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In 1975, John Sheehan conjectured that every Hamiltonian 4-regular graph has
a second Hamiltonian cycle. Combined with earlier results this would imply that

View metadata, citation and similar papers at core.ac.uk

1. INTRODUCTION

A classical result of Cedric Smith (see [12]) says that every edge in a
3-regular graph is contained in an even number of Hamiltonian cycles. So,
if a 3-regular graph has a Hamiltonian cycle, then it has a second (in fact
even a third) Hamiltonian cycle. In 1978 Andrew Thomason [9] extended
Smith’s theorem to all r-regular graphs where r is odd (in fact, to all graphs
in which all vertices have odd degree). Sheehan [8] made the conjecture
that every Hamiltonian 4-regular graph has a second Hamiltonian cycle.
As every r-regular graph (r even) is the union of pairwise edge-disjoint
spanning 2-regular graphs, Sheehan’s conjecture combined with the results
of Smith and Thomason implies that every Hamiltonian regular graph
other than a cycle has a second Hamiltonian cycle. (Smith’s theorem and
Sheehan’s conjecture were rediscovered by Chen [2].)

Besides being of interest in its own right, a second Hamiltonian cycle may
have an application to the chromatic polynomial. If C is a Hamiltonian
cycle in the graph G and e is an edge not in C but in a second Hamiltonian
cycle, then, clearly, both G —e and G/e are Hamiltonian. In [ 10] it is con-
jectured that every Hamiltonian graph of minimum degree at least 3 contains
an edge e such that both G—e and G/e are Hamiltonian. If true, the
chromatic polynomial of a Hamiltonian graph cannot have a root between
1 and 2.

Reference [ 11] contains a general sufficient condition for the existence of
a second Hamiltonian cycle. In [11] that condition is combined with a
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result of Fleischner and Stiebitz [6] to show that every longest cycle in
every 3-connected, 3-regular graph has a chord. An intermediate step
verifies Sheehan’s conjecture for those 4-regular graphs which are the union
of a Hamiltonian cycle and pairwise disjoint triangles. In this note we
prove the last statement of the abstract by combining the general condition
in [11] with Lovasz’ Local Lemma [4].

2. RED-INDEPENDENT, GREEN-DOMINATING SETS AND
A SECOND HAMILTONIAN CYCLE

Let G be a graph in which each edge is colored red or green. A vertex
set S is called red-independent if no two vertices of S are joined by a red
edge. We say that S is green-dominating if every vertex not in S is joined
to a vertex in S by a green edge. With this notation we have:

THeOREM 2.1 [11]. Let C be a Hamiltonian cycle in the graph H. Color
all edges in C red and all edges not in C green. If H has a vertex set S which
in both red-independent and green-dominating, then H has a second
Hamiltonian cycle.

We shall establish the existence of the set S in a large class of regular
graphs using the version of Lovasz’ Local Lemma [4] presented in [7,
page 791].

THEOREM 2.2 (Lovasz’ Local Lemma). Let A,, A,, ..., A, be events in a
probability space. Let G be a graph with vertex set Ay, A,, ..., A, such that,
foreachi=1,2, .., n, A, is independent of any combination of events that are
not neighbors of A, in G. Suppose there exist positive real numbers
X1, Xp, w0 X, less than 1 such that, for each i=1,2, .., n, the probability
P(A;) of A, satisfies

P(A;) <x1I(1 —x;) (1)

(where the product is taken over all j for which A; is a neighbor of A,).
Then

THEOREM 2.3. Let H be a graph whose edges are colored red or green.
Assume that the spanning red subgraph is r-regular and the spanning green
subgraph is k-regular. If r =3 and

k >200r log r,
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(where log is the natural logarithm), then H has a vertex set S which is
red-independent and green-dominating.

Proof. Let p be a fixed real number, 0 < p < 1. We define a probability
space on all colorings of V(H)=/{v,,v,,..v,} in colors 0 and 1. We
define the probability of a coloring where a particular set of g vertices have
color 1 and the remaining vertices have color 0 as

pi(1—p)"—1

For each red edge e of H we let 4, denote the event that the ends of e
both have color 1.
Clearly

P(4,)=p>.

For each vertex v of H, let A4, denote the event that v and the vertices
of H joined to v by green edges all have color 0. Clearly

P(4,)=(1—p)*.

The existence of S will follow from a proof that there is a positive prob-
ability that neither of the events 4, or 4, defined above occur. For this we
use Theorem 2.2.

Let G be the graph whose vertices are the events A,, A4, defined above
such that two events are neighbors in G if and only if the corresponding
vertex sets intersect. Clearly, G satisfies the assumption of Theorem 2.2.

We shall now associate real numbers to the events so that (1) in
Theorem 2.2 is satisfied.

To each event A, we associate a real number x(0 <x < 1), and to each
event 4, we associate a real number y(0 < y <1). For each event of the
form A,, condition (1) is implied by

p2<x(1_x)2r72(1_y)2k+2 (2)
For each event of the form A, condition (1) is implied by
(1=p) <yl =) 0 (1= )~ (3)

Now, if p=1/5r, x=1/10r* and y=1/k?, then (2) is satisfied for all
k=10, and (3) is satisfied for k>200rlogr. |

Theorem 2.3 is formulated for r >3 only. We now consider the cases
r=1,2.
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3. THE CASE r=2

If we combine the proof of Theorem 2.3 with Theorem 2.1 we get

THeOREM 3.1. If G has a Hamiltonian cycle and is m-regular with
m =300, then G has a second Hamiltonian cycle.

