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It is s h o w n  that  for any real cons tan ts  b > a ~ 0, mul t i tape  T u r i n g  mach ines  
opera t ing  in space Ll(n) = [bn'] can accept more  sets than  those  operat ing in space 
Lo(n) = [an ~] provided the  n u m b e r  of  work tapes and tape a lphabet  size are held fixed. 
It  is also shown  tha t  T u r i n g  mach ines  wi th  k + 1 work tapes are more  powerful  than  
those  wi th  k work tapes if the  tape a lphabet  size and  the  a m o u n t  of  work space are 
held constant .  

INTRODUCTION 

Results on tape and time complexity of algorithms involving Turing machine 
models are usually derived with the assumption that the devices have finite but 
arbitrary work tape alphabets. A consequence of this is that constant factors on 
tape-bounds and most time-bounds do not affect the complexity classes they define 
[1, 5], nor does addition of more work tapes to tape-bounded Turing machines 
change their computing power [1, 2]. It seems natural to study tape and time com- 
plexity measures with the restriction that the Turing machines operate with the 
same work tape alphabet. A recent paper of Seiferas, Fischer, and Meyer [4] includes 
such a study. In particular, they prove that for tape bounds L(n) satisfying certain 
properties, the class of sets accepted by single-tape Turing machines with m work 
tape symbols operating in L(n) space is properly contained in the class of sets accepted 
by single-tape Turing machines with Mm work tape symbols operating in L(n) space 
for some .,~I,,~ > m. In [3] it is shown that for tape bounds of the form L(n) = n r, 
iV/,,, is, in fact, equal to m + I. This paper continues the study started in [3]. 

Section 1 introduces the notation we shall be using. A theorem in [3] is also restated 
here as the proofs in Sections 2 and 3 will rely heavily on it. In Section 2, we study 
the effect of increasing the work space by a constant factor while holding the number 
of symbols and work tapes constant. We are able to prove the existence of a refined 

* T h i s  work was suppor ted  in part  by the  Nat ional  Science Founda t ion  unde r  Gran t  GJ-35614.  

56 
Copyright �9 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



HIERARCIIIES OF TURING MACHINES 57 

hierarchy for all L(n) for which Theorem 1.1 is true. The main result of this section 
is Theorem 2.2, which states that for polynomial tape, [an ~] tape complexity class 
is properly contained in [bn ~] tape complexity class for any real constants b ~> a ~ 0. 

The effect of increasing the number of work tapes while keeping the number 
of symbols and the work space fixed is studied in Section 3. We show that Turing 
machines with k + 1 work tapes are better than those with k work tapes. Theorem 3.1 
also generalizes Theorem 1.1 to the case of k > 1 work tapes. 

Finally, in Section 4 we present a simple proof of a generally known, but, to our 
knowledge, unpublished, result that two-way nondeterministic (deterministic) finite 
automata with n -1 1 states are more powerful than those with n states. 

1. PRELIMINARIES 

In this paper, we restrict our study to multitape Turing machines with a read- 
only input tape (which is delimited on both ends by markers) and k >~ 1 one-way 
infinite read-write work tapes. For a detailed description of these machines, see 
Hopcroft and Ullman [2]. 

A multitape Turing machine (TM) which has at most m symbols in its work tape 
alphabet and has the property that every input that is accepted is accepted by some 
sequence of moves which uses no more than L(n) tape squares in each work tape 
(where n is the length of the input) is referred to as an m-symbol L(n) tape-bounded 
TM. (The special symbol, B, which stands for a blank, is always assumed to 
be in the work tape alphabet.) 

I f  A is a TM,  then L(A) will denote the set of input tapes accepted by A. By 
NSPACE(L(n), m, k) (DSPACE(L(n), m, k)) we shall mean the class of sets accepted 
by all nondeterministic (deterministic) m-symbol L(n)-tape bounded TM's  with k 
work tapes. Often, when k = 1, we shall omit the third script, i.e. NSPACE(L(n), m) =-: 
NSPACE(L(n), m, 1). 

The following theorem is adopted from [3]. 

TIIEOREM I.I .  For any integers r >~ 1 and m >/ 1, 

(i) NSPAEE(n r, m) ~ NSPACE(n', m + 1), 

(ii) DSPACE(nL m) ~ DSPACE(n,, m + l). 

