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Quadratic dynamical systems come from differential or discrete systems of
the form X = Q(X) or X(k+1)=Q(X(k)), where Q: R" - R” is homogeneous of
degree 2; ie.. Q(aX)=2'Q(X) for all xe R, Xe R". Defining a bilinear mapping
PR xR > R"by f(X, V)= QX+ ¥)— Q(X)— Q( V)], we view YY=$(X. Y)
as a multiplication. and thus consider A =(R", ) to be a commutative, non-
associative algebra. The quadratic systems are then studied with the general theme
that the structure of the algebras helps determine the behavior of the solutions. For
example. semisimple algebras give a decoupling of the original system into systems
occurring in simple algebras, and solvable algebras give solutions to differential
systems via linear differential equations; the general three-dimensional example of
the latter phenomenon is described. There are many classical examples and the
scope of quadratic systems is large; every polynomial system can be embedded into
a higher dimensional quadratic system such that solutions of the original system are
obtained from the quadratic system. For differential systems. nilpotents of index 2
(N =0) are equilibria and idempotents (£> = E) give ray solutions. The origin is
never asymptotically stable, and the existence of nonzero idempotents implies that
the origin is actually unstable. Nonzero equilibria are not hyperbolic, but can be
studied by standard algebra techniques using nondegenerate bilinear forms as
Lyapunov functions. Periodic orbits lie on “cones.” They cannot occur in dimension
2 or in power-associative algebras. No periodic orbit can be an attractor but “limit
cycles” (invariant cones) can exist. Automorphisms of the algebra A leave equi-
libria, periodic orbits, and domains of attraction invariant. Also, explicit solutions
can be given by the action of automorphisms on an initial point; the general
three-dimensional example of this is described. Thus if there are sufficient
automorphisms. Hilbert's sixteenth problem in R® has the following answer: if the
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periodic orbits of fixed period are isolated. then there is only one cone of periodic
solutions; this cone is almost an attractor. For discrete systems there are many
similarities to the differential systems. For example, orbits can be given by
automorphisms, and again, the general three-dimensional example of this is
described. However, distinctions become more obvious using algebras; for example,
if the algebra A is nilpotent, then for the differential system. the solutions are
unbounded, but for the discrete system, the trajectories iterate to zero in 4; also
idempotents E” = E are the fixed points for the discrete system, and E is unstable
if there exist suitable nilpotents N>=0. The interplay between algebras and
dynamical systems can solve old problems, but more importantly, it can create new
opportunities in both areas.  « 1995 Academic Press, Inc.

1. INTRODUCTION

Quadratic dynamical systems are defined by quadratic mappings
E:R"— R" of the form

E(X)=C+TX+ Q(X), (1)

where C is a constant vector, T:R"— R” is linear, and Q: R"—> R" 1s
homogeneous of degree 2 (Q(aX)=a’Q(X) for all xe R and XeR"). One
can think of such a mapping E as a vector field and thus study the
associated quadratic differential system

X =E(X). (2)

(Here X = (d/dt)X.) One can also think of E as being an iteratable mapping
and thus study the associated quadratic discrete system

Xtk + 1) = E(X(k)). (3)

From @, one obtains a unique, symmetric, bilinear mapping f: R" x R”
— R" by

1
BX, Y) =2 0%(0)- (X, Y)

=3[QX+Y)—Q(X)—-Q(Y)].

For example, the Lorenz equations give the following quadratic system
in R*:

b —a a 0 x| 0
X=|x =] ¢ =1 0 || x|+ —xix;
X4 0 0 —b]| x XyX,

=C+TX+ Q(X).
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Thus the associated symmetric bilinear map is given by

0 X, Y
BX, Y)= _%(—\'1 Y3ty ) for X=|x,|,.Y=]|)
%(x] Y2+ yix2) X3 V3

In general, we think of the bilinear mapping f§ as being a multiplication
for R”, and thus the structure 4 =(R", ) 1s a commutative, nonassociative
algebra [36]. Well-studied examples of nonassociative algebras include
associative algebras (“non-" means “not necessarily”), alternative algebras
(such as the octonians), Jordan algebras (such as the space of real sym-
metric matrices with anticommutator as product), and Lie algebras.

If we make the further abbreviation XY :=f(X,Y), we can think of (2)
and (3) as being quadratic systems occurring in A, and write

X=C+TX+X? Xk+1)=C+TX(k)+ X(k+1)%

Our theme is to study the interrelationship between properties of the
dynamical systems (2) and (3) and the properties of the corresponding
algebra. For quadratic differential systems, this theme began with the semi-
nal paper of L. Markus [23], who gave the first classification (up to affine
equivalence) of system (2) in the homogeneous case (C=0, T=0). Other
important contributions in this area include the papers of Kaplan and
Yorke [14], Koecher [18], Rohrl [27], [28], and the recent monograph
of Walcher [38]. This last contains an extensive bibliography of related
papers.

We will now give examples to show that many well-known differential
systems can be considered to be quadratic differential systems occurring in
an algebra. In Section 6, we will give examples of quadratic discrete
systems occurring in algebras.

ExampLEs. (1) By Taylor’s theorem, quadratic differential systems
occur as quadratic approximations to more general systems X = F(X) ~
F(O)+ F0) X + F2(0) X221, where f(X, X)=F®(0) X*/2! as before.

(2} Let A=(R", ) be an algebra with {X,, ... X,} as a basis, then
for X=3% x,X;, Y=3 y;X; bilinearity gives (X, Y)=3 x,y; B(X,, X,).
Thus it suffices to know the product of the basis vectors to know S(X, Y).
This may be given in terms of a multiplication table. For the Lorenz
equation with {e,, e,, e;} the natural basis we have

B | € €3 €3

1 i
€ 0 263 —2€2
€y %(’3 0 0
ey | —ie, 0 0
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(3) Quadratic equations occur in linear control systems with a
quadratic cost function. For X e R" (the states) and Ue R¥ (the inputs), let
the linear system be given by dX/dt=FX+ GU for suitable constant
matrices F and G, and 7€ [a, b]. Let the quadratic cost function be given
by J(U) = {2 LiX(1), Ulr))dr, where L(X,U) = J(X'QX + U'RU) for
suitable symmetric matrices Q and R. The system that is optimal over
[a, b] relative to the cost J(U) is given by the feedback law Ulr)=
—R 'G'P(t) X(1t), where the nxn symmetric matrix P(r) satisfies the
quadratic Riccati matrix equation dP/dt = —Q— PF— F'P+ P(GR™'G")P.
The multiplication (P, P} = P(GR 'G') P makes the vector space of nxn
symmetric matrices into a Jordan algebra.

(4) The Euler equation for the motion of a rotating rigid body with
no external forces is given by the quadratic system in R*

X ((Iy—1)/1,) x4
Xo | = (U, = 13)/15) x, x5
X3 (1, —=1)/1) x X,

where the nonzero moments of inertia /, satisfy I, # 1, # I, #1, .

(5} The differential geometry of invariant Lagrangian systems is
given in terms of quadratic systems and extends the preceding example. Let
G be a connected Lie group and let H be a closed (Lie) subgroup with Lie
algebras g and A, respectively. The homogeneous space G/H is reductive if
there is a subspace m of g such that g=m+#h (direct sum) and
(Ad HY(my=m; ie., [h,m] Sm. For example, let g and /i be semisimple
and m = h* relative to the Killing form of g. For a reductive space, there
is a bijective correspondence between the set of G-invariant connections V
on G/H and the set of algebras (m, x) with Ad H < Aut(im, «) which is the
automorphism group of the algebra. In particular, a curve o(t) in G/H is
a geodesic if its tangent field X{1) =a{¢) satisfies the quadratic equation

X+aX, X)=0.

Next let G/H be a configuration space for an invariant system with
nondegenerate Lagrangian. Then a solution o(f) to the corresponding
Euler-Lagrange equation satisfies an extended Euler field equation which
reduces to the above geodesic equation when the Lagrangian is given by
kinetic energy. More general quadratic equations occur when the
Lagrangian is not given by kinetic energy. The algebras occurring in this
example are usually noncommutative; see [ 3, 25, 26, 31, 32].

{6) Relative growth rate problems and related Lotka—Volterra
predator-prey models are given by quadratic equations which lead
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naturally to noncommutative algebras. Let the relative growth rate of n
species be given by

XX =g AX e X )~ Y by X
i

for i=1,.,n with the growth rate functions g, having the indicated
li_near approximation. For XeR", this gives the quadratic equation
X=TX+pX Xy

X, e 01l x, x, 2 bx;
- A
" '\‘H Z bll] '\.j
The {noncommutative) growth rate algebra multiplication £ on R”" is given
by (X, Y) =(diag X) BY, where diag X is the diagonal matrix formed from
the vector X and B=(b,). Some properties of the algebra A4 =(R", f) are
given as follows: For Ze 4, define the right multiplication function
RZ):A— A: X— (X, Z) and note that

R(Z)X =p(X.Z)=(diag X)BZ

XY by,
X, Y b,z

= (diag( BZ)) X;

0 ¢ X

n

le., R(Z)=diag(BZ). The bilinearity of f implies that R(Z) is a linear
transformation satisfying R(¢, Z, + ¢, Z,) =, R(Z,)+ ¢, R(Z,). For X, Ye A
we see R(X) and R(Y) are given by diagonal matrices and, consequently,
R(X) R(Y)=R(Y) R(X). This implies that A satisfies the identity S(#(Z, X). Y)
=RIYYRIX)Z=R(IX)RRVVZ=BHZ, Y), X), frequently algebras are
defined by identities. If B ' exists, then 4 has the right identity element
e=B 'I where I=(1,..,1)" e A4; just note that (X, ¢} =(diag X) B{(B" 1)
= X. The vector field E(X)=TX + f{ X, X} has equilibrium point N given
by the solution to BN +c¢=0, where ¢=(¢,,..,c,)' € A. Furthermore,
analogous to the logistics equation, we have

EX)=8X. X—N)
expressing E(X) in terms of A, for f(X. X—~N)=p(X, X)—f(X,N)=
PLX, X)— (diag X) BN = (X, X) — (diag X)( —¢)=TX+ (X, X} =E(X).

Next we give the definitions of the various algebraic concepts that we
will need in this paper. Let 4 be an algebra and let B, C be subspaces of
A the product BC= {3 h,c;: h,e B, ¢;e C} is the subspace spanned by all
products from B and C. A subalgebra B of an algebra A is a subspace of
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A such that B>< B. For Xe A, R[ X] denotes the subalgebra generated by
X and we shall see that the solution X(¢) to X = X? with X(0)=X is in
R[ X]. An algebra A4 is power-associative if R[ X] is associative for every
Xe A; for example, Jordan algebras are power-associative. An ideal I of an
algebra A is a subspace of 4 such that /4 =7 and A= I. As in associative
algebras, the quotient algebra AjI can be formed and the map 4 — A/I:
X X+ I'is an algebra homomorphism. A4 is a simple algebra if 475 0 and
A has no proper ideals; i.e., no proper homomorphisms.
(7) For example, the vector field in R* given by

ahxyxy
2
E(X)y=| aj;x,x;

al,x, x,
for a;k € R gives the algebra 4 =(R? f). where

(X, ¥3+ yox3)
2BX, Y)=E(X+Y)—EX)—EY)=| al(x;y:+ ¥, x3)

ajy(X, ¥y 4 31 X5)

This generalizes the algebra obtained from the Lorenz and Euler equations,
and it is simple, provided that a},a?,a},#0 as we now show. From the
above formula the following table is obtained for the natural basis
{ey. ey, 05} of A:

s e e, e
e
3
e, 0 lai,e, 1at,e,
1,3 i,
€2 201,€3 0 3U33€)
1,2 1.1 0
€3 2a13€2 2U33€

Now suppose that 03 Xe B which 1s an ideal of 4. Let X=3 x;¢,,
then from the table ¢ X=1iv,al,e;+1ixsal,e,eB and e(e, X)=
ral,ai(xyes+ xqe3) € B. Thus af,ai,x,e,=aj,a;; X —4e (e, X)e B and if
x, #0, then ¢, € B. From the table this gives B= A. Similar calculations
hold if x;, =0 but x,#0 or x;#0 [34].

An algebra is semisimple if it is the direct sum of ideals which are simple
algebras. The radical, Rad A, of an algebra is the smallest ideal of 4 such
that 4/Rad A is semi-simple or the zero algebra. The radical is given by
Rad 4 =(Rad M)A, where M is the associative algebra generated by the
right and left multiplication functions R(Z): X — (X, Z) and L{(W):
X— (W, X). An algebra A4 is nilpotent if there exists an integer N such
that all products with N factors are zero. A is solvable if for A" = A,
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AP = A4, ., A% = 40 4% there is an integer N such that AV =0;
ie, A2A4%24%2 ... 24" =0. The radical is usually associated with
a nilpotent or solvable ideal.

(8) The algebra in example (7) is solvable if a§3 =0. Thus from the
table we see A ={e,,e,,e:} DAY ={e,,e;} 24 =0. If a’,a’, #0, then
A is not nilpotent since L(e,) 1s not a nilpotent linear transformation.

We conclude this Introduction with an outline of the sequel. In
Section 2, we consider the general quadratic differential system (2) and
show how it is possible to embed this in a homogeneous quadratic system.
This will justify us in restricting our attention to the homogeneous case.
Next we discuss the series solution to X = X2 and show how one can use
this to determine explicit solutions in the cases where the algebra A4 is
power-associative or when the initial point is an idempotent. We conclude
with a theorem that shows that every polynomial differential equation can
be embedded in a quadratic differential system so that solutions to the
polynomial equation can be obtained from solutions to the quadratic
system.

In Section 3, we study equilibria and periodic trajectories for X = X
occurring in an algebra 4. If N is an equilibrium, then N>=0, so N is a
nilpotent of index 2, and conversely. Also we show that N is not hyper-
bolic. We discuss stability/instability of the origin in the presence of idem-
potents and identity elements and in the power-associative case. In par-
ticular, if 4 has a nonzero idempotent, then the origin is an unstable equi-
librium. We also show how algebras 4 with positive definite symmetric
bilinear forms have natural Lyapunov functions for the associated differen-
tial system. Next we consider periodic trajectories and show how the
homogeneity of the differential system implies restrictions on the behavior
of such solutions. Thus two-dimensional systems have no periodic solu-
tions (a well-known result) and in higher dimensional systems, periodic
trajectories live on “cones.” No periodic orbit can be an attractor.
Power-associative algebras cannot have periodic orbits. We consider a
parameterized three-dimensional example in some detail. and we find that
it has periodic trajectories for certain parameter values. The cone obtained
from these periodic trajectories is almost an attractor; this is illustrated
with a figure.