Proof. 1f r=2, k=298, and p, x, y are as in the proof of Theorem 2.3,
then (2) and (3) are satisfied. ||

The constant 300 in Theorem 3.1 can be lowered to a number closer to 200
than 300. With a better choice of p, x, y it can be further improved. A referee
says that Theorem 2.3 works for r=2 and k=80 by taking y =0, 0001,
x=1(0,179)* and p=0, 171. Adrian Bondy (private communication) says
that it works for k=71 by taking y = (0, 89)7%, x = (0, 25)% and p =0, 2305.

If Cis a (red) Hamiltonian cycle in a 4-regular graph G and G — E(C)
is the union of (green) cycles of length 4, then a green-dominating set must
contain at least half of the vertices of G. So, if it is also red-independent it
must contain every second vertex of C. But, it is easy to construct G such
none of the two sets consisting of every second vertex of C is green-
dominating. Therefore, Sheehan’s conjecture can not be obtained by the
method of this paper. But, perhaps the 4-regular case is the only case that
needs a special method.

Problem 3.2. Does Theorem 2.3 hold for r=2 and k=4?

A Hamiltonian graph of minimum degree 3 need not contain any second
Hamiltonian cycle, see [3, 5]. Bondy [ 1, Problem 7.14] asked if Sheehan’s
conjecture extends to graphs of minimum degree 4. It would also be of
interest to verify this for 10'°, say, instead of 4. A result of this type does
not seem to follow from the method of this note since Theorem 2.3 does
not extend to graphs of large minimum degree k even for r=1. To see this,
let e, e,, ..., ¢, denote k red edges with no end in common. For each choice
X1, X5, ..., X, Where x; i1s an end of ¢; for i=1, 2, ..., k, we add two vertices
vy, U,, joined by a red edge such that both v,, v, are joined to precisely
X1, X5, ., X by green edges. The resulting graph has green minimum
degree k and it has no red-independent, green-dominating set.

Adrian Bondy and Bill Jackson (private communication) have shown
that there exists a constant ¢ such that the following holds: If H is a graph
with n vertices and with minimum degree ¢ log n, and the edges of H are
colored red and green such that the red edges form a Hamiltonian cycle,
then H has a red-independent, green-dominating set. By the above con-
struction this is best possible except for the value of c.
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4. THE CASE r=1

THEOREM 4.1. If the edges of a 3-regular multigraph with no loops are
colored red and green such that the red subgraph is a perfect matching, then
G has a red-independent green-dominating set of vertices S.

Moreover,

(1) if v is any vertex of G, then S can be chosen such that ve S, and

(i1) if e is any green edge of G and we insert a new vertex u of degree
2 on e, then the resulting graph G has a red-independent green-
dominating set S such that u¢S.

Proof (by Induction on |V(G)|). We call the vertex v in (i) the special
vertex and the vertex u in (ii) the dummy vertex. If |V(G)| <4, the state-
ment is easily verified so assume that |V(G)| = 5. We may also assume that
G is connected.

Consider first the case where G has two vertices x,, x, joined by two
edges. Let y, (respectively y,) be the neighbor of x; (respectively y,) dis-
tinct from x, (respectively x;). If y, # y,, then we delete x,, x, and add the
edge y, y, and complete the proof be induction. (The color of y, y, is that
of y,x,) If y, = y,, then we let x; denote the neighbor of y, distinct from
X1, X,. We may assume that x5 is not incident with a double edge as this
case has been disposed of. The edge y, x5 is red.

We now delete x,, x,, y,. If we thereby delete the special vertex or the
edge with the dummy vertex, we think of x; as a new dummy vertex.
Otherwise, we also delete x; and add a green edge between the two
neighbors. Now the proof is easily completed by induction. So we may
assume that G has no multiple edges.

If G has a special vertex v, then we let u denote the vertex joined to v
by a red edge. We now delete v and add a green edge between the two
neighbors of v distinct from u. We apply induction to the resulting graph.
We may therefore assume that G has no special vertex. In other words, it
remains only to prove (ii). Let C be the green cycle of G containing u, and
let C’ be the corresponding cycle in G'. (Note that C may have red chords.)

Consider first the case where C has even length. Recolor every second
edge of C by the color blue such that ¢ remains green. We delete C and
replace every maximal path which is alternately colored red and blue by a
new red edge. We apply the induction hypothesis to the resulting graph.

Each new red edge ¢’ corresponds to a red-blue path P. We may assume
that S contains precisely one end of ¢’. That vertex will also be in the final
S. Moreover, the final S will contain every second vertex of P. By an
appropriate choice of a special vertex we may assume that at least one end
of e is in the final S. This completes the proof when C has even length.
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Consider finally the case where C has odd length. We now recolor each
second edge of C’ blue. Note that there is precisely one maximal blue-red
path P, starting at u. We delete C' and replace each maximal blue-red path
other that P, by a new red edge. We think of the end of P, other than u
as a new dummy vertex. We now complete the proof as in the previous
case. |
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