Remark. The proof technique of [3] and I,emma 2.1 can be used to prove the 
following more general form of Theorem 1.1. For any rational number c > 0 
and integers r, m >~ 1, NSPACE([cn~], m) ~ NSPACE([cn~], m + 1) and 
DSPACE([cn~], m) ~ DSPACE([cn"], m -[- 1). 
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2. SINGLE TAPE T M  SPACE HIERARCHIES 

In this section we study the effect on single tape TM's  of increasing space while 
keeping the number of symbols constant. We begin by showing that increasing 
the tape bound by a constant number of tape squares does not increase the power 
(in terms of being able to accept more sets) of the TM. Then in Theorems 2.1 and 
2.2 we show that increases by a constant factor result in the acceptance of new sets. 

LEMMA 2.1. For any positive integer c, NSPACE(L(n), m) = NSPACE(L(n) + c, m) 
and DSPACE(L(n), m) = DSPACE(L(n) + c, m). 

Proof. Let L be in NSPACE(L(n) + c, m) and A be an m-symbol L(n) + c tape- 
bounded nondeterministic TM. We shall construct an m-symbol L(n) tape-bounded 
nondeterministic TM B accepting L. 

[ * l l l l l [  I lll l 

Finite control 

of 

H2 

I . . -  [al+c-,  

I o, l la'+c la'+c+l I 
Fio. 1. TM B. 

input tape 

Finite control 

of B 

work tape 

Figure 1 illustrates the construction of B. The finite control of B consists of the 
finite control of A and a buffer to hold any string of length c in m symbols. B partitions 
its work space into three segments: a 1 . . .  a i _  1 , a i " .  a i 4 4  " "  a i + e _  1 , and a i + e a i + e + l  " " ,  

with only the segment ai "" a~+~. "- ai+c-1 (which is in the buffer) access'hie to the 
finite control of A. For convenience, we can think of the finite control of A as having a 
read-write head, H~, which can communicate with the buffer. 

We now describe the operation of B. 

(1) B starts by simulating A using the buffer as A's work space. Thus, B need 
not move its work tape head, H 1 . (Initially, all squares of the buffer contain blanks.) 
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B continues tile simulation of A using only the buffer as long as tt2 remains within 
the confines of the buffer. This  situation is depicted in Fig. 1. The  work tape and 
buffer configurations shown in Fig. 1 represent the work tape configuration of A 
as having the string a I " "  a , _ l a i a i §  ""  ai+~ "'" a i+c - la i+~a i§  "'" with its work tape 
head on symbol ai+~. �9 

(2) I f  during the simulation, H 2 attempts to leave the right end of the buffer, 
B must perform the following steps before it can continue simulating A (refer to 
Fig. 1): 

(a) B stores ai in its finite control and shifts all symbols in the buffer 
one square left. 

(b) B moves its work tape head to the square occupied by a ~ + , ,  stores 
ai+ c in its finite control, and rewrites ai+c by a i . 

(c) B writes air on the right end of the buffer and positions H 2 on this 
symbol. 

The  result of steps (a)-(c) is shown in Fig. 2. 

L _ 4 L L I I I " - I  I . . . . .  e-7 
. . . . . . . . . .  . . . . . .  I . . . .  ~22, . . . .  

|~Finlte~176176 I 
k FinKte control of B 

L ~ _ ,H 2 

~ I . .  �9 I 
I 

a I . - -  a l _ l  a i , a l + c +  l 

I.'zc. 2. TM B. 

(3) A process similar to (2) is performed by B if H,, attempts to leave the left 
end of the buffer. 

I t  should be clear from the description above that B accepts L and that B is an 
m-symbol L(n)-tape bounded nondeterministic TS/I. Thus,  L is in NSPACE(L(n),  m, h). 

The  proof that DSPACE(L(n),  m) --  DSPACE(L(n) -~- c, m) is identical. 
The  next two theorems give a relationship between hierarchies based on the tape 

alphabet size and hierarchies based on the amount of work space. A related result 
for single-tape Turing machines appears in [4]. 

TIi~.OR]~M 2.1. F o r  a n y  i n t e g e r  m ~ 2 a n d  E ~ log,,(m + 1) - -  1, 

(i) NSPACE(L(n), m) ~ NSPACE(L(n), m -F 1) 

NSPACE(L(n), m ) ~  NSPACE([(1 -t- e)L(n)], m), 
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(ii) DSPACE(L(n), m) ~ DSPACE(L(n), m + 1) 

DSPACE(L(n), m) ~ DSPACE([(1 + e)L(n)], m). 

Proof. We show that for m ~ 2 and ~ /> 1ogre(m+ 1 ) - -  1, 

DSPACE(L(n), m + 1) _C DSPACE([(1 + E)L(n)], m). 