In Section 4, we discuss the connection between algebra structure
and solution behavior. Thus in semisimple algebras 4, X = X? decouples
into a system of equations occurring in simple ideals. If =S+ R, a
Wedderburn-Levi decomposition, with S a semisimple subalgebra and R
the radical, the equation decouples into an equation in S and a non-
autonomous equation in R. In nilpotent algebras, the solution is given by
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a polynomial. In solvable algebras (when the associated descending chain
of subalgebras are actually ideals). the solution can be obtained by solving
finitely many linear equations. We prove this last result in the presence of
4 nontrivial linear term and give the most general three-dimensional
example.

In Section 3, we study automorphisms and derivations of vector fields
and algebras. Automorphisms preserve equilibria, periodic orbits (pre-
serving the period), and domains of attraction. We also show that explicit
solutions of X = X? may be obtained by the action of a one-parameter sub-
group of automorphisms on an initial vector. Sufficient conditions that
guarantee that this must occur are given. We give all two-dimensional
bounded solutions which occur in this manner. We give the general three-
dimensional algebra admitting a periodic solution of this form; it turns out
to be the example of Section 3. Furthermore, if there are sufficient
automorphisms and the periodic trajectories of period 7 are isolated, then
they are given by this automorphism solution, they are limit cycles {(ie.. w-
limit sets), and they are located on an explicit cone in R* This cone is a
symmetric space [ 10] which is described in terms of a bilinear form, the
group that preserves this form, and the automorphism group. Thus extend-
ing Hilbert’s sixteenth problem to R’ the isolated trajectories of fixed
period are located on this single cone of limit cycles.

In Section 6. we turn our attention to discrete systems X(k + 1) = X(k)?
occurring in 4. While many of the basic results are analogous to the dif-
ferentiable case, the use of algebras shows many striking differences. For
example, the stability of equilibria (nilpotents of index 2) is of interest in
the differentiable case. the stability of fixed points (idempotents) are of
interest in the discrete case. We discuss many such results, and then turn
our attention once again to automorphisms and derivations. In particular,
we examine conditions for explicit orbits to be given by the action of an
iterated automorphism on an initial vector. We find all the two-dimen-
sional examples and find the general three-dimensional example that gives
a periodic orbit. We also discuss the stability/instability of this orbit.
Another example is given in which each iterate lives in a different algebra
and has a cone as an attractor. Finally, we close by discussing the non-
chaotic dynamics of the squaring map on S* (the unit quaternions) and S’
(the unit octonians).

2. SoruTioNS AND PoLyNOMIAL DIFFERENTIAL EQUATIONS

In this section we discuss the series solution to the equation X = X and
how a solution to an nth-order autonomous polynomial differential equa-
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tion may be obtained from a quadratic system. First we consider the
general quadratic equation

X=EX)=C+TX+X?

in 4 and show how to homogenize the equation so that it is of the form
X=X?in an algebra 4. Our discussion follows and expands upon that of
[38.p.22].

Set E,(X)=1>C+uTX+ X% so that X=E,(X) is the original system.
Let F¥(X) denote the flow for E,. Let A=A xR and define a multiplica-

tion f on A by

B X, X’)=<E"8X)>EE()~(), where Y=<Y>
u

o

Note that

BsE. s%) = (E-“"‘O“'X ’) _CHR D

so that f§ is quadratic and gives a commutative algebra multiplication on
A. Let F(X) be the flow for X = E(X)= X Since the last component of
E(X) is zero, the last component of F,(¥X) is a constant and. hence, must
be u. Thus F(X)=(%%) for some function G,(¥). Now (d/dt) G(X)=
E(G.(X)) and G,(X)=X, so by uniqueness, G,(X)= F*(X). the flow for

X = E (X). Therefore,
L (FYX)
F (%)= .
u

To recover the solution to the original system, restrict the flow to the
hyperplane given by u=1.

Remarks. (1) We remind the reader of the notation L(U)V := UV for
the multiplication operator in an algebra.

(2} The linear transformation 7" does not get lost in the homogeniza-
tion process. For X= (%), ¥=(7) in A, the bilinearization gives

AR 7= <qu+ (120uTY 4+ oTX) + (X, Y))
° - 0 .
Let M =(%) in A, then

Lo/
2L(M)Y=< lcg T}).
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In particular, the action of 7 in A is given by the action of 2L(M) on the
subalgebra 4 c A (that is, when v =0).

The preceding procedure justifies us in restricting our attention to the
equation X = X2 occurring in some commutative algebra 4. The solution
X(t) with X(0)=X has a Taylor's series expansion X(¢)= X(0)+
X(0)+ X2(0)(£3/21) + ---for ¢ in suitable interval about zero in R.
Thus computing the derivatives from X = X2 in the algebra A4, we obtain

X0)=X (the 1nitial condition),
k=l /k—1 ,
X%(0) = Z( , >/)’(X“‘(O). X400y for k=12, ..
i=0 !

Thus
XOH=X+X"+XX%%+ -

which is in the subalgebra R[ X] generated by the initial condition X.
Setting X* = XX* ' k=23, .., we can write

2 3 t}
X(t)=X+X*I+X3t‘+(X2X2+2X4)§+

If 4 is power-associative, then we have
X=X+ X1+X"P+ X+ ..
=(I+tL(X)+ LX)+ LX)+ )X
=(I—1L(X)) ‘X,

which is valid for ¢ in some interval containing 0; see {18; 38, Proposi-
tion 2.7, p. 291.

In Section 5, we will give other solution forms using automorphisms of
A. The following result indicates the scope of quadratic systems.

ProPOSITION 2.1. Let 2\ = p(z, 'V, ., 2"V} be a polynomial differen-
tial equation in R; ie., p(z,, .., z,) is a polynomial in the z.'s. Then the solu-
tion to this equation may be obtained from the solution of a quadratic system
Y = Y? occurring in a suitable algebra A.

Proof. Write =" = p(z, ..., 2" 1} as a system

X X,

18]
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X2
—_— '\"’.
p('\.lﬂ e "‘n)
0 X, 0
. N
: X3 : 1 0
o L PEE
[J(O) [)‘“(O)X' p(k)(o) X(k)

expanding p in its Taylor’s series gives 3 v_, p(X). where each p, is
homogeneous of degree k.

Next, homogenize this equation by letting F=R"x R, and X =(?") for
all YeR” and veR. Let

N
- ™ Fp X
px)= EU ‘

0

and, as in the ecarlier discussion, p is homogeneous of degree N. The
solution to the homogeneous equation X = j(X) gives the solution to
the original system X =3 p,(X) when « = 1. We simplify notation by drop-
ping the tildes and writing the homogeneous system as Z=p(Z)=
(p(Z), ... p.(Z)) In R”, where m=n+ 1.

Now solutions to the homogeneous system Z = p(Z) of degree N can be
obtained in terms of a quadratic system. Before proving this in general, we
first consider the example Z=2Z"in R. Let Y, =Z and Y, =Z>; then

Y, =Z=Y,Y,
and, by the product rule,
Y,=22Z=2Z7*=2Y,Y,.

Thus the original cubic equation is now given by the quadratic system in

RZ
Yl = Yl Yz
Yz - 2 YZ Yz.
This 1s the idea behind the following general procedure. Let Y, = Z, for
i=1, .., m There are (¥ *7* ") monomials (in the variables Z,, ..., Z,,) that

are homogeneous of degree N — 1. Order these in some fashion, labeling
them VY, ., through YV, where /=m+("*7*'}. Any monomial (in
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Z,...Z,) which is homogeneous of degree N can be written (non-
uniquely) as some Z, times a monomial of degree N — 1, hence as a4 product
Y, Y, where 1 <i<mand m+1<,;</ Thus for i=1, ... m, we obtain the
quadratic equations

Y=Z2,=Ya,Y,Y,.
Suppose Y, ., =2, ---Z,. ,. Then by the product rule,

+ . +Z 7

i v

=7
:pu(Z) Zi:"'Zi\' 1+ +Zi|"'Zf‘\ zpl'vfl(z)‘

Yln +1

w2

using the differential equations. The right side consists of monomials, each
containing N+ (N—2)=2(N—1) Z;’s. The Zs in these monomials can be
reassociated and written as a product of the form Y,Y,, since all possible
products of ¥ —1 Z’s occur as some Y,. Thus,

Yn+| =Zan+1<ij Yi Y/

is quadratic in the Ys. Extend this to the other derivatives Y, for
m+2 < j</ This gives the quadratic system

V=Y. Y)=Y* inR

The solution to this is given by the series solution Y(f)=Y+tY*+ --.
with Y= Y(0). Solving the equations Y,=Z, for i=1, . .mand ¥, ,, =
Z,.--Z, . etc. gives a solution to Z = p(Z).

£ ix

Remark. The  preceding theorem  extends to the  system
X"=EX, XV ., X", where E(Z,, .., Z,) is a R"-valued function of
Z.e R" which has a truncated Taylor’s series.

As is seen from the proof, the dimension of the resulting quadratic
system can be quite large. The next example shows that a clever choice of
variables can keep the size of the quadratic system down.

ExaMmpLE. For the Van der Pol equation ¥=(3¢x>+d)¥+abx=
plx, ¥), let
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then
X X5
X=| ¥ |= (3ex,+d)x, +abx,

2xx 2x, %,
0 1 0\/x, 0

=lab d 01 x5 |41 3ex,x,
0 0 0/\x, 2x,.x,

=TX+X?

which is a quadratic differential equation but which is not homogeneous.
Finally we homogenize this equation to obtain a system X = ¥? occurring
in the algebra 4 = R x R. The solution to the original equation is obtained
as discussed earlier.

3. EQuILBRIA AND PERIODIC ORBITS

These solutions are briefly discussed here, and later more results will be
obtained using automorphisms. We begin with equilibria. From Section 1,
recall that N is in the set £ of equilibrium points of X = E(X)= X2
provided that N?=0. From Section 2, the linearization E'(N)=2L(N) so
that E'(N)N=2N?=0; thus N is not hyperbolic. Thus standard lineariza-
tion methods cannot be effectively used. and we now see how the structure
of 4 might help determine the stability properties of an equilibrium
solution.

We begin with a well-known folk result that follows from the uniqueness
of solutions to initial value problems. One can find this. eg, in [17,
Lemma 2.1, p. 484 or 9, Chap. 5. p. 90]. It can also be seen by considering
the series solution.

LemMA 3.1, Let F(X) denote the flow of X = X* through X € A. Then for
aeR we hare FlaX)=aF ,(X) whenever the right side is defined.

The analysis of many algebras depends on idempotents E = E? and the
Peirce decomposition [36] of 4 =3 A(4) into the generalized eigenspaces
relative to L{E). For example, if 4 is power-associative and commutative,
then A4 decomposes into eigenspaces A = A(0) + A(1)+ A(%) and the multi-
plication table for A4 is obtained for these eigenspaces.

LemMA 32, Let Ec A be an idempotent: E>*=E#0. Then F(E)=
(11 —tWE; this solution is unbounded and in fact blows up in finite
time [14].

05 1T 1-6
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Proof. Let G(1)= g(t)E, where g(t) satisfies g=g> gl0)=1; ie.,
g(t)y=1/1—1). Then G= gE = g’E*> = (gE)* = G2, so that G(r) is the solu-
tion to X = X2, X(0)= E. The other assertions follow from the form of the
solution. This result can also be seen by considering the power series
solution

F(EY=E+tE*+ ..
=(1+t+2+ - )E
=(l/(1—E for |1]<l.

COROLLARY 3.3. Let 0# Pe A satisfy P* =aP for some x#0. Then the
solution F,(P) of X = X? is unbounded and blows up in finite positive time for
a>0 and in finite negative time for o <0,

Proof. E=a 'P satisfies E’=a *P’=a *aP=FE Thus F,(P)=
F(aEY=aF (E)=o(1/(] —aut)} E={(1/{]1 —at)) P, using Lemmas 3.1 and
3.2. This establishes the result.

ProPOSITION 3.4. If A has a nonzero idempotent, then the origin 0€ A is
an unstable equilibrium point for the system X = X2,

Proof. Let 6>0 and let EZ=FE#0. For P=6E we have from
Corollary 3.2 that F,(P) is unbounded and blows up in finite time. Since
| Pl =9 || E|, every neighborhood of the origin has a solution that starts in
that neighborhood and that blows up; thus the origin is unstable.

Remark. It follows that if the origin is stable for the system X = X7 in
A, then A4 does not have an identity element.

The existence of nonzero nilpotent elements N?=0 also affects the
stability of the origin. First we note that if N # 0 is a nilpotent of 4 of index
2 (and, hence, an equilibrium for X = X?), then so is every element of
the line L(N)={sN:seR} (thus Z(N)<=é&). To see this note that
(sN)?=5°N?=0. An immediate consequence of this is the following
observation.

PropPOSITION 3.5. If A has a nonzero nilpotent element of index 2, then
the origin 0 € A is not asymptotically stable for the system X = X

The following theorem is due to Markus in the odd-dimensional case
[23, p. 188]. In the general case, a degree theoretic treatment can be found
in [14], and an algebraic treatment can be found in [30].

THEOREM 3.6. A real, commutative algebra A has a nonzero idempotent
or a nonzero nilpotent of index 2.
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CoROLLARY 3.7. The origin 0e A is not asymptotically stable for
X=X
Proof. H A has a nonzero idempotent, then this follows from Proposi-

tion 3.4. If not, then by Theorem 3.6, 4 must have a nonzero nilpotent of
index 2, in which case the result follows from Proposition 3.5.

Remarks. (1) Corollary 3.7 has also been observed by Koditschek and
Narenda {17, Corollary 2.1, p. 784].

{2) It also follows from Theorem 3.6 that the system X =X?is not
dissipative; the existence of a nonzero idempotent implies the existence of
an unbounded solution, while the existence of a nonzero nilpotent of
index 2 implies that for any ball containing the origin, there exists an
equilibrium outside the ball.

For the stability of nonzero equilibria, we have the following.

CoroLLARY 38.  Let E#0 be an idempotent in A, and let N be an equi-
librium for X = X2 If Ne A(3), which is an eigenspace; then N is unstable.

Proof. The argument is similar to that of Proposition 3.4. Let § >0 and
let P=0F + N; then

P?=(6E+ N =3§’E>+ 20EN + N*?
=3IE+2EN)=0P,

using L(E)N = IN. By Corollary 3.3, the solution F,(P) blows up in finite
time and, since ||P— N|| =4 | E||. we again obtain that N is unstable.

Examples. Semisimple Jordan algebras (especially those occurring in
the matrix Riccati equation) and commutative division algebras have non-
zero idempotents since they have identity eclements. In the Jordan
algebra 4 of 2 x2 matrices with multiplication (X, ¥Y)=1/2(XY + YX),
E=(,0=FE*=B(E,E) and N=(,) eA(5) satisfies N> =p(N, N)=0.
Thus N is an unstable equilibrium for X = X2 in A4.

The analysis of many semisimple algebras involves nondegenerate
bilinear forms satisfying certain relations [13, 35]. Also the analysis of
nonhyperbolic equilibrium points frequently uses Lyapunov functions
obtained from positive definite bilinear forms. The following result
combines these two ideas.

THEOREM 3.9. Let X = X? occur in an algebra A that has a symmetric,
positive definite, bilinear form C: Ax A — R. If C satisfies

X, XH=0 forall Xe A, (*)

the origin 0 € A is stable.
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Proof.  Assume (*) and let V(X)= C(X, X). For a trajectory X(t), we
compute the dertvative

VLX) :=—1d; VX)) =(DVIX)- X=2C(X, X)=2C(X, X*)=0
[

on A. Thus V is conserved and, since F{0)=0 and V is positive definite,
V'is a Lyapunov function and the origin is stable.

Remarks. (1) It would seem that the condition (*) could be replaced
by the condition “C(X, X?)< 0 for all Xe 4A”. However, this condition is
equivalent to the one given, for if C(Z, Z°) <0 for some Ze 4, then
C-Z(-ZV¥)=-C(Z, 2> 0.

(2) Condition (*) and the positive definiteness of C imply that the
only idempotent in A is 0: for if P= P2 then 0=C(P, P*)=C(P, P) so
that P=0.

(3) If Cis symmetric and associative, i.e., C{XZ, Y)=C(X, ZY) for
all X, Y, Ze A, then one can actually show that X= X2 is a gradient
system; see [ 38, Proposition 5.9, pp. 79-80].

ExampLEs. For the Jordan algebra of symmetric matrices, C(X, Y)=
trace L(XY) is positive definite and C(X, X?)#0 for X = /. In fact, since /
1s an idempotent, the origin is unstable (Proposition 3.4).

Variants of the Euler equation from invariant Lagrangian mechanics and
corresponding differential geometry satisfy condition (*) of the theorem.
First a basic three-dimensional example occurs when C(X, Y)=b x,y, +
byx,y2+ bix,yy,, where b,>0 and the quadratic system is given by

. g 2 R J 3 v v
Xy =dyXoN;, X2 = A3 XX, X=X X,

where 3~ aj b, = 0. In this case C(X, X?) =5 x (a)yx,33) + byxo(ai,x,x;) +
byxs(ay, X, x3) =(X alb;) X, x2x3 =0 and the origin is stable.

More generally [3,25,31,32], let G/H be a reductive homogeneous
space with Lie algebra decomposition g =m+h for some Ad H-invariant
subspace m as in Section . Using the bijection between the set of
G-invariant connections V on G/H and the set of nonassociative algebras
{m, x) with Ad H< Aut(m, ), a curve o(1) m G/H is a geodesic relative
to V if its tangent field X(t)=d(t) satisfies X +a(X. X)=0, where
a:mxm—m is the algebra multiplication. In case V is a Riemannian
connection, there exists a positive definite form C(X, Y) on m such that
C(X, a(X, X))=0 for all X em. This implies that the origin is stable. From
Section 1, the results also hold when G/H is the configuration space for an
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invariant Lagrangian system given by kinetic energy which is a positive
definite bilinear form.

We now consider periodic solutions and give a general example with
figures.

THEOREM 3.10. Let X = X? occur in an algebra A of dimension n. Then

(1) The trajectory through Pe A does not pass through aP for any
a<0. If P lies on a periodic trajectory, the trajectory through P does not
pass through aP for any a # 1.

(2) For n=2, the system X = X* does not have a periodic solution.

{3y If ycd is a periodic orbit with least period t, then ay=
YaP: Pey} is a periodic trajectory with least period t/|a| for a #0. Thus
scalar multiples of periodic orbits are periodic, and solutions of any period
exist, provided that one periodic orbit exists.

(4) If n=13, then periodic trajectories lie on cones; for arbitrary n, they
are on (n— 1)-cones.

Proof. (1) Suppose that for some re R, F,(P)=aP, where a <0. Then
since 0 <a/(a— 1) <1, the calculation

F li)r(P):Fr‘(uf 1)+!‘(P):Ft‘;“(:l*l)(Fr(P))

=F, (aPy=aF .. _,(P),

ritu—1) arila

(eila -

is valid., using Lemma 3.1. This mmplies that F, ., _,,(P)=0 which is
impossible unless P=0. If P lies on a periodic trajectory, then this calcula-
tion is valid for all « # 0, 1, because the solution extends as far as necessary.

(2) This follows from (1) since a periodic trajectory in the plane
must intersect some line through the origin at least twice.

(3) Note that for a#0, F (aP}=aF (P)=aP, so that aP is a
periodic point of period t/[a|.

{4) This follows from (3). If P is a periodic point, then the line £(P)
through the origin 0 € 4 and P generates a cone with the periodic solution
F,(P) as its “base.”

Remarks. (1) Let 2 denote the set of periodic trajectories of X = X
which are of period 7. If 2 is finite, then for any other period o, #, is finite,
and they both contain the same number of trajectories. This follows from
part (3) of the theorem.

(2) We note that a bounded solution X() to X= X2 in a two-dimen-
stonal algebra A4 must be a heteroclinic orbit. We briefly sketch the proof
of this. By the Poincaré-Bendixson theorem, we have X(/)— N,ed as
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t— oo, or X(¢) is a periodic orbit, or X{r) approaches a limit cycle as
t— «. Since periodic solutions cannot exist in A, only the first option
obtains. Similarly, X(7)—> N.eé& as t— —xc. To see that X{(/) is not
homoclinic, suppose that N, = N,. If X(¢) looped around the origin at least
once, then X{(r) would have to cross the line of equilibria collinear with N,
and the origin, which is impossible. Otherwise, X(¢) had to return to N,
without looping around the origin, but this would mean that it would cross
a ray twice, which is also impossible, by part {1} of Theorem 3.10.

ExamrLE. The referee has provided the following example to show that
the conclusion of part (1) of the theorem is false in the nonpernodic case if
a>0. Consider the homogencous quadratic system

X=x(x+y—2z)—yz
Y=y(x+y—2)+xz
Z=o(x+y—22)

2

in R*. The cone x?+y?—z2 =0 is seen to be invariant:

XX Ay —zE = (22 (v + y = 22).
If p denotes the radial distance from the origin, then

po=plx+y—2c),
Xp—pX = z{xt + y2),

so that the radial and tangential components of the flow are nonzero on
the cone. Thus orbits spiral around the cone. approaching the origin for
z>0 and moving away from the origin for - <0. Each orbit crosses any
generator of the cone infinitely often.

Turorem 3.11. If A is power-associative, then X = X? has no periodic
solutions.

Proof. From the discussion in Section 2. the solution is given by F,(P)
=(I—tI{P)) ' P. Let P be periodic of period t. Then (I—1L(P)) 'P=P
implies that P=(f—tL{P)) P=P— P> Thus P>=0, which is impossible
(otherwise P would be an equilibrium).

This says that some of the most interesting dynamics cannot be found in
the classical power-associative algebras such as associative, alternative, or
Jordan algebras.

THEOREM 3.12.  Let X = X? occur in an algebra A. Then no periodic orbit
is an attractor.
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Proof. Let »(t)=F,(P) be a periodic solution through P and let % be
a neighborhood of 3. Then the line #(P) from the origin 0 € 4 through P
intersects #. Since % is open, there 1s a point aP € ¥ (P) n % and this point
determines a periodic solution F,{aP). Thus lim |F (aP)—y|| #£0, so
that y 1s not an attractor.

-+

We shall give an example of a quadratic system whose periodic solutions
are limit sets and the cone formed from these periodic solutions is almost
an attractor.

ExaMmPLE. Let A =A(s g, ¢) (¢#0) be the three-dimensional com-
mutative algebra with basis { X,, X, X,} and multiplication table

where 4, u € R. First we explore this as an algebra, and then we discuss the
associated quadratic differential system.

LEMMA 3.13. (1) If u#0, then A is simple.
(2) If u=0, then J=RX, + RX, is u nilpotent ideal of A.
{3y If u=0uand =0, then A is solvable, but not nilpotent.

(4) If u=0and 7 #0, then A=RX,DJ (direct sum of subalgebras).
In this case J is the radical of A.

Proof.  Let B be an ideal of 4 with nonzero element X = xy X, + x, X, +
X, X, in B. Then

Xo( X X)= X (x6A X+ ex, X5 —ex, X))
=x/2 Xy~ x,0*X, — x,c2X, € B.
Thus
X+ Xy (XoX) = xo(c+4%) X, € B

If x,#0, then X, e B. But then since B is an ideal, X, X, X, X,€ B, and
using the table X, X, € B, so B=A. If x,=0, then we compute

X, X =pux, Xy, X, X =ux,X,.

Now at least one of x; and x, is nonzero. If g0, then X, B, and so
B = A before. This proves (1).
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If 4=0, then B=RX, + RX, =J. The calculations directly show that J
is nilpotent. This proves (2).

If u=7=0, then from the table A2 A% =A44=J2A4" =424 =
JJ =10}, so that 4 is solvable. 4 is not nilpotent since the matrix of L{X,)
is

0O 0 0
0 0 —c¢
0 ¢ O

which is not nilpotent. This proves (3).

If 4 =0, but 20, then from the table, RX, is a (simple) subalgebra, and
the direct sum decomposition follows. That J is the radical of 4 follows
because a straightforward calculation shows that J is the only proper ideal
of A and 4/J=RX, which is simple. This proves (4) and completes the
proof of the lemma.

We introduce some geometry into the algebra 4 by considering the trace
form [36]

C(X, Y)y=trace L(XY).
For X=Y% x,X,, the matrix for L(X) in the {X,. X,, X,} basis is

AXg  HN] HX,
—cx, 0 —exy

CX, X, 0
Thus for X=3Y x.X;and Y=3 . X,.

XY = (Axoyo +p(x )1+ x232)) X

~(Xoya+ Xa¥o) Xy +c(Xo¥y + Pox ) X5,

so the matrix for L(XY) is

ALAN g+ (X 3+ X000 )) —p{xgya+ Xayghe HXr+ X e
= (Xpp +X00) 0 —e(Axyyo +u(x 3+ X230))
— M Xy + Xy ctdxyyy + 40y, ¥ + X)) 0
Thus

CX, Y) =22y, + Au(x, v, + x,515).

This form vanishes identically when 4=0. For A#0, C is clearly non-
degenerate if and only if ¢ #0, i.e., if and only if 4 is simple. If £ =0, then
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C has a radical {ie, 4 has a nontrivial subspace that 1s C-orthogonal to
all of 4). This radical coincides with J, the radical of 4. The restriction of
C to the simple summand RX, is nondegenerate. Finally, note that C is
positive definite if and only if Ax > 0. If Zu <0, then C has a null cone given
by

ClX, X)=2xi+pu(xi+x3)=0.

The differential system associated with the algebra A(4, y, ¢) is given in
coordinates by

. 4 2 2 2
Xo=AX{+ plxy + x3)
Xy = —20x)X,

Xy = 20Xy X,.

We next give the explicit solution to this system in the various cases.
Comparing the theorem below with Lemma 3.11, there is an apparent
correspondence between solution forms and algebra structures. We will
make more comments on this in the next section.

TueoreM 3.14. Let X=X occur in the above algebra A and let
X=x,Xo+x, X, +x,X,. Then the solution through X is given by

F.(X)=x,(t) Xo+ r(cos(2c0(t) + ) X| +sin(2c0(t) + 1) X5),

where r=(x7+x3)"7 0(t) = [(xo(s) ds,  is chosen so that cos = x| /r and
sin iy = x, /v, and

(1y if 2=u=0, then xy(1)=x,,

(2) if A=0, u#0, then x,(t)=x,+ ur',

(3) if2#0, u=0, then xyo{t)=x,/(1 — ixyt),

(4) if 2u>0, then xy(1)= (/2N fosin fot + Axy cos fgt)/(fig cos Byt
— 2.Xy Sin Bgt),

(5) if su<0, then xy(t)=(f,/2){ —f, sinh §,7+ Ax,cosh 1)/
(3, cosh B, 1 — 2x,sinh B, 1), where B,=({ —~1) )2 r, i=0, L.

Proof. Tedious but straightforward calculations yield these results.

We now describe without detailed proofs the dynamics that occur in
each of the various cases listed in the previous theorem. Recall that &
denotes the set of equilibria for a given vector field. First, as is easily seen
from the general solution formula for all cases, if X'¢ &, then F,(X) lies on
a circular cylinder with axis X, and radius r.
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(1) A=0, p=0:6={x x,plane} v {x,-axis}. For all nonequi-
librium points X, the trajectory through X is a periodic orbit of period
n/lex,| (because the system reduces to a two-dimensional linear system).

(2) A=0,p¢+#0: & ={x,axis}. For all nonequilibrium points X, the
trajectory through X is a helix, which reverses rotation about the x,-axis
on passing through the plane x,=0.

(3) A#0, g=0:4={xx,-plane}. If ix,<0, then for each X ¢4,
the maximal interval of existence for F,(X) is (1/Ax,, oo ); the w-limit set of
X is the curve x7+x3=r% x,=0, which is not a trajectory; F,(X) blows
up in negative time. If Zx, > 0, then for each X'¢ &, the maximal interval of
existence for F,(X) is (— oo, I/ix,); the a-limit set of X is the curve
Xi+x3=r> x,=0 which is not a trajectory; F,(X) blows up in positive
time.

(4) Au>0:&=1{0}. When Ax, <0, the maximal interval of existence
for F,(X)is ((1/8,) tan (B /Axe), (1/B) cot (Bo/2x))); when Ax, >0, it
is ((1/80) cot  Y(Bo/ixy), (1/8,) tan ~'(f/2x,)). In either case, F,(X) blows
up in both positive and negative times.

(5) A <0:&=1{0}. If X lies on the cone 4 = {Ax} +pu(x?+x3) =0},
then [x,|=(—u/2)"?r=4,/|4. Thus F,(X) is periodic with period
7 |A|/lel B,. The maximal intervals of existence for all other points X is
given in the table,

Parameter values Maximal interval
A>0,Axp+urt <0 (—x, )
2<0, Axi+purt>0 (—%, %)
2> 0, A5 +urt >0, x> 0 (— 2, w)
A<O, Axg +prt <0, x, <0 (=%, w)
A0, AN+t >0, x,<0 (. 1)
A<, AXS +prt <0, x,> 0 (w, «)

where w=(1/8,) tanh (f,/Ax,). In all cases where ¢ approaches a finite
end-point, the solution F,(X) blows up. In all cases where 7 approaches
+ o0, an o (resp. a)-limit set exists, namely the periodic orbit(s) on ¢ that
lie on the same cylinder as X.

Remarks. In the subcase of case (5), where, say A <0, we see that the
nappe 6 * =% n {x,>0} is an attracting set: ¢ * is invariant and attracts
nearby solutions as they spiral along a cylinder toward the nappe.
However, the closure ¢+ u {0} is not an attractor. The origin is unstable
since A4 has a nonzero idempotent E=(1/) X,; see Proposition 3.4.
Similarly €~ =% {x,<0} is a repelling set, but ¥ U {0} is not a
repellor. Note that orbits starting in {Ax} + ur? >0} spiral away from one
periodic orbit on 4 to the corresponding pertodic orbit on 4 * having the
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@ o

Casel: 2=0.p=0.¢c=1 Case 2: 2=0.p=1l.c=1
% %
Case3: 2=l py=0.c=1 Case4: 2=1l.p=1l.c=1

SR

CaseS: 2 =1l,p=-l.c=1

FIGURE 1

same period. We discuss case {5) and the cone % further in Section 5 using
automorphisms.

4. STRUCTURE

In the theory of algebras [ 1, 36], one is often concerned with semisimple
algebras, radicals, and how to put them together as a direct sum to obtain
the “structure” of a class of algebras. A semi-simple algebra, S, is a direct
sum of ideals, each of which is a simple algebra. The simple commutative
algebras often contain idempotent elements which help determine their
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nature by various “Peirce decompositions.” On the other hand, the radical.
R, of an algebra 1s often given by a solvable or nilpotent ideal [2]. Thus
nilpotent elements of index >2 may occur. Then one can often show a
Wedderburn or Levi type decomposition 4 =S+ R with R the radical and
S a semisimple subalgebra of 4. We now consider the effect of these
structures on the quadratic equation X = X2

ProposITION 4.1.  Let X = X2 occur in the algebra A.

(1y If A=A, ® --- ® A, is semisimple, then the equation X = X?
decouples into a system of equations X,= X2 in the simple algebras A,
[23, 38].

(2) If A=S+ R (subspace direct sum), where S is a semisimple sub-
algebra and R is the radical ideal (ie., A has a Wedderburn—Levi decomposi-
tion), then the equation X = X* can be solved by solving an autonomous
equation X¢= X% in S and a nonautonomous quadratic equation X, =
X2 +2XgXg in R

Proof. (1) Let X=X+ .-- + X, e 4. Then since X, X,ed;nA,=01if
i # j, we have
X4 o+ Xi=(X 4+ -+ X))
=Xx?
=X=X,+-+X,.
Consequently X,= X2 for i=1,... k.

(2) Next suppose that 4 =S5+ R, where S is a semisimple subalgebra
and the ideal R is the radical. Write the solution to X=X? in 4 as
X(t)=Xg(1)+ Xg(1), Xge S5, Xre R. We compute

Xo+ X=X
= X?
=(Xg+X,)?
=Xi+2XoXp+ X%
=X242L(Xg) X+ X3,

where X2eS and 2L(X) Xx+ X%eR. Thus to solve X=X? in A,
one must solve Xo=X 2 in S and the nonautonomous equation
Xa=2L(Xg(1)) Xe+ X% in R

Remark. In general, using {2) of the previous proposition is almost as
formidable a task as solving the original equation, but in the special case



QUADRATIC DYNAMICAL SYSTEMS 91

where the radical R is itself a zero algebra, the second equation reduces to
a nonautonomous linear system XR=2L(XS(I))XR. As an example, we
note that this was precisely the situation of the example in Section 3 in the
case where =0 and £ #0.

Next we consider the connections between boundedness of solutions and
nilpotence.

ProposITION 4.2. Let Pe A be nilpotent (of index >2); ie. the sub-
algebra R[ P] generated by P is nilpotent. Then the solution F,(P) of X = X?
exists for all time and is unhounded.

Proof. Since P is nilpotent, there exists an integer N> 1 so that all
products of length N involving P are zero. From the series solution
FAPy=P+1tP?+ .- +1¥ 2PN 1 where P Ve R[ P] is homogeneous
of degree N — 1. Thus F,( P) is a polynomial in 7 and consequently unbounded.

Next we consider solvability.

THEOREM 4.3. Let A be a solvable commutative algebra with A > A% >
AV AN =0, Assume that ATV = AYA% are ideals of A and
TAR < A%, where T: A— A is a linear map. Then the solution to the
quadratic equation X =TX + X? can be obtained by solving finitely many
linear equations.

Proof. The proof is given by constructing the sequence of linear equa-
tions; see [ 38] for related results. We shall make use of the multiplication
operator L(X) Y := XY in the proof.

(1) Let W, be a subspace of A with A=W, + A%, a direct sum, and
let u,(1)=w, (1) +u,(¢) be a solution to the above quadratic equation with
w,{1ye W,, u,(t)e A®. Then

W iy =y = T(w, +uy) + (w) +uy)?
=Tw,+ Tuy +(w, +u,)?

and i,, (w,+u,)°, and Tu, are in 4%, using T4'¥’< A'*. Thus in the
quotient space A/4'2' = W,, we obtain the linear equation

wi=Tw,=Tw,,

(2)

where 1w =w+ A'Y is a coset and T is the induced linear map in 4/4'%.
Thus we solve this linear equation to obtain

W) =(exp T) w;(0)=w, (1) + A%
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and note that v, — v, is in 4'®. Having obtained w,, we see that u,
satisfies in 4'%’ the equation

tiy= —vy + Tw 4+ Tus + (W, + 145)°

= —iy 4+ Tw, +wi+ Tuy + 2w u, + 43

=y 4+ Twy+wl + (T+2L(w) us + 13

=a,+ Thu, + us,

where a, = —w, + Tw, +w?isin 4% and T,=T+2L{w,) maps 4'* into
A" using the fact that A"®' is a T-invariant ideal of 4.
(2} To solve

thy=a,+ Tyu, + u3, (*)

let W, be a subspace of A®" with 4 = W, + 4" a direct sum, and let
1y =W, + u; be a solution to (*). Then

Wty =ty =ty + Ty(Wy 4+ us) + (s +113)°

=ay+ Tywy + Taty + (ws + u3)?,

where iy, (w,+u;)% and Thu, are in A" which is a T-invariant ideal
of A.

As in the preceding case, we obtain in the quotient space 4'*/4'Y the
linear equation

Wy =d,+ Tw,.

We solve this linear equation to obtain W, (1) =w,(r})+ A", where
W, —a,— Tw, is in A, Having obtained w,, we see that i, satisfies the
equation in 4%,

ty=—Wytay+ Tyw, +wi+ (T, +2L(w,)) 3+ u3
=a,+ Tyuy+u3,
where ay= —w,+da,+ Tow,+w3 is in AP and Ty=T, +2L(w,) maps

A" into 4" using the fact that 4'* is a T-invariant ideal of A4.
To solve

ty=das+ Tyuy+u3

and the resulting sequence of equations, we continue this process of passing
to the quotient A'*/4**" to reduce the quadratic equation to a linear
equation. But when 4™ =0, we already have a linear equation to solve!
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Substituting backward, we obtain the original solution as a sum of
solutions to linear equations.

ExaMpLE. The example of Section 3 in the case A=0, g =0 is easily
solved by this method. In heu of the details, we instead pass on to the
following.

ExampLE. The following is the general three-dimensional commutative
solvable algebra 4 =(R?, f) such that the A%+ = 4% 4% are ideals of 4
and dim A*'/4**"" =1. Let 4 have basis { f,, />, /3] with multiplication
table

’ /i f2 i
fi a?lf:'*"’:lfl ”f:./':‘*'”;:./\ ai‘}./"
fro fanfat ”::fl a;:./; ang;
fa a?}f\ a;}f} 0

Thus A={f.fo. s} 24P ={ /5. fi} oAV ={f3} 24P =0.
Now we wish to solve X=X 2 in A using the procedure of the theorem
and extend to X=TX+ X°.

(1) Write A=W, + A2, where W, =R/, and let u, =w, +u, be a
solution, where w () =x,(7) f,.. Then

W, bty =1, = (W, + u,y)°
is in A'®'; therefore we obtain the linear equation w, =0. That is, ¥, =0
and x,(t)=c, is contant which gives w,(t)=c¢, f,. Thus in 4'%, solve the
equation
= (wy +uy)  =wl+ 2w u, + u3
=(c 1)+ 2, fruy +u3.

(2) To solve this latter equation in 4@, write A2 =W,+4'",
where W, = Rf,, and let u, =w,+ 1, be a solution, where w,(1)=x,(?)f,.
Then

Wyt tiy =ty = w3+ 2w (W + t3) + (s + u3)?
=wi4 2w wy + 2w Uy + (W + us)?, (1

where 1i;, 2w 1, (W, +u;)? are in 4%, Thus in 4%/4®, we have

Wy =W, + 2%, s,
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using the fact that 4% is an ideal in 4. Since w, = ¥, f5, Wy =Y, f> + A,
and using W, = ¢, f; + 4", the preceding equation becomes
Nafat AN = (e [+ 2 [N fr) + 4
= ('f(aﬂfz + "?1./‘5) + 2¢4 »\‘z(afzfz + “Tzfz) +AY
=(ai, ¢t +2a3,0,x5) fr+ A,
using the table and the fact that f; € 4'*". Thus, we solve the linear equation
Xy=at i+ 2at,00x,
to obtain w,(t)=x,(7)f,. With this value of w,, we now solve for
uy (1) = x5(1) fi
Xafy=1i;
=T+ 20 Wy — Wy o+ 20ty w3+ 2w, + 13,
using (1)
= w4 2w, — Wy 4 w3+ 200 + W) U,
using uie 4'*'=0
=(¢\ f )2+ 2 SN fo) —Xafy + (—szz)z
+2(cy fi+x2/5) X3 fs
=ci(at, fa+aj, 1) +2x x5 (al, o+ aq, f3)
—lay i +2ai,00x55) fr + v3a5 f
+ 20, X f3+ 22X, X503, f4
using ¢, = x, and the table,
={a}, T+ a3, X5+ 20105, + 2(a), ¢ + d3,55) X3) fa.
noting that x, =¢,.

Thus we solve this linear equation for x; to obtain u,=x;f; and, conse-
quently, the solution

wy=wtuy = fiHnytu) = fi+xa0fs Hxa fi

Thus we can solve in terms of coordinates or directly in terms of the
algebra as in the proof of the theorem. The above coordinate equations are
exactly what is obtained from writing X =73 x,/; and expanding X = X2,
using the multiplication table.
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For this algebra, a system X = T.X 4+ X2 which can be solved by solving
a sequence of linear equations is given by

% By 0 0[] x 0
Xa|l =] bs by O xo |+ di X7 4 2a7.x8,
Xy by by b Xy X7+ a3, 03+ 28 G+ 2a] X, Fua v,

relative to the {f},f5.fi} basis. The triangular form of the matrix for T is
due to TA*' = A%

Remark. The Lorenz system and the quadratic Duffing system cannot
be solved by this method; the algebra A is solvable with 4% ideals in A,
but the condition TA*' < A% is not satisfied.

5. AUTOMORPHISMS

The automorphisms of an equation or algebra measure its structure and
symmetries. For the system X = X, the automorphism group of the vector
field X? is the same as the automorphism group of the algebra. This can
help locate equilibrium points, periodic orbits, and domains of attraction in
an algebraic manner.

DEFINITION.  An automorphism of an algebra 4 = (R", §) 1s an invertible
linear transformation ¢ e GL(R"), the general linear group, such that
OPX. Y)=PldX,¢Y) for all X, Ye A. A derivation of an algebra A is a
linear transformation D: A4 — A satisfying the product rule DS(X. Y)=
BIDX, Y)Y+ p(X, DY) for all X, Ye 4.

Remark. The set Aut 4 of all automorphisms of A is a closed (Lie) sub-
group of GL(R"), and the set Der A of all derivations of 4 is a Lie sub-
algebra of gl(R”) which is the Lie algebra of GL(R"). For any D e Der 4,
expD=1I1+D+ D*2!+ ... is in Aut 4; that is, the Lie algebra of Aut 4
is Der A [35]. If A is a semisimple algebra with identity, then Der 4 con-
sists of inner derivations [ 36] which frequently have easy formulas; in this
case, inner automorphisms are obtained.

A similar concept is the following.
DEFINITION.  An automorphism of a vector field E(X) in R” is an inver-
tible linear transformation ¢e GL(R”) such that E(¢X)=¢FE(X) for all

XeR". A derivation of a vector field is a linear transformation D: R" — R”
satisfying DE(X) = £'(X) DX for all XeR".

Remark. As above, the set Aut E of all automorphisms of E is a closed
(Lie) subgroup of GL(R"), and the set Der E of all derivations of E is a Lie

S0S 117.1-7



96 KINYON AND SAGLE

subalgebra of gl{R"). For any De Der E, exp D=1+ D+ D?*2!+ ... isin
Aut E; that is, the Lie algebra of Aut £is Der £ [35].

These two concepts are related by the following.

TureorReM S.1. Let X=EX)=TX+X? occur in a commutative
algebra A=(R", ). Then AutE={¢cAutAd:Td=¢T} and Der E=
{DeDer A: TD=DTY}. In particular, when E(X)= X7 Aut E=Aut 4 and
Der FE = Der A.

Proof. Suppose that ¢eAutE. Then from E(X)=TX+ X2 we
obtain TgX + (qﬁX)2 =E¢X)=¢E(X)=¢TX + ¢(X*) which gives Tp=¢T
and #(X3)=(4X)>. Since A is commutative, the latter implies that
$P(X, Y)=p(¢X,¢Y). Thus ¢ e Aut A. The reverse inclusion is obvious.
A similar argument gives the other equality.

Except as noted, most of the rest of the results in this section hold for
any vector field E.

LEMMA 5.2, Let E(X) be a vector field with flow F,(X), and let
e GL(R"). Then ¢c Aut E if and only if ¢ F,=F,¢.

Proof. Suppose that ¢eAut £ For XeR", we note that (d/dt)
(- FUX)—(F,-9) X)]—¢(d/dt)F,(X)—(d/dt)F,(¢X)=(¢~'F)(X)—
(FopHX 0 so (¢ FHUX)—(F,-¢)X)=C, a constant vector. Set r=0
to get C HX)—d(X)=0

Conversely, suppose thdt ¢ F,=F,.¢. Then

GE(X) = gE(F (X)), -0

d
=¢— F (X
¢d[[=0 (X)
d . .
= ~' OF (X)), using ¢ linear
di =0
d
=— F(pX
@l (9X)

:E(F,(¢X))\r:=()
= E(¢X).

PROPOSITION 5.3. Let GeDer E, then {exp tG)P is a solution to X=
X) if and only if GP = E(P).
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Proof. We have

GP=E(P) if and only if
(exp tG) GP = (exp tG) E(P) if and only if
(d/dt)exp tG) P = E((exp tG) P), using exp tG € Aut E.

COROLLARY 5.4. Suppose that (exp tG)P is a solution to X = E(X).

(1) P is an equilibrium point if and only if GP=0.

(2) P is periodic point if and only if there exists teR such that
(exp tGYP = P; ie., P is an eigenvector of exp 1G with eigenvalue 1.

CoroLLARY 5.5. Let GeDer E and let F,(P)=(exp tG) P be a solution.
If there exists t,eR such that GF,(P)=0, then GF,(P)=0. ie,
F,(P)eKer(G) for all 1. If there exists t,€ R such that GF, (P)#0, then
GF(P)#£0 for all 1.

Proof. GX =0 implies that ¢“*X =X for all seR. This gives F,(X)=
F(e“Xy=¢"“F,(X) for all s teR. Differentiating at s=0 gives
0=GF,(X) for all t in R. The same argument with = replaced by # gives
the other assertion.

The derivations giving a solution y are unique up to their action on ¥.
COROLLARY 5.6. Let y be a trajectory for X=E(X) and let P,cy
(i=1,2) be such that y = {(exp tG,) P;}. where G, € Der E and G, P;= E(P,).

Then for any Qey, G,Q=G,Q=E(Q). In particular, if y contains a basis
of R", then G, =G,.

Proof. Let Q ey, then writing Q= (exps,G,) P;(i=1, 2), we have
G,Q=(exps,G,) G, P,
={exp 5,;G,) E(P})
= E((exp s,G,) P,), exp s,G,e Aut F
= E(Q).
PROPOSITION 5.7. Let # be the set of periodic solutions of X = E(X)

which are of period 1 and let & be the set of equilibrium points. Then
(Aut E) 2 =2 and (Aut EYE = 6.

Proof. Let F,(X) be in # and let ¢ Aut E, then ¢X =¢F (X)=
F.(¢X) and F,(¢X) is a solution to the differential equation with initial
condition ¢X. Thus F,(¢X) is a periodic solution with period ¢ < 1. But
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since ¢X =F_(¢X)=¢F_(X) and ¢ is bijective, we have X =F_(X) so that
o=1; ie., $# <. Since F (X)=¢(¢ 'F,(X))and ¢ 'F,(X)isin £, we
have 2 < ¢#..

Similarly, N €&, provided that E(N)=0 and in this case 0 =¢E(N) =
E(¢N), so that ¢& = &. Also & < @&, as above.

DErFINITION. . is said to consist of isolated orbits if for each ye 4.,
there is a tubular neighborhood % of y so that no d € 4 intersects .

We now obtain periodic solutions of X=E(X) in terms of auto-
morphisms.

THEOREM 5.8. Suppose that & consists of isolated orbits and
Der E # {0}.
(1) If there is a ye#., Pey, and DeDer E such that DP #0, then
there is a nonzero a€ R such that y(t) = (exp tG) P, where G=a 'D.
(2) Let (Aut E), denote the connected component of the identity in
Aut E. For each ye Z,, (Aut E),y =1y as sets.

Proof. From the previous proposition, we know that automorphisms
map periodic points of period t onto periodic points of period z. Now fix

€# and Pevy, and let y(1)= F,(P). Let DeDer E be such that DP#0
and define the map

kiR—>A:5— (expsD)P.

For each s, k(s) is a periodic point of period t. Since k is continuous, the
image of k is connected. But since the orbits in 4 are isolated, there is
je# such that k(s)e§ for all seR. Since k&(0)=Pey, we have =y
Consequently, there is u(s) e R so that

(exp sD)P=y(u(s))=F, ,(P). (*)

The function u: R— R :s— u(s) is differentiable and we may assume that
u(0)=0 as follows. Let u(0)=»5 and write u(s) = i(s) + b, where (0) =0,
then (exp sD)P=F,, , ,(P)=Fy,,(F,(P)). Set s=0 to obtain P=F,(P)
and, consequently, (exp sD)P = Fy,,(P).

Differentiating (*) we obtain

(expsD) DP = (d/ds)((exp sD)P)
= (d/ds) F ., (P)
= (d/du) F,( P)(du/ds), chain rule
= E(F,(P))u'(s),
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and setting s=0, DP=E(F,,,(P))u'(0)=1'(0) E(P). Since DP+#0, we
have w'(0)=a#0. We set G=a~'D to obtain GP = E(P). By Proposi-
tion 5.3, F,(P)=(exp tG) P, which yields (1).

To prove (2), fix a trajectory y e # and write y(¢)=F,(P). If DP =0 for
all DeDer E, then e”F,(P)=F,(e”’P)=F,P) Consequently, for any
p=e"-..e" in (Aut E),, we have ¢F,(P)=F,(P). Next let DeDer E be
such that DP+#0. Using (1), we can write F,(P)=¢'“P with G=5hD for
some nonzero beR. Consequently, ¢*PF (P)=ePePP=¢lit+000p
Fi+(P); thus, e®yc=y. Conversely, y(t)=¢“P=ePLe'~"0p=
e*Py(t—(s/b)) so that y<e*®y, and thus, e®y=y as sets. For any
¢ e(Aut E),, we have ¢ =exp(s,D,)---exp(s,D,), and so the general case
follows from the two cases just considered.

COROLLARY 59. Let ye# be such that (Der E)y #0 and let 4 have
finitely many elements. Then y(1)=e'“P for some Py and some G e Der E
with GP=E(P)#0.

ExampLE. The three-dimensional algebra 4 in Section 3 with E(X) = X?
satisfies these conditions when (g, 2)#0 and is discussed in more detail
later in this section. Regarding polynomial systems in R? having finitely
many limit cycles and results of related interest, see [37,7, 12, 8].

Remark. The referee raises the following interesting question: is there a
counterexample to Theorem 5.8 when elements of 4 are not isolated from
one another?

THEOREM 5.10. If N be an isolated equilibrium of E, then (Aut E)y N
= N and (Der E)N = {0}.

Proof. The map k: R— A :5— ¢*PN is continuous and k(s) is an equi-
librium for all s R. But R is connected; therefore, the image A(R) is con-
nected in &. Since k(0)= N and N is isolated, k(s) =e*’ N=N for all se R,
and consequently (Aut £), N=N. Differentiating k(s) and setting s equal
to 0 gives DN =0, and consequently {Der E}N = {0}.

COROLLARY 5.11.  Let & denote the set of all equilibria of E. If & con-
tains a basis of R" consisting of isolated points, then Der E= {0}. (Thus no
nontrivial solutions can be of the form e'“P.)

Remark. 1f E(X)=X? and & #0, then & has no isolated points, since
for a given Ne &, the line #(N) through the origin and N 1s contained in
é: a point @ is on the line if Q=uN for some weR and E(Q)=
E(uN)=(uN)*=u*N?=0; see [23, Theorem 2].
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COROLLARY 5.12. Let E(X)= X7 and let & consist of only finitely many
lines, and let 0 # Ne &.

(1) If ge(Aut E)y, then ¢N=ul¢)N for some n=u(p)eR; ie.,
QL (N)=L(N).

(2)  The mapping uy: (Aut E),— R: ¢r—u(P) is a homomorphism into
the multiplicative group R* of R; ie., uy is a character of (Aut E),.

(3) If (Aut E), is semi-simple, then ¢N = N for all ¢ € (Aut E),.

(4) If & contains a basis, then all ¢ € (Aut E), can be simultaneously
diagonalized; in particular, (Aut E), is commutative.

Proof. (1) As in the proof of Theorem 5.10, the image A(R) is in &
and is connected. Since there are only finitely many lines in & and
k(0)=Ne L(N), we have k(R)< Z(N). Thus e'?’N=u(s)N fir u(s)eR
and, consequently, for ¢ € (Aut E),, ¢/N =uN for some u=u(¢)eR.

(2) For ¢,,d,e(Aut E), we have (¢, ¢, )N=¢ ,¢,(NY=¢ (4, N) =
O (U(PIN)Y=1(d) (P, N)=ul¢>) u(¢,)N so that u(d,d,)=u(¢,) u(¢,) in
R. Next if u(¢)=0 for some ¢, then ¢N =u(¢)N =0 implies that N=0,
contrary to the assumption that N #0. Consequently, w=uwu, is a
homomorphism into R*.

(3) Since u, is a homomorphism, the derivative wu)y=u'(]):
Der £ — R is a homomorphism of Lie algebras, and for G,, G, Der £ we
have u'y([G,, G,])=[uxG,,uxG>,]=0, since R is an abelian Lie
algebra. If Der £ is semi-simple, then [Der E, Der E]=Der E so
that wy(Der E)=0. For any GeDer £, u,(exp G)=exp(i/yG)=1 and
(exp G)N =u,(exp G)N=N. Since (Aut E), is generated by exp(Der E),
¢N =N for all ¢ € (Aut E),.

(4) Let {X,,.., X,} €& be a basis, then for X, = N, in part (1), note
that ¢ X, =u, X;, 1e., ¢ is diagonalizable.

Again, let F be an arbitrary vector field.

THEOREM 5.13. Let 7 be a trajectory for X = E(X) and let Att(y) denote
its domain of attraction. Let G,={¢eAut E:¢y=y (as sets)}. Then
G, Att(y) = Att(y).

Proof. For ¢eG, and ZeAti(y), (F/($Z)—yi=|FI(¢Z)—¢yll=
1¢F (Z)— ¢yl =I¢(F(Z) = < Ng[IIF(Z)—y|>0 as t—oc. Thus
G, Att(y) = Att(y). Conversely, note that Z=¢(¢ 'Z) and ¢ 'Ze Att(;),
so Att(y) = G, Att(y).

COROLLARY 5.14.  Let #. consist of isolated orbits, and let y e 2. be given
by y(1)=e'“P. Then (Aut E), Att(y) = Att(y).
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Proof.  From Theorem 5.8(2), we note that (Aut £'), =G, and that the
proof of the theorem holds for subgroups of G..
Similarly we have the following results for equilibria.
THEOREM 5.15. Let N be an equilibrium of XzE( X) and let

Gy={¢cAut E: ¢N =N}, and let Att(N) be the domain of attraction of N.
Then G, Att{N) = Att{(N).

COROLLARY 5.16. If Ne &, where & consists only of isolated points, then
(Aut E), Att(N) = Att(N).

COROLLARY 5.17. Suppose that E(X)= X* and suppose that & consists
of finitely many lines £(N), then (Aut E)y Att(L(N)) = Alt{ L(N)).

ExXAMPLE. Let A be the commutative Euler algebra given in Section 1.
A has a basis {X,, X,, X,} with multiplicative relations X, X, =47, X5,
X\ Xy=a}, X,, X, Xy=a}, X, for al;#0 and X7 =0 for j=1, 2, 3. Solutions
to X = X? occurring in A are not of the form ¢’“P for any G e Der A since
we now show that Der 4 =0. Let GX, =Y g, X, for k=1,2,3 Then

OZG(Xf):ZXl(le)
=2X, <ZgilXi>

:ZzgilX]Xi
=2g, X, X, + 283, X, X5, using X7 =0
=2g,a},X;+2g a1, X,

2

which implies g,, =g,, =0, since afj #0. Similarly, 0=G(X3)=G(X?3)
imples that g; =g,;=0=g,,=g,,. Next we compute

G(X, X,)=Gla},X)
=a’;2g33X3
=(GX,) X, +X,(GX,)
=g, X\ Xo+gr X X,
= (g1, +82a) X3

which implies, since aj,#0, that g, =g, + g5 Similarly, computing
G(X,X;) and G(X,X;) gives gy, =g, +&3: and g, =g, +g3;. These
equations imply that g,, =g,, =g, =0. Thus we conclude that G=0.
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We offer another proof: if X=3 x,X, is an equilibrium point,
0=X>=2a3,x,x; X, +2a7,X,x3 X, 4+ 2a},x,X, X5, so that x,x,=x,x;=
x,x3=0. Thus there are finitely many equilibrium lines in § and &
contains the basis {X,X,X:} of A. By Corollary 5.12, Der 4 can be
simultaneously diagonalized relative to this basis: GX;=4,(G) X,. Conse-
quently,

al, A X =a],GX,
=GlX, Xz)
=(GX ) X, + X, (GX,)
:(An| +;u2)aT2X3
and 2, =2, + 4,. Similarly, A, =4, + 4., 4, =4, + /; which gives 4, =4, =
A;=0.

For the more general Fuler/geodesic equation X+ x(X, X)=0, there
often exist nontrivial derivations. This equation lives in the algebra (m, a)
that arises from the Nomizu correspondence [25] between invariant con-
nections on reductive homogeneous spaces G/H (where at the Lie algebra
level, g=m+h with (Ad H)ym<m) and algebras (m, a) satisfying

Ad H < Aut(m, o), or equivalently, ad h < Der(m, a). Usually ad h# {0};
see [31-33].

ExamMpLE. We now determine the two-dimensional commutative
algebras 4 which admit a bounded (but, of course, not periodic) solution
to X=X? of the form F,(P)=¢“P for GeDer 4. By Theorem 5.1,
Proposition 5.3 applies, which motivates the following requirement:
GP = P* The algebra we shall obtain is of type (2) in [23, p. 194; also
see 247.

LEMMa 5.18. If P50 and P? #0, then { P, P’} is a basis for A.

Proof. Suppose that P?=aP. Then

0=G(P*—aP)=GP>—aGP=2P(GP)— uP?,
using G € Der 4, GP = P?
=2PP:—@*P=2aP>— ’P =24>P — 4*P,
using P> =apP
=a’P.

This implies a =0 so that P and P? are linearly independent and, conse-
quently, form a basis of A.
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This basis gives the multiplication table

l P P
P P? aP + bP?
P’ aP + bP* P +dP?

for a, b, ¢, d to be determined in R. With this basis. we have the matrix

representation
0 « a ¢ 0 2a
L P = N L })Z = N = \
(#) <1 b) (# (b d> (1 2b>
using GP=P?> and GP?=2P(GP)=2PP>=2aP +2hP’. Now since

G e Der A, we use the above matrices and [ G, L{X)] = L(GX) [ 36, p. 20]
for any derivation G to compute

[G.L(P)]=GL(P)—- L(P)G

_<a 0 )
“\b —a
= L(GP)=L(P?)
_fa c')
“\b d)
so that ¢=0, d= —a. Similarly, using [G, L(P*)] = L(GP*)=2aL(P)+
2bL(P?), we obtain a=0; that is, a=c=d=0.
As in the case of Lie algebras, Ker G #0. Otherwise 4 is a nilpotent

algebra and the solution F,(P) i1s unbounded. So next let Q'=uP +
tP?e Ker G. Then

0=GQ' =uGP +vGP?
=uP? +v(2bP?)
=(u+2bv) P2
Thus u+2bt =0, so Q' =1v(—2bP+ P?); let Q= —2hP+ P? be a basis
element for Ker G and now consider the multiplication table for A4 relative
to the {Q, P?} basis.

Using the previous table with a=¢=d=0, we compute to obtain
Q?=(—2bP+ P*)?>=0 and QP*= —2h*P°, yielding the new table

o »

0 —2p*P?
—2p°P* 0

0
p?
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Relative to this {Q, P?} basis, we have the matrix representations

/00 2 [0 0 /00
uQ)‘(o —2b2>’ L(P)’(*zhl 0)‘ G_<0 2};)'

LemMa 5.19. A4 is solvable, but not nilpotent.
Proof. From the above table, A =span{Q, P?} >4 =span{ P’} >
A =0, but L(Q) is not nilpotent.
Next from P = —1/2b(Q — P?), the solution is given by
F(P)=e¢""P=—1/2b(e'Q — ' P?)
— 126(Q — e P?)
=P+1P?*+ Ob).

THEOREM 5.20. Let X = X? occur in a two-dimensional algebra A which
supports a solution of the form F,(P)y=e'“P for some GeDer A with
GP=P? and P#0, P2 #0. Then

1. A is solvable but not nilpotent and has a basis { Q. P*} of equilibria
where Q. P are eigenvectors of G with GQ =0 and GP*>=2bP.

2. The solution through the point P is given by F,(P)=¢“P=
—1/2b(Q —e*'P?), where Q= —2bP+ P> For b<0, this solution
asymptrotically approaches the equilibrium point —1/2bQ, for b >0, the solu-
tion is repelled by this equilibrium point. Near the bifurcation value b =0, the
solution is approximately P+ 1P? and at b =0, the solution is P (since P, =0
in this case).

3. Let X=x,0+x,P% in A, then the general solution to X =X?
through X is given by x,(t)=x, (constant), x,(t) = x, exp( —4b’x,1). For
x>0, X(6)— x,Q as t — oo, where x, Q is an equilibrium.

ExAMPLE. Suppose that 4 is a three-dimensional commutative algebra
with a derivation G #0 and a nonzero point Pe A such that GP = P? and
such that the corresponding solution trajectory F,{(P)=¢'“P is periodic of
least period 7. We now determine A4 up to isomorphism. Since F,(P) also
satisfies the linear equation X = GX, there must exist a basis { X, X, X,}
such that relative to this basis, G has the matrix representation
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where b=2n/r. If a#0. then by decomposing the complexification A4, of
A, relative to G,

A=A la)+ A (bi)y+ A (—bi) (direct sum)

the results in [13, p. 54, Example 8] can be used to show that the
eigenspaces satisfy A (u) A.(v)S A (u+e) if wu+0v is an eigenvalue;
otherwise A (u) A, (r)=0. By considering the possible eigenvalues
u.vela bi, —bi}, we see that w+v is not an eigenvalue, ie.,
A (u) A (v)=0. This gives A7 =0 and 4>=0. Thus assuming that the
algebra is nontrivial, we have ¢ =0. We now determine the general three-
dimensional commutative algebra 4 having G as a derivation by giving a
multiplication table in terms of { X,,. X,. X,}. From the above decomposi-
tion,

Ac0)={Ze A, :GZ=0} =(Ker G),,
A (+biV={Ze A, GZ= +biZ}

are G-invanant subspaces which satisfy the relations

A (0) AL(0) S A.(0), (1)

A (0) A (HbiY=A (+bi) A(0)S A, (+bi). (2)
A (biY A (biy= A (—bi) Ac(—bi) =0, (3)
A (bi) A (—bi)yS A_(0). (4)

We have A (0)=C.X,, A (hi)=C . (X,+iX,), and A (—-hi)=C-
(X, —iX,).

From (1), X;=/.X, for some AeC, but since X, and X are in R’ /
must be real. From (3), we have X7 — X3+ 2i(X, X,)=0, so X{=X; and
X, X,=0. From (4), X7+ X3=0aX, for some «, which, as before, must be
real. Thus X2 = X2=4uX,, where u =a/2. From (2), we have

Xol X, +iXy) =X, +iX,) (5)

for some e C. Adding (5) to its own complex conjugate yields X X, =
e Xy +c, X,, where ¢; =+ B)eR, and ¢, = (i/2)(f — B) € R. Taking (5)
minus its complex conjugate yields X, X,= —c, X, + ¢, X,. We thus have
the following multiplication table for 4 = A(4, u, ¢y, ¢,).

J 4‘/1! ’YI Xl
Xu 72Xy X+ X, -2 X e X,
X, o X+ X nx, 0

Xy | X 40 Xy 0 1Xq
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The vector field associated with 4 for X=x,X,+x, X, + 3, X, 1s

EX)=X>=(x, Xy +x, X, +x,X,)
=[xy +p(x] +x3)] Xo+ [2x0(c x) —eax3) ] X,
+[2x6(cx, +¢,X5)] Xs
AXE 4 p(xT 4+ x2)
=| 2xp(c X, —€2X5)
Ingleax; +0,x,)

Now we solve the equation GP = P? in 4 under the assumptions that
P#0 and P2#0. For P=p,X,+p, X, +p>X,. we have

/py+upi+p3) =0 (6)
2polepy—capy)=bp, (7)
2polespy+co py)=—bp,. (8)

If p,=p,=0, then (6) shows that p,=0 (in which case P=0, a con-
tradiction), or A=0. In the latter case P=poX, and P*=pjiX,=0,
another contradiction. Hence under our assumptions, at least one of p, and
p» 1s nonzero. Thus we may write (7) and (8) as a homogeneous matrix-
vector equation with a nontrivial solution:

( 2pocy _217x)"2‘[7><l’1>:<0>
2pyey+ b 2pye, P2 0/

Computing the determinant, we find that
4plei+(2pyes+b)2=0.

If p,=0, then =0, a contradiction. Thus ¢, =0 and p,c,= —h/2. We
set ¢ =c¢, and note that p,= —h/2¢. Our algebra 4 is now the algebra
A2, p, ¢) of Section 3.

Now (6) restricts the location of P, depending on the values of 2 and u.
Assume that 4 =x =0, so that the first equation is a triviality. Then we can
choose p, and p, arbitrarily, and we have P=(—5/2¢) Xy + p, X, +p> X>.
The solution is given by F,(P) = ¢'“P = (—b/2c) X, + (p, cos bt +
posin bty X, +(—p, sin bt + p, cos bt) X,. In this case, .4 does not consist
of isolated trajectories.

Now assume that 4 and yx are not both zero. Then, in fact, neither one
of them can be zero. Indeed, if A=0 and p#0, (6) shows that p,=p,=0
and, as before. we have that P2=0. If 2 +# 0 and g =0, then (6) shows that
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Po=0, and (7} and (8) give p, =p, =0, thus P =0. Thus, neither 2 nor u
is zero, and (6) shows that Au <0.

Therefore, the solutions P to GP = P? in A(4, u, ¢) lie in the plane x, =
—b/2¢ on the circle centered at (—6/2¢, 0, 0) with radius (5/2 [¢| W — A/u)"2;
e, pi+pi=—ipi/u=—sbduc’. We write

t
P=Pla)= —7—) Xo+r[(cosa) X, + (sina) X5].
2¢

where 0<a<2n and r=(h/2|c))—Au)"2. The solution trajectory
through P is given by

. b . : . :
F(P)=¢“P= -5 e“Xo+(rcosa) e’ X, +{rsina) X,

Il

b .
—50 X, +r[cos a(cos btX, + sin bt X,)

+ sin a( —sin &X', + cos bt X, )]

—-7[—)— Xy+r[cos(bt +a) X, +sin(bt +a) X,].
2

Summarizing this and previous results, including Theorem 5.8, we have
the following.

THeOREM 5.21. Let X=X? occur in a three-dimensional algebra A
supporting a periodic solution F,(P)=exp(tG)P of least period 1 #0. Then
A s isomorphic to A(A, u,c). Moreover, FP) is isolated in # and
(Aut A), P# P if and only if iy #0.

We now show that curves in Aut 4 can determine every solution in the
algebra A(4, u, ¢) with Au <0.

THEOREM 5.22. Let X = X2 occur in A(/, u, ¢). Then the solution through
X=x,Xo+x, X, +x,X, is given by
FA(X)=xo(1) Xo+ <exp—2 i (1(1)6) Y,,
where x(t) is the solution to Xq=7ix{+ur?, r*=x7+x3, 8(1)= [ xo(s) ds.

and Yo=x, X, 4+ x,X,.

Proof. As in Section 3, x;(#)° + x,(£)>=x7+ x2=/r7, a constant. Thus
the differential system can be written in the form

. 2
Xo=Axg +pur?

-
¥=~27%GY,
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where Y(1):=x,(t) X, + x,(t) X5 = X(#)— xo(t) Xy. The last equation in
Y(t) is a linear, nonautonomous system with the solution

Y(1) = <exp—2 (E ()(t)G> Yo.

This completes the proof.

The cone ¢ obtained from the periodic solutions can be described using
trace formulas and groups that leave them invariant. From our calculations
in Section 3, we see that for XY =3 x, X,

Sf{X)y=trace L(X) = Ax,
and /: A~ R is a linear functional which defines a plane
Si{e)={X:f{X)=c=const}.
Next recall that
C(X, Y)y=trace L{XY)=2°xypo + At{ X, ¥, + X3 ¥5)

defines a nondegenerate bilinear form on A4 which gives the quadric
surfaces

S,(ky={X:C(X, X)=k =const}.

Now let Pc A and Ge Der A; then the solution F,(P)=¢e“P is on the
plane §,(c¢), where c¢=trace L(P): for ¢=e'“cAut A, note that
HXY)=(dX)¢Y) implies that L(X)¢ '=L(¢X), and, consequently,
trace L(e'“P) = trace L(P); that is, ¢’“Pe S, (¢). Since L(GX) =[G, L(X)],
F,(P)e §,(0), which is the cone 4:

C(F,(P), F,(P))=trace L((e'“P)*) = trace L(e'“P?)
= trace L(P?) =trace L(GP) =0,

where the second and third equations use e'“e Aut 4, the fourth uses
GP = P?, and the last uses trace L(GX) = trace[ G, L(X)] = 0. These results

give the following coordinate free location of the periodic trajectory
wWit)=F,(P).

PROPOSITION 5.23.  The periodic orbit y lies on S (k)N S,(0).

Remark. Since C is nondegenerate, there exists Qe A such that
SIX)y=C(Q. X). Now O0=trace LI(GX)=f(GX)=C(Q. GX)= —C(GQ, X},
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where in the last equality we use the linearity of trace, L, and the identity
L(GY)=0, so that G 15 G-skew-symmetric. From 0= C(GQ, X) for all
Xe 4, we see that GQ@=0 and Qe Ker G. This gives the decomposition
A=KerG+Kerf and p(t)=y,(t)+y,(t), where, as before, y,(1)=
(—b/2) Xoe Ker G and y,(1) = (b/2)(sin{bt + a) X, + cos(bt + u) X,) e Ker f.

Next let the Lie group ¥ ={¢eGL(A): Cl¢X, ¢X)=ClX, X), for all
Xe A}, and let e’ €%, where Deg={Degl(4): C(DX. Y)+ C(X, DY)=0},
the Lie algebra of 4. Then since C(X, X) = A2x] + Au(x]+x3). Degis of
the form

0w v
D= —-iu 0 —w,
—ir W 0
where
0 0 0
0 0 —w leDerA.
0O w 0

The cone % of periodic trajectories has two components,
Ct={Pe% :p,>0},
¢ ={Pet .p,<0}.
The group % acts transitively on each component. Indeed, suppose that P

and P’ are points on, say, ¢ *. Then

b .
P=~- X, +r[(cosa) X, + (sina) X,].

+

b
P = % Xy +¥[(cosa’) X, +(sind') X,].

where a, @’ € [0, 27), b, b’ € R, b and b’ both negative, r = (/2 |c| ) —A/u)'?
and v = (b'/2 jc| X — A/u}"2. We shall exhibit group elements whose com-
position maps P to P'. First let
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and let 1, =a —n/2. Then by the action of exp G’ on P,

. b .
eht'p = —% Xy +rlcos(ty—a) X, +sin{ty—a) X1

b
= —5. Xo+rX,.
<C

Next let
b
0 0 n | —
avln <b'>
D= 0 0 0 €g
b
—Aivtln({—] 0 0
ion(?)
where v = —b/2cur =2cr/Ab. Then, as one can easily check. De"“ P=

In(b’/b) e“ P, so

’

. b . b . ‘
ePe P = i NP = ~5 Xo+r'Xs, noting that »'/r =b'/b.
c

Finally. let ¢, =7/2 —a'. Then

r

; , b .
A —3 Xo+r'[(cosa’) X, +(sina') X,]=P"

PROPOSITION 5.24. € * is diffeomorphic to §/Aut A which is a symmetric
space.

Proof.  From the preceding, % acts transitively on ¥ *. Aut 4 leaves any
trajectory y<= %™ fixed so that, regarding ¢* = J{F,(P): Pe#,, o>0,
teR}, we obtain the diffeomorphism [35,39]. Next note that
g =m+ Der A, where m is the subspace of matrices of the form

0 uu v
- 0 0
—Av 0 0

We have (Der A)ym<m and [m, m] < Der A so that €* is a symmetric
homogeneous space [ 10].
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6. DISCRETE SYSTEMS

We now discuss discrete systems X(k +1)= X(k)? occurring in an
algebra 4. For E(X)= X? in A, the trajectory is now the orbit of iterates

O (X)={EX), EV(X), .. E¥(X), ..},

where X=E%(X), E"X)=EX)=X2 .., E¥(X)=E(E"* ~V(X)). Most
authors stress the similarities between the continuous and discrete systems.
However, the use of algebras shows many striking differences as reflected
in the structure of the algebra. We consider the basic similarities involving
semisimple algebras, homogenization, and automorphisms. Then we note
the differences concerning periodic solutions, isolated trajectories, and
attracting sets. In particular, we discuss the problem of periodic trajectories
for quadratic systems and give examples where the same curve has
attracting properties for a continuous and a discrete system. Finally, the
{non )chaotic behavior of E{X)= X2 on S* and S’ is discussed using the
quaternions and octonians (Cayley numbers).

We use the previous notation (R”, /) =A to represent a commutative
algebra and X7 = (X, X). The general form of the quadratic system in
Ais

Xk +1)=C+ TX(k)+ X(k)*= E(X(k)),
where Ce 4 and 7: A — A is linear.
ExaMpLEs. (1) The Henon map in R? given by

a+bx,+cx?
dx,

()40 o)+ (5)

=C+TX+X?

E(X)=<

occurs in the algebra A = (R? f), where

(e
BIX. Y>—< i )

gives the algebra multiplication.

{2) As an extension of the logistics equation, the discrete predator—
prey model is given by

SO5 117 1-%
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\‘|(k+ l)=['|,\"|(k)+zh1]‘-\-1(k)~\‘1(k)

Vo(k+ 1) =cyx,(k) + 3 bypx, (k) X, (k)

Yll(k+l)—(}l\ll )+an}\ntl‘)\‘/(k)~
Thus X(k + 1)= TX(k) + X(k)? in the algebra A4, where

2byxix
X, X)= :
Z bn/ n- /

For P satisfying ¢+ BP =/ (using the notation of Section l), the map
E(X)y=TX+ (X, X) has P as a fixed point,

P <"1 +2. bl_,p/)
TP+ B(P, P)= : =P,
pn <('n + Z hui!’j)

using ¢, + 3 byp,=1. Let e=B "'/ be the right identity in Section 1. let
Q=P —e, then in analogy with the continuous system we can write the
map E(X) in terms of the algebra and Q:f(X, X—Q)=f0(X, X)+
B(X,e) — B(X, P) = B(X. X) + X — diag X)(BP) = B(X, X) + X — (diag X)
(I—e)=B(X. X)+TX = E(X).

Remarks. Some basic similarities and differences between continuous
and discrete quadratic systems are the following:

(1) IfAd=4,@® --- ®A,, is semisimple, then the system X(k +1)=
X(k)? in A decouples into X,(k+1)=X,(k)? occurring in the simple
algebras A;. Similarly, a Wedderburn—Levi decomposition 4 =5+ R as in
Proposition 4.1 gives the systems X¢(k+1)=X¢(k)> in S and
Xplk+1)=2Xo(k) Xp(k)+ Xp(k)? in R

(2} The scope of quadratic discrete systems is similar to that of con-
tinuous quadratic systems: a discrete polynomial system X(n+1)=
P(X(n), .., X) can be embedded into a discrete quadratic system. However,
the algebra may be infinite dimensional; for example, consider
X(k+1)=X(k)* in R. Let V be the vector space of all real sequences
(vy, 05, .., 15, ..). Let 4 be the following commutative infinite dimensional
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algebra (V. fi): for Z=Y o,F, let MZ, Zy=3 z;z,, | F,, where F,=
(0,..,0.1,0,...) with | in the i-position and 0 elsewhere. Let U(1l)=
S u, (1} F, be the initial condition vector in A, where u,(1)= X(1)} and

u, (ly=u ()2 Let Uk)y=Yu, k)F,eA with u,(k)=2Xk) and
i, (ky=u;(k)}*>. Then we obtain the quadratic system Ulk+1)=
PLUK), Ulk)) in A and the system X(k 4+ 1)= X(k)' is obtained by con-
sidering the u,(k + 1)= X(k + 1) component in this product.

(3) A homogenization process similar to that for continuous systems
exists for discrete systems. In this case the iterates of the original quadratic
map in A are given by powers in the homogenized algebra 4. Let
E(X)=C+TX+X?in A, and let 4 = 4 x R with the multiplication

arn=p(( () wer-(,)

B <113C+ ulTX + X">

14

for Xe A and v e R. The operation J is homogeneous quadratic and gives
a commutative algebra 4 = (A x R, f).
The iterates of £ in A are given by powers in 4 as follows: The iterates
in A are
X(l)y=
X2)y=EX(1))=C+TX(1)+ X(1)

Xik+1)y=E(Xtk))=C+ TX(k)+ X(k)?,

Powers of X=(7)in A are

X =(X(‘”> for X(1)=X.

X(Z)

fl

7o <C+TXH+XH)>_<HXHH>
12 - 1
X(A+ll /f(X”" X‘“) <

_(X(k+1)>
=)

EM’U\'H)
I
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Thus if 71: A — A : (¥)+ X, then we obtain X"’ = X(n); that is, n{powers)
=iterates. Because of this, we shall concentrate on discrete systems of the
form X(k +1)=E(X(k))= X(k)” in 4.

(4) Note that a decreasing chain of derived subalgebras of A4 is
obtained by setting 4'"'=A, A%+ = 4% 4% 5o that

A=A”’2A'2)2 2A(I\'+l>2

If 4 is finite dimensional, then there is an N such that 4™ =4V +1= ...
This is where the interesting dynamics occur.

(5) Let 4 be a nilpotent algebra, then we have the following inter-
esting difference between continuous and discrete systems. From Proposi-
tion 4.2, the solution X(7) of X = X? is unbounded. In the discrete case, the
orbit X(n) of X(k + 1) = X(k)* becomes 0 after finitely many iterations.

(6) Let {X(n)} be the orbit of X(k+ 1) = X(k)*in A and assume thai
P=Ilim X(n) exists. Then

P=lim X(n+ 1)=lim X(n)’ = P%,

that is, P is an idempotent of A. In particular, a nonzero equilibrium point
N for the discrete system X(k + 1)= X(k)? in A cannot be an equilibrium
point for the differentiable system X =X? in 4: N=N? for a discrete
system, but N2=0 for a continuous system. Since the linearization of
E(Z)=2Z% at a point Q€ A4 is given by E'(Q)=2L(Q). an equilibrium
point for a continuous system cannot be hyperbolic. For a discrete system,
we have the following result.

PROPOSITION 6.1. Let the discrete system Xk +1)=E(X(k))= X(k)?
occur in an algebra A. Let P= P> #0 be a fixed point. Then P is unstable.

Proof. We have E'{P)P=2L(P)P=2P>=P; hence, A=2 is an eigen-
value of E'(P). Thus the spectral radius of E’( P} strictly exceeds 1, so P is
unstable [ 19, Chap. 1, Theorem 9.14].

In contrast with the above result, the origin is an asymptotically stable
fixed point in normed algebras.

PROPOSITION 6.2. Ler X(k +1)= X(k)> occur in an algebra A that has a
{( positive definite) norm ||-|: A - R satisfving 1 X3 <1 X|1* for all Xe A.
Then the origin O e 4 is an asymptotically stable fixed point.

Proof. Let V(X)=|/X|. For each Xe A, we have V(X):= V(X% —
V(X)=|X? — ) X] <0. Now }(0)=0 and, since V is positive definite,
[ X1 < | X)| for all X#0 such that |X| <1, and so | X’ <|X|*<|XI.
Thus V(X)<0 for all nonzero X in the open neighborhood # =
{XeA:|X|<1}. Thus ¥V is a Lyapunov function with ¥ and — ¥ both
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positive definite, and so the origin is asymptotically stable [21, Chap. I,
Corollary 2.7].

ExampLES (1) Let M, (R) be the associative algebra of real nxn
matrices with norm | 7| =sup{|7X|:XeR" and |X||=1}. We have
IST|<|SI|T| for S, Te M, so that |T?| <||T||>. Let M, be the com-
mutative Jordan algebra with vector space M, and multiplication
p(S. T)=5(ST+ TS). Let A be a Jordan subalgebra of M, then for Te 4
we have [S(T.T), = |T?| <|Tl* so that the origin is asymptotically
stable for the system X(k +1)=X(k)* in A.

{2} Let 4 be the Cayley algebra as discussed in [5], then the func-
tion M(X)=Y x2=|X]|? satisfies V(XY)=V(X) M(Y). Thus | X7} = |X|>
so that the origin is asymptotically stable for the system X(k +1)= X(k)?
mAdr.

Next we consider automorphisms of discrete systems, particularly
quadratic systems.

LEMMA 63. Let E:R"—R", and let peAut E. Then ¢ is solution-
preserving for X(n+1)=E(X(n)); ie., {EV(X)} is an orbit whenever
{E"(X)} is an orbit.

PI'OQf: ¢E(I”(X):E(”'(¢X).

ProposiTiON 6.4. Let E: R"— R".

1. Let PeR” and ¢ € Aut E be such that ¢ P = E(P). Then the iterates
E"(Py=¢"'P, where ¢ = ¢ --- ¢ (composition n times).
P

2. Let & be the set of equilibria of E and let #y be the set of points
of period N of E. Then & and A, are Aut E-invariant.

Proof. For (1), note that E'\P)=¢""P=P, E'"(P)=EP)=¢'"P,
and, using induction,

E**V(P)= E(E®(P))
= E(¢'*'P)
= ¢ E(P)), e Aut E
= ¢ AP
Y A
The proof of (2} is similar to the differentiable case.

COROLLARY 6.5. Let GeDer E and Pe A be such that e P = E(P); then
the iterates E"(P)=e"CP.
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Remarks. (1) The formula E"(P)=¢""P allows for easy numerical
calculation with small error compared to computing the iterates.

(2) If E"(P)=¢""P, then we can iterate backward by E' "(P)=
e "“P.Thus for Q=¢ “P,

E(Q)=E(e “P)
=e¢ “E(P). usinge “eAut E
=e “e“P, using E(P)=¢“P
=P
If E(X)=X? then Q is a solution to X*=P in A4; ie, Q=P'~

(3) If E"(P)=¢""P, then the orbit {P, EV(P)., ... E"(P), } 1S
always on the curve k(s)=¢"“P for se R.

LEMMA 6.6. For E(X)=X%in A and se R, E'"'(sX)=s"E'"(X), where
m=2"
Proof. This is an easy calculation.
Next we consider some results on periodic orbits.
PROPOSITION 6.7. For E(X)=X> in A, let Pe#, and N>1. Then
{ P, E(P )} is a linearly independent set of vectors.
Proof. Suppose that E(P)=aP for some «e R. Then
P=E"N(P)
=E™ NE(P))
=E"™ DaP)
=g"E™N V(P), where m=2""1
Thus, we find that
aP = E(P)
= E(a”E"™ - V(P))
=a”E(E'Y "(P))
=a”E"™M(P)
—a>"P.

This implies that ¢ =1 or 0, both of which contradict the fact that Pe 4.
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The next result suggests that one should look for periodic orbits in
simple algebras.

ProrosiTiIoN 6.8.  If A is power-associative and has a periodic point, then
A has an idempotent, ie.. if X(k +1)=X(k)? in A has a periodic orbit, then
it hus a fixed point.

Proof. In a power-associative algebra, the iterate E™(X)= X*, where
a=2* Thus if P=E™(P)= P?", let Q= P, where m=2" — 1. Next note
that QP = P> =P, QP?=P? ., QP"; that is, Q*= Q.

DErFINITION. The set #, of points of period N i1s said to consist of
isolated points if each P in #, has a neighborhood ‘# which contains no
other points in #y: ie, # N4, ={P}.

The following result contrasts sharply with the corresponding continuous
Theorem 5.8.

THEOREM 6.9. Suppose P is an isolated periodic point of period N. Let
(Aut E), denote the connected component of the identity in Aut E. Then
GE™(Py= E'""(P) for all ¢ €(Aut E), and all nonnegative integers n.

Proof. Let DeDer E, then from Proposition 6.4, ¢*”P e #, for all se R.
Let k: R— R": s —e™”P. As before, k is continuous, so k(R} is connected.
But k(s)e .4, for all se R, k(0)= P, and P is isolated in #,. Thus ¢*’P=P
for all se R. This proves the result since any ¢ € (Aut E), may be written
as ¢ =e” -..e" for D,eDer E.

Conjecture. If #, is not isolated, Pe#y, and (Der £)P # {0}, then
there exists ¢ € Aut £ such that ¢ = E(P). Thus the iterates E"(P)=
¢(")P.

ExampLE. The following are two-dimensional algebras 4 which support
orbits of X(k+1)= X(k)? that are of the form X(k)= (exp kG)P for
GeDer A and Pe A not a fixed point.

{1} Assume that 0 is an eigenvalue of G with a #0 the other real
eigenvalue. Thus 4 has a basis { X, X,} with GX,=0 and GX,=aX,,. The
preliminary multiplication table is

‘ Xl) Xu
Xy rX, sX,
X, sX, 0

for r,se R suitably related to «. This table uses A(a) A(f)S A(a+f) if
ax+f# is an eigenvalue of G; otherwise, A(a) A(f)=0 [13, p.54]. The
element Pe 4 with P2={(exp G)Pis P=(1/r) X, +p, X,, where p, #0in R
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and 2s/r=exp(a). P is not periodic since the equation P ={expnG)P,
when expressed in terms of the basis, implies n = 0.

(2) Assume 0 is not an eigenvalue of G. For complex eigenvalues /
and 4 of G, decompose the complexification

Ac=A (M) + A D),

using the fact that G can be extended to a derivation of A.. Thus
Ao (2)}=A.(1)*=0, since 24 and 24 are not eigenvalues of G. Also
Ac(X) AC(/T) =0, since 4 — 4 is not an eigenvalue. Thus A7 =0 and, conse-
quently, 42 =0, a contradiction.

(3) For a repeated real cigenvalue a # 0, there exists a basis { X, X,}
of 4 such that GX, =aX, and GX,=aX, + X,. Using that G is a deriva-
tion, a straightforward calculation gives A= 0. The other case, where G is
fully diagonalizable cannot occur, for then the eigenspaces would not
multiply properly.

(4) Assume that 0 is a repeated eigenvalue of G € Der A. Then A4 has
a basis {X,, X,} with GX, =0, GX,= X, so that G has as its matrix ({ ;)
and G’=0. Since Ker G=RX, and G(X7)=2X,(GX,)=0, we have
X?=4X, for AeR Next G(X, X,)=(GX ) X;+ X (GX,)=X, X, =X,
and G(X3)=2X,(GX,)=2X,X,. From this 0=G*X3)=2G(X,X,) so
that X, X,eKer G; thus X, X, =xX, for geR. Using this and the above
calculation G(X, X,) = 4iX,, note that 0 =uG(X,)=G(X, X,)= 1X,, which
gives 4 =0 and the table

L X, X

0 e
HX, aX, +bX,

X,
X;

for u, a, b e R. Next let P=p X, +p, X, satisfy P? = (exp G)P. Then, using
the table,

P2=(ap§+2,up,p2) X, +bP§X2
=(expG)P
=I+G)P
=(p)+p2) X\ +p, X,

which implies that p, =(b—a)/b(2u —b) and p,=1/b when (b —2u) #0,
or p,eR and p,=1/b when a=5b =24 #0. In either case,

X(n)=(exp nG)P
={I+nG)P, using G2=0
=(p, +npy) X, +p. X,
Then E'"(P)# P for any n=1,2, ...
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ExaMPLE. Suppose that 4 is a three-dimensional commutative algebra
with a derivation G#0 and a nonzero point Pe A4 such that ¢“P= P2
and such that the corresponding orbit X(n)=¢"“P is periodic of periodic
N> 1. By the same argument as in the differentiable case {i.e., using the
periodicity of the function ¢+ ¢"“P and assuming that 42 0), there must
exist a basis { X,, X|. X,} such that the matrix representation of G is

0 0 0
0 0 &)
0 - O

where b=2rk/N for any keZ, k#0 (mod N). Thus we must solve
e“P=P? in the algebra A=A(A u.c,,c,) constructed in Section 5
following Eq. (5). Since we are assuming that ¥ > 1, we impose the condi-
tions P#0 and P*# P.

Letting P =pyX,+p, X, + p,X,. we have from ¢“P = P2,

pg+u(pi+p3)=po. (1)
2po(cipy—capr) =pycos b+ pysin b, (2)
2polcapy+c1py)= —p;sinb+p,cosb. (3)

If po=0, then the right-hand sides of (2) and (3) can be soilved uniquely
for p, and p, to get p, =p,=0; thus P =0, a contradiction. On the other
hand, if p, =p,=0, then (1) implies that Apl=p, Thus P=p.X, and
P*=pliXy=p.X,=P. another contradiction. Thus we write (2) and (3)
as a homogeneous matrix-vector equation with a nontrivial solution:

<2poc,—cosb —2pyc; —sin b><pl>_<0>
2poc,+sind  2pyc,—cosh Jip,/ \0)
Computing the determinant, we find that

(2pyc; —cos b)* + (2pyc, +sin b)? =0.

Thus 2pc,=cos b and 2p,c,= —sin b. This gives us the compatibility
condition
c,c08 b= —c;sinb.

We thus set ¢, =ccos b and ¢, = —¢ sin b for some ¢ € R and we work in
the algebra A(4, y, c cos b, —c sin b) whose table is given by

‘ Xu Xl Xl
Xy X, c{cos bX, —sin bX,) ofsinbX, +cos bX,)
X co{cos bX| —sin hX,) uX, 0

X, o{sin bX, +cos bX,) 0 nX,
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Note that ¢#0; otherwise the determinant condition becomes cos?h+
sin® h=0. Thus p, = 1/2¢. Equation (1) becomes

> 2y |
ppi+py) =5 (1= 2720, (4)

If £ =0, then 2=2¢ (by (4)) and a short calculation using the table shows
that ¢“P= P? for any P#p,X,. If 4 #0, then for later reference, we note
that (4) implies that (1/2¢u)(1 — 4/2¢) 2 0, from which it follows that either
=0 and Aje <2, or cu<0and 2/c = 2. Thus the solutions P to ¢“P = P>
in A(4, p,cos b, —sin b) and the orbits {E"(P)} through each P are
described in the following.

THEOREM 6.10. Let A be a three-dimensional algebra with an orbit
{X(n)} = {{exp nG) P} of X(k+1)=X(k)*, where GeDer 4 and Pe#,.
Then A= A(/,u, ccos b, —csinb), where b=2rk/N for some keZ, k%0
(mod N), and ¢ #0. When u #£0,

1
P:Ez Xo+pllcosa) X+ (sina) X,],

1
E"(P) =50 Xy + plcostbn —a) X, —sin(bn —a) X, ],
P

where 0<a<2nr, and p=(12uc)(1 — 2/2¢))'? = (p, + p,)"2 When n=0,
the orbit through each P +#(1/2¢) X, is given by {e"“P}.

We now assume that, for some a€[0, 2n), P= P(a) is a critical point of
E. 1e., E'(P) 1s singular. We temporarily compute in Cartesian coordinates:
Pla)y=p,X,+p, X, +p,X,. Recalling that p,=1/2¢, we have

Ae 2up, 2up,
E'(P)=| 2c(p,cosh+p,sinb) cosb sinb
2¢(—p,sinb+p,cosh) —sinbh cosh

so after some calculations we find

det E'(P) :ﬁ~4qz[(p, cosh+p,sinbh)2+(—p,sinb+p,cos h)?]
p

A
= —dau(pi+pd)

If =0, then 2=2¢ so det E'{P)=2+#0. Thus in this case, E'( P} cannot
be singular, so we assume from now on that ¢ # 0. But from Theorem 6.10,
pi+pi=pr=(172cu)(1 —(1/2¢)4), so Ale—2(1—(1/2¢)})=0; ie, i=c



QUADRATIC DYNAMICAL SYSTEMS 121

From the sign condition of Eq. (4), cu >0, so p = 1/(2(cu)""?) and in cylin-
drical coordinates

1
P(a)—_—’—X[)+

| .
o W[(cosa)X,qL(sm a)X,].

2(¢

Conversely, if we assume that A=¢, then reversing the calculations
shows that £'(P) is singular for any Pe {P(a):0<a <2n}. This shows the
following.

LeMMa 6.11.  The following are equivalent .

(1) For some ae[0,2r), Pla) is a critical point of E,
(2} For every ac[0,2n), P(a) is a critical point of E.

We now consider the stability analysis of the discrete system
X(k +1)=X(k)?in A. Let S(1/2¢) denote the circle with center 1/2¢ on the
X,-axis and with radius p = 1/2(cu)'?>. We are interested in orbits starting
near the circle S(1/2¢)={Pla):0<a<2r} of periodic points as in
Theorem 6.10. We shall assume that some (and, hence, every) point on
S(1/2¢) is a critical point of E. As before, we use cylindrical coordinates
and write

X=xoXo+x, X, + X, X;=x,X,+r[cos X, +sin 0X,].

where r?=xi+x3, x,=rcosf, x,=rsin(. We compute the iterates of
E{X)= X" in A relative to these coordinates and we find, using 4= ¢ and
the table,

E(X)=(cx2+pu(xT+x3)) Xo+ 2cxo{x;cos b+ x, sin b) X,
+ 2cx4( —x, sin b + x5 cos b) X5,
=(exZ+wr?) Xy + 2exqr[cos(0— b) X, +sin(6—b) X, ],
=x,(1) Xg+r(1)[cos (1) X, +sin (1) X,], (5)

where x,(1) = cx} +pur?, r(1) =2¢xqr, and 0(1) = 6 — b. By induction, if the
kth-iterate

E"NX)=x4(k) Xo+ rik)[cos 8(k) X, + sin 0(k) X,],
then
E**D(X)=xolk+1) Xo+r(k+1)[cos Ok +1) X, +sin 0(k + 1) X,].
where
(1) xplk +1)=cxy(k)? +pur(k)?,
(1)  rk+1)=2cxy(k) rk),
and Ok + 1) =0—(k+1)b.
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The fixed points of the discrete system (1), (it) are (0,0), {1/, 0),
(1/2¢, 12(cu)"?), and (1/2¢, —1/2(cu)"?). Because we are considering r
to be a radius, we disregard this last point. In the original system
Xtk +1)= X(k)*, the first two fixed points correspond to the points X =0
and X =(l/c) X, respectively. The fixed point (1/2¢, 1/2(cu)'?) corre-
sponds to the circle S(1/2¢) of periodic points. Thus to analyze the stability
of the fixed points X=0, X=(l/c) X,, and the periodic points S(1/2¢),
we are left with the task of analyzing the stability of the fixed points of
system (1), (1i).

The derivative of the quadratic map

u et + et
v 2eu
, <u et 2uv
F = .
v 2cv 2cu

Evaluating this at each of the fixed points and computing eigenvalues we
find the following.

Fixed point Eigenvalues
{0.0) 0.0
(l/e, 0) 22
(172¢, 1720}y 0,2

Comparing these with [, we see that (0, 0} is asymptotically stable, (1/c, Q)
is unstable, and (1/2¢, 1/2(ci)'?) is a saddle. We denote this latter fixed
point by @ and compute the eigenvectors at  in a convenient form. We
find that the stable eigenvector at Q is (—1/2¢, 1/2(cu)'?) and the unstable
eigenvector at Q is (—1/2¢, —1/2(cu)"?).

In particular, if an orbit of the system (i), (ii) starts at (xq,r)=
Q+a—1/2¢,1/2(cu)'?) for xe(—1,1), then any easy induction shows
that

(xoln), r(n)) = Q4+ a2 (1/2¢, —12(cu)?).
Thus, since —1 <a <1, {x4(n), ¥(n)) — @ as n — . Note that all points in
this orbit satisfy (1/c—x4)? = (ufc) r*.

Similarly, if an orbit starts at (x,.,7)=Q+ o —1/2¢, —1/2(cu)"?), then
an easy induction shows that

(xo(n), r(n)) = ((1 =) /2¢, (1 —a)*/2cu)?).

Thus (xg{n), r{n)) —(0,0) as n— o if 0<a<l1, while (x,(n), r(n))—
(o0, o) if —1 <a < 0. Note that all points in this orbit satisfy x7 = (u/c) r2.
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Finally, we interpret these results in terms of the original system
X(k+1)= X(k)? in A. The stability analysis of the fixed points (0. 0) and
(1/¢, 0) In the system (1), (i1) implies that the origin X =0 is asymptotically
stable and the fixed point X =(1,¢) X, is asymptotically unstable. On the
other hand, the circle S(1/2¢) has both a stable cone and an unstable cone.
Thus. if an orbit starts at a point X on the cone

‘ , M )
by = {Z XX e —xy)? :’% (\f + \E)}

in the region where 0 < x, < 1/c¢, then the orbit { E"(X)} spirals along %,
and approaches S(1/2¢) as n increases without bound. If an orbit starts at
a point X on the cone

% = {Z,\',X, : .\‘;’,z'g (x7 +.\‘§)}

in the region where 0<x,<1/c (x,#1/2¢). then the orbit {E"(X)}
spirals along %, and is repelled from S(1/2¢).

This completes the stability analysis of the system X(k +1)= X(k)? in
the algebra A = A(/, i, ¢ cos b, ¢ sin b).

Remark. In finding periodic trajectories for a discrete quadratic system,
behavior similar to the differentiable case has occurred. For the latter, the
solution F,(P) is the circle S{ —b/2¢) which 1s an attracting limit set along
a horizontal cylinder. For the discrete case, the orbits { E"(P)} are on the
circle S(1,2¢) which is attracting for the cone %,,.

ExaMpPLE. We now modify the preceding example so that the quadratic
system depends on a varying parameter. Let % =) S{1/2¢), let
A(¢)=A(c,p, ccos b, e sin b), and using Eq. (5), let E.(X)=X? in A(c).
We now define a quadratic system on the open half-space {x,>0} <R’
in terms of FE. so that % becomes an attracting set. Consider
X=xyXo+x, X +x,X,, xq#0 and write x,=1/2¢ uniquely. Writing
X=X()=(1/2¢) Xy + x; X, + x, X,, we define

Q: {xy>0} >R : X— E_(X()),

where E_(X{c¢)) is computed in the algebra A{c). Thus in cylindrical coor-
dinates, write

X=X()= !

;—X0+r[cos 0X, +sin 0X,] in  A(c)
2¢
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and
oX)=E_ (X(c})

1\?2 1
:((' <—7 > +;1r2) X+ 2¢ <—2 )r[cos(()—b)Xl—i—sin(()Ab)XI]
A c

P4

1
= <Z;+;tr2> Xo+r[cos(—b) X, +sin(6 —bh) X,]

1
2¢(])

Xy +rfcos (