) is the union of pairwise edge-disjoint
spanning 2-regular graphs, Sheehan's conjecture combined with the results
of Smith and Thomason implies that every Hamiltonian regular graph
other than a cycle has a second Hamiltonian cycle. (Smith's theorem and
Sheehan's conjecture were rediscovered by Chen [2].)

Besides being of interest in its own right, a second Hamiltonian cycle may
have an application to the chromatic polynomial. If C is a Hamiltonian
cycle in the graph G and e is an edge not in C but in a second Hamiltonian
cycle, then, clearly, both G&e and G�e are Hamiltonian. In [10] it is con-
jectured that every Hamiltonian graph of minimum degree at least 3 contains
an edge e such that both G&e and G�e are Hamiltonian. If true, the
chromatic polynomial of a Hamiltonian graph cannot have a root between
1 and 2.

Reference [11] contains a general sufficient condition for the existence of
a second Hamiltonian cycle. In [11] that condition is combined with a
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result of Fleischner and Stiebitz [6] to show that every longest cycle in
every 3-connected, 3-regular graph has a chord. An intermediate step
verifies Sheehan's conjecture for those 4-regular graphs which are the union
of a Hamiltonian cycle and pairwise disjoint triangles. In this note we
prove the last statement of the abstract by combining the general condition
in [11] with Lova� sz' Local Lemma [4].

2. RED-INDEPENDENT, GREEN-DOMINATING SETS AND
A SECOND HAMILTONIAN CYCLE

Let G be a graph in which each edge is colored red or green. A vertex
set S is called red-independent if no two vertices of S are joined by a red
edge. We say that S is green-dominating if every vertex not in S is joined
to a vertex in S by a green edge. With this notation we have:

Theorem 2.1 [11]. Let C be a Hamiltonian cycle in the graph H. Color
all edges in C red and all edges not in C green. If H has a vertex set S which
in both red-independent and green-dominating, then H has a second
Hamiltonian cycle.

We shall establish the existence of the set S in a large class of regular
graphs using the version of Lova� sz' Local Lemma [4] presented in [7,
page 79].

Theorem 2.2 (Lova� sz' Local Lemma). Let A1, A2 , ..., An be events in a
probability space. Let G be a graph with vertex set A1 , A2 , ..., An such that,
for each i=1, 2, ..., n, Ai is independent of any combination of events that are
not neighbors of Ai in G. Suppose there exist positive real numbers
x1 , x2 , ..., xn less than 1 such that, for each i=1, 2, ..., n, the probability
P(Ai) of Ai satisfies

P(Ai)<xi 6(1&xj) (1)

(where the product is taken over all j for which Aj is a neighbor of Ai).
Then

P(A� 1 7 A� 2 7 } } } 7 A� n)>0.

Theorem 2.3. Let H be a graph whose edges are colored red or green.
Assume that the spanning red subgraph is r-regular and the spanning green
subgraph is k-regular. If r�3 and

k>200r log r,
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(where log is the natural logarithm), then H has a vertex set S which is
red-independent and green-dominating.

Proof. Let p be a fixed real number, 0< p<1. We define a probability
space on all colorings of V(H)=[v1 , v2 , ..., vm] in colors 0 and 1. We
define the probability of a coloring where a particular set of q vertices have
color 1 and the remaining vertices have color 0 as

pq(1& p)m&q

For each red edge e of H we let Ae denote the event that the ends of e
both have color 1.

Clearly

P(Ae)= p2.

For each vertex v of H, let Av denote the event that v and the vertices
of H joined to v by green edges all have color 0. Clearly

P(Av)=(1& p)k+1.

The existence of S will follow from a proof that there is a positive prob-
ability that neither of the events Ae or Av defined above occur. For this we
use Theorem 2.2.

Let G be the graph whose vertices are the events Ae , Av defined above
such that two events are neighbors in G if and only if the corresponding
vertex sets intersect. Clearly, G satisfies the assumption of Theorem 2.2.

We shall now associate real numbers to the events so that (1) in
Theorem 2.2 is satisfied.

To each event Ae we associate a real number x(0<x<1), and to each
event Av we associate a real number y(0< y<1). For each event of the
form Ae , condition (1) is implied by

p2<x(1&x)2r&2 (1& y)2k+2 (2)

For each event of the form Av condition (1) is implied by

(1& p)k+1< y(1&x)(k+1) r (1& y)k2
. (3)

Now, if p=1�5r, x=1�10r2 and y=1�k2, then (2) is satisfied for all
k�10, and (3) is satisfied for k>200r log r. K

Theorem 2.3 is formulated for r�3 only. We now consider the cases
r=1, 2.
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3. THE CASE r=2

If we combine the proof of Theorem 2.3 with Theorem 2.1 we get

Theorem 3.1. If G has a Hamiltonian cycle and is m-regular with
m�300, then G has a second Hamiltonian cycle.

Proof. If r=2, k=298, and p, x, y are as in the proof of Theorem 2.3,
then (2) and (3) are satisfied. K

The constant 300 in Theorem 3.1 can be lowered to a number closer to 200
than 300. With a better choice of p, x, y it can be further improved. A referee
says that Theorem 2.3 works for r=2 and k=80 by taking y=0, 0001,
x=(0, 179)2 and p=0, 171. Adrian Bondy (private communication) says
that it works for k=71 by taking y=(0, 89)72, x=(0, 25)2 and p=0, 2305.

If C is a (red) Hamiltonian cycle in a 4-regular graph G and G&E(C)
is the union of (green) cycles of length 4, then a green-dominating set must
contain at least half of the vertices of G. So, if it is also red-independent it
must contain every second vertex of C. But, it is easy to construct G such
none of the two sets consisting of every second vertex of C is green-
dominating. Therefore, Sheehan's conjecture can not be obtained by the
method of this paper. But, perhaps the 4-regular case is the only case that
needs a special method.

Problem 3.2. Does Theorem 2.3 hold for r=2 and k=4?

A Hamiltonian graph of minimum degree 3 need not contain any second
Hamiltonian cycle, see [3, 5]. Bondy [1, Problem 7.14] asked if Sheehan's
conjecture extends to graphs of minimum degree 4. It would also be of
interest to verify this for 1010, say, instead of 4. A result of this type does
not seem to follow from the method of this note since Theorem 2.3 does
not extend to graphs of large minimum degree k even for r=1. To see this,
let e1 , e2 , ..., ek denote k red edges with no end in common. For each choice
x1 , x2 , ..., xk , where xi is an end of ei for i=1, 2, ..., k, we add two vertices
v1 , v2 , joined by a red edge such that both v1 , v2 are joined to precisely
x1 , x2 , ..., xk by green edges. The resulting graph has green minimum
degree k and it has no red-independent, green-dominating set.

Adrian Bondy and Bill Jackson (private communication) have shown
that there exists a constant c such that the following holds: If H is a graph
with n vertices and with minimum degree c log n, and the edges of H are
colored red and green such that the red edges form a Hamiltonian cycle,
then H has a red-independent, green-dominating set. By the above con-
struction this is best possible except for the value of c.
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4. THE CASE r=1

Theorem 4.1. If the edges of a 3-regular multigraph with no loops are
colored red and green such that the red subgraph is a perfect matching, then
G has a red-independent green-dominating set of vertices S.

Moreover,

(i) if v is any vertex of G, then S can be chosen such that v # S, and

(ii) if e is any green edge of G and we insert a new vertex u of degree
2 on e, then the resulting graph G$ has a red-independent green-
dominating set S such that u � S.

Proof (by Induction on |V(G)| ). We call the vertex v in (i) the special
vertex and the vertex u in (ii) the dummy vertex. If |V(G)|�4, the state-
ment is easily verified so assume that |V(G)|�5. We may also assume that
G is connected.

Consider first the case where G has two vertices x1 , x2 joined by two
edges. Let y1 (respectively y2) be the neighbor of x1 (respectively y2) dis-
tinct from x2 (respectively x1). If y1 { y2 , then we delete x1 , x2 and add the
edge y1 y2 and complete the proof be induction. (The color of y1 y2 is that
of y1x1) If y1= y2 , then we let x3 denote the neighbor of y1 distinct from
x1 , x2 . We may assume that x3 is not incident with a double edge as this
case has been disposed of. The edge y1x3 is red.

We now delete x1 , x2 , y1 . If we thereby delete the special vertex or the
edge with the dummy vertex, we think of x3 as a new dummy vertex.
Otherwise, we also delete x3 and add a green edge between the two
neighbors. Now the proof is easily completed by induction. So we may
assume that G has no multiple edges.

If G has a special vertex v, then we let u denote the vertex joined to v
by a red edge. We now delete v and add a green edge between the two
neighbors of v distinct from u. We apply induction to the resulting graph.
We may therefore assume that G has no special vertex. In other words, it
remains only to prove (ii). Let C be the green cycle of G containing u, and
let C$ be the corresponding cycle in G$. (Note that C may have red chords.)

Consider first the case where C has even length. Recolor every second
edge of C by the color blue such that e remains green. We delete C and
replace every maximal path which is alternately colored red and blue by a
new red edge. We apply the induction hypothesis to the resulting graph.

Each new red edge e$ corresponds to a red-blue path P. We may assume
that S contains precisely one end of e$. That vertex will also be in the final
S. Moreover, the final S will contain every second vertex of P. By an
appropriate choice of a special vertex we may assume that at least one end
of e is in the final S. This completes the proof when C has even length.
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Consider finally the case where C has odd length. We now recolor each
second edge of C$ blue. Note that there is precisely one maximal blue-red
path P0 starting at u. We delete C$ and replace each maximal blue-red path
other that P0 by a new red edge. We think of the end of P0 other than u
as a new dummy vertex. We now complete the proof as in the previous
case. K
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