Let L 1 be in DSPACE(L(n), m + 1). Then  there is an (m + 1)-symbol L(n) tape- 
bounded deterministic T M  T 1 such that L(T1) = L 1 . We construct an m-symbol 
deterministic TM,  T2, such that L(T~) = L ( T 1 )  = L  x and T 2 is [(1 + e)L(n)] 
tape-bounded. T 2 uses p squares of its work tape to encode q squares of Tl's work 
tape. In  order to do this without loss of information we require m ~ > / ( m  + 1) r or 
p/q >/Iog,~(m + 1). 

T 2 has a buffer of size q in its finite control. Each element of this buffer can hold 
any of the m + 1 symbols of T 1 . T 2 begins with a blank buffer and blank work tape. 
I t  simulates T 1 with the help of its buffer. I f  T 1 wants to access a tape square not 
currently represented in T~'s buffer, T 2 encodes the q-square buffer into a string 
of length p in m symbols and writes it on its work tape. I t  then reads from its work 
tape the next p symbols, decodes them into a string of length q and m + 1 symbols 
and so refills its buffer. In  this way T~ is able to simulate the behavior of T 1 . The  
amount of space T~, needs is then bounded by [(p/q)L(n)]. But p/q ~ logm(m + I). 
So, L a is in DSPACE([(1 + E)L(n)], m) for ~ ~> logm(m + 1) - -  1. Hence, 

DSPACE(L(n),  m + l) C DSPACE([(1 + ,)L(n)], m). 

(ii) immediately follows from this. 
We note that if T 1 had been nondeterministic, then the construction oudined 

above would result in a nondeterminisfic T 2 such that L(T2) = L(Tx) and T~ would 
have a tape bound [(1 + e)L(n)]. This leads to (i). 

COROLLARY 2.1. Let L(n) = [cnr], where c > 0 is a rational number and r >/ 1, 
m >~ 2 integers. Then NSPACE(L(n), m) ~ NSPACE([(1 + E)L(n)], m) and 

DSPACE(L(n), m) ~ DSPACE([(1 + e)L(n)], m) for all ~ >~ logm(m + 1) - -  1. 

Proof. Immediate consequence of Theorem 2.1 and remark following Theorem 1.1. 
We remark that for m = 1, the work tape is of no use since this means that only 

the symbol B (i.e. the blank) can occur on the tape and so only regular sets are 
recognizable. So, there is no hierarchy for m = 1. 

While Corollary 2.1 establishes a refined hierarchy for polynomial tape, we can 
prove the existence of a much sharper hierarchy. To do this, we need the following 
lemma. 
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LEMMA 2.2. For rational numbers c, d > 0 and integers m >~ 2 and k such that 
kc >/ 1, 

(i) DSPACE([cnq, m) _ DSPACE([dnq, m) 
=> DSPACF([ckrn~], m) (_; DSPACE([dMn~], m), 

(ii) NSPACE([cnr], m)_C NSPACE([dnr], m) 

=~ NSPACE([ckrnq, m) r NSPACE(fdk~nq, m). 

Proof. We prove (i). The proof of (ii) is similar. 
Le tL  be in DSPACE([ckrn~], m). Then there exists a deterministic T M  (DTM), A,  

which is [ckrn~] tape-bounded, and L(A)  - - L. The proof proceeds by constructing 
a D T M ,  B, such that L(B) -= L' (to be defined below) and B is [cn ~] tape-bounded. 
This implies a DTM,  C, such that L(C) = L' and C is [dn ~] tape-bounded. Using 
C, we show how to construct a DTM, D, which accepts L and which is [dMn ~] tape- 
bounded, thus proving (i). 

(a) Construction of DTM, B, from A 

Define L'  - =  {xd i ] x in L, [x = n, i xdi =- kn}, where d is a new symbol not 
occurring in any string of L, and x I =: length of x. The D T M  B operates as follows. 

1. B checks that the input is of the right form. B can do this using only two 
symbols within space [ck~n ~] since [ck~n r] >~ n. 

2. B simulates tile actions of A on x. 

It is clear that B accepts L'. Now c l xd i ]~ == ck~n ~. Since the input is of length 
N =- kn, B is [cN r] tape-bounded. 

By hypothesis, there is a DTM, C, such that L(C) - - L '  and C is [dN ~] tape- 
bounded with m symbols. 

(b) Construction of DTM, D, from C 

The DTM, D, will simulate C. Simulating C requires [dN ~] = [dkrn ~] tape 
squares. Thus, D has enough space on its work tape. (Note that D's input head can 
easily simulate the behavior of C's input head on segment d i without making use 
of its work tape.) 

While Corollary 2.1 establishes a refined hierarchy for polynomial tape, the next 
theorem proves the existence of a much sharper hierarchy. 

THEORE.Xr 2.2. For all integers r >~ I and m >~ 2 and real constants a and b, 
b > a ~ O ,  

(i) DSPACE([an~], m) ~ DSPACE([bnr], m), 

(ii) NSPACE([anq, m) ~ NSPACE([bn% m). 
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Proof. We prove (i). (ii) follows from a similar argument. We make use of 
Lemma 2.2 which establishes that for rational numbers c, d > 0 and integer k such 
that kc >~ 1 : 

DSPACE([cnq, m) _C DSPACE([dn~], m) ~ D SPACE([ck*nq, m) C_ DSPACE([dk*n*], m). 

Suppose that DSPACE([bnr], m)C DSPACE([anq, m) for some real constants b > 
a >~ 0. Then we can find two rational numbers c and d such that b >~ d > c > a ~> 0. 
This implies that 

(1) DSPACE([dnq, m) C DSPACE([cnq, m). 

Let c = i/j, d = p/q, where i, j, p, and q are positive integers. Then (1) becomes 

(2) DSPACE([ pn~/q], m) C_ DSPACE([in~/j], m). 

By Lemma 2.2 with k = (qj)*, we get 

(3) DSPACE([ pj(qj)*-ln'], m) C_ DSPACE([iq(qj)*-lnq, m). 

From (3) we conclude that 

(4) DSPACE((M + 1)n *, m) C_ DSPACE(Mn ~, m), where M = iq(qj) "-~ > O. 

Again, from Lemma 2.2, we get 

(5) DSPACE((M + 1)k~n *, m) C_ DSPACE(Mk~nL m) for all k >~ 1. 

(6) Clearly, there exists k o/> 0 such that (M + 1)k*>/M(k + 1) r for all 
k /> k 0 . From (5) we have 

DSPACE((M + 1)ko'n *, m) C DSPACE(Mko*nL ra), 

DSPACE((M + 1)(k 0 + 1)*n *, m) _C DSPACE(M(k 0 + 1)*nL m), 
: 

DSPACE((M + 1)k*nL m) C_ DSPACE(Mk*nS ra). 

From (6) and the above sequence of inclusions, it follows that 

DSPACE((M + 1)k*n r, m) C_ DSPACE(Mko*nL m) for all k ~> k o . 

However, from Corollary 2.1 we conclude that there is some integer K such that 
DSPACE(Mkorn r, m) ~ DSPACE((M + 1)Krn r, m), contradicting (6). 

3. MULTITAPE TURING MACHINES 

In this section the effect of varying the parameters m and k in the classes 
NSPACE(L(n), m, k) and DSPACE(L(n), m, k) is investigated. Some of the results 
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are stated only for NSPACE(L(n), m, k), although it should be clear that the proofs 
used apply just as well to DSPACE(L(n), m, k). 

To prove the main result of this section, we need the following two lemmas. 

LEMMA 3.1. Let k, 1, and m be positive integers such that rn k >/I. Then, 

NSPACE(L(n), l, 1) _C NSPACE(L(n), m, k). 

Proof. Obvious. 

LEMmA 3.2. For all positive integers m and k, 

NSPACE(L(n), m, k) _C NSPACE(L(n), m ~ + I, 1). 

Proof. By Lemma 2.1, it is sufficient to prove that 

NSPACE(L(n), m, k) _C NSPACE(L(n) + k, m ~: + 1, 1). 

SO let L be in NSPACE(L(n), m, k) and A be an m-symbol L(n) tape-bounded non- 
deterministic T M  (NTM)  with k work tapes accepting L. We shall first construct 
an (m ~ --  k)-symbol L(n) tape-bounded N T M  B with a single work tape accepting L. 
B will have k tracks on its work tape, one track for each work tape of A. A track 
symbol is in the form of a k-tuple (a x , a2 ,..., ak), where each ai is a symbol in the 
work tape alphabet of A. Since the work tape alphabet of A has at most m symbols, 
B needs no more than m z' symbols to represent all k-tuples. To simulate A properly, 
B must be able to encode the positions of the k work tape heads of A. For this purpose, 
B uses k extra symbols, H a , / /2  .... , H~.  B places each of these symbols on its work 

+H 1 

., I~ l a~ a~ I .~ a~! .~ "~1 "~ a , O  { 
+H 2 

t ~ - "  g- -b- -7- -b '  b4' b5 b6 b7 b s I  -I I 2 i 3, I b9 I blO " " " i  

+H 3 

t ~ _ _ ~  - -  : _ _ . ~  ~ - A m -  

,H 6 

~, ~ ~ ~1 ~ ~ ~ l ( ~  ~ . - . l  
FIGURE 3 
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[ ? i  - 
FIGURE 4 
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tape as follows. H i is placed immediately to the fight of the square containing the 
track symbol whose ith coordinate is the symbol scanned by the ith work tape head 
of A. (Of course, if the squares immediately to the right of the track symbol already 
contain symbols H h , Hiz ,..., Hi~, then H,. is placed to the right of these symbols.) 
For example, if k : ~ 4 and the configurations of the four work tapes of A are as 
shown in Fig. 3, then B's work tape would have the configuration shown in Fig. 4. 

We may assume that at the start of every move simulation of A, the work tape 
head of B is scanning one of the Hi's. We may also assume that B keeps track of the 
relative positions of the symbols H 1 , H 2 ,...,/ark in its finite control. With these 
assumptions, it is clear that B can retrieve the symbols scanned by all the work tape 
heads of A. Moreover, B can easily update the locations of the symbols H 1 , H2 ..... t lk  

to correspond to the new positions of the work tape heads of A. It  follows that B 
accepts L and that B is L(n) + k tape-bounded with m k -'- k work tape symbols. 

Now, since B keeps track of the relative positions of the symbols H I ,  H2 ,..., lI~,, 
they need not be distinct. In fact, one symbol is sufficient. Thus, we can modify 
B to an equivalent N T M  B' which is L(n) + k tape-bounded and has only m 1~ + 1 
work tape symbols. 

We are now ready to prove the main result of this section. 

THEOREm'V[ 3.1. Let  N S P A C E ( L ( n ) , m ,  1) ~ NSPACE(L(n), m + 1, 1)foreach m ~ I. 
Then we have 

(1) NSPACE(L(n), m, k) ~ NSPACE(L(n), m + 1, k) for  all m >~ 1 and k >/1.  

(2) NSPACE(L(n), m, k) g NSPACE(L(n), m, k + l) for  all m >~ 2 and k >~ I. 

(3) For each m ~ 1 and i >~ 1, there exists k o >/ 1 such that 

NSPACE(L(n), m, k + i) ~ NSPACE(L(n), ra + 1, k) for  all k >~ h o . 

(4) For each k >/ 1 and i >~ l, there exists m o >~ 1 such that 

NSPACE(L(n), mi, k) ~- NSPACE(L(n), m, k + 1) for  all m >~ m o . 
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Proof. 

(1) By Lemma 3.2, NSPACE(L(n), m, k)___~ NSPACE(L(n), m k + 1, 1). By 
hypothesis, NSPACE(L(n), m k -t- 1, 1) ~ N S P A C E ( L ( n ) ,  rn k + 2, 1). Since (m -t- l) ~ 
m ~ + 2 for all m ~ 1 and k ~ 2, it follows from Lemma 3.1 that 

NSPACE(L(n), m, k) ~ NSPACE(L(n), m + I, k). 

The case k = l is solved in [3]. 

(2) The proof is similar to that of (1) by noting that rn k+l ~ m k + 2 for all 
m ~ 2 a n d k ~  1. 

(3) NSPACE(L(n), m, k + i ) _  NSPACE(L(n), m Ik.~) ~- 1, 1) by Lemma 3.2. 
Now, NSPACE(L(n), tn (~'~) _ 1, l) ~ NSPACE(L(n), m (A'~*) + 2, 1) by hypothesis. 
Clearly, there exists k o ~ 1 such that (m-I- 1) k ~ r n  ~k+i)+2 for all k ~ k  o. It 
follows from I,emma 3.1 that NSPACE(L(n), m, k ~- i) ~ NSPACE(L(n), m d- l, k) 
for a l lk  ~ k  o. 

(4) The proof is similar to that of (3) by noting that for each k ~ 1 and i ~ 1, 
there exists m o ~ 1 such that m k~l ~ (mi)k ~_ 2 for all m ~ mo. 

Using Theorems 1.1 and 3.1, we have 

COROLLARY 3.1. For any positive integer r, 

(1) NSPACE(n ~, m, k) ~ NSPACE(n *, m + l, k)for  all m >~ 1 and k ~ 1. 

(2) NSPACE(n *, m, k) ~ NSPACE(n ~, m, k -7 1) for  all m ~ 2 and k >/ 1. 

(3) For each m ~ 1 and i ~ 1, there exists k o ~ 1 such that 

NSPACE(n r, m, k -t- i) ~ NSPACE(n *, m + 1, k) for  all k ~ k o . 

(4) For eactz k ~ 1 and i ~ 1, there exists m o ~ 1, such that 

NSPACE(n r, mi, k) ~_ NSPACE(n *, m, k -~- 1) for  all m ~ m o . 

The following is an analog of Theorem 2.1 for multitape TM's. 

THEOREM 3.2. For the case where the TM's have k > 1 work tapes and m >~ 2 

work tape o,mbols, the following hold. 

(i) DSPACI~L(n), m) ~ DSPACE(L(n), m -]- 1) 

DSPACE(L(n), m, k) ~ DSPACE([log,,,(m k + 2)L(n)], m, k), 

(ii) NSPACE(L(n), m) ~ NSPACE(L(n), m + 1) 

=~ NSPACE(L(n), m, k) ~ NSPACE([log,~,(m ~" 4- 2)L(n)], m, k). 
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Proof. The proof follows the same pattern as that of Theorem 2.1 with the aid 
of Theorem 3.1. Thus, for (i) the following strategy is used. 

DSPACE(L(n),  m, k) C DSPACE(L(n), m k -- 1) ~ DSI'ACE(L(n),  m k + 2) 

_C DSPACE([log,,,,(m e + 2)L(n)l, m, k). 

COROLLARY 3.2. Let L(n) = [cnr], where c 3> 0 is a rational number and r ~ 1, 
m >/2, k ~ 2integers. Then DSPACE(L(n), m, k) ~ DSPACE([(1 + c)L(n)], m, k )and  
NSPACE(L(n), m, k) ~ NSPACE([(1 + c)L(n)], m, k ) f o r  all c >/log,~(m k + 2) - -  1. 

The proof of Theorem 2.2 can be extended to prove the following more general 
result. 

COROLLARY 3.3. For all integers r, k >1 1, and m >~ 2 and real constants a and b, 
b > a > ~ O ,  

(i) DSPACE([an~], m, h) K DSPACE([bn'], m, k), 

(ii) NSPACE([an~], m, k) ~ NSPACE([bnq, m, k). 

4. FINITE AUTOMATA 

We conclude our results with a simple proof of a generally known, but, to our 
knowledge, unpublished, result concerning two-way nondeterministic (deterministic) 
finite automata. We refer the reader to [2] for the definitions of these devices. 

THEOREM 4.1. For each n >~ 1, the class of sets accepted by two-way nondeterministic 
(deterministic)finite automata with n + 1 states properly contains the class of sets accepted 
by two-way nondeterministic (deterministic)finite automata with n states. 

Proof. Containment is obvious. We prove proper containment for the deter- 
ministic case, the argument being similar for the nondeterministic case. 

For each n >/ l, let L~ = {a"}. Ln is accepted by a two-way deterministic finite 
automaton A with n -1- 1 states, ql ,  q2 ,.-., q,+x, where ql is the initial state, qn-~l 
is the only accepting state, and the state transition is defined as follows. For I ~< i ~ n, 
_4, in state qi with input a, moves right and enters state qi+l. _4, in state q,+l with 
input a, moves left and remains in state q,+l- The only string that will cause .4 
to enter state q~+l upon leaving the right end of the string starting from the initial 
state (on the left end of the string) is a". Thus, -4 accepts Ln.  

Suppose that L ,  is accepted by some two-way deterministic finite automaton B. 
Consider the input a" to B. For 1 ~< j ~ n, let qij be the state of B the last time 
it scans the j th symbol of a ~ before moving right. Let qi+x be the state B enters 
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upon leaving the right end of an. Clearly, qq+t is an accepting state. We claim that 

q q : / = q h f ~  1 ~ s ,  t ~ < n + l  w i t h s : # t .  
Suppose qi, := qi, for some s < t. Then  the string a~(a*-*) ~ would also be accepted 

by B for all k ~> l. This  contradicts the fact that B accepts only the string an. I t  

follows that q q ,  qi 2 ,..., qi~+ t are distinct. Thus,  B must  have at least n + 1 states. 
For the case of one-way finite automata one can easily show that deterministic 

(nondeterministic) (n + 1)-state finite automata are more powerful than n-state 

deterministic (nondeterministic) finite automata. 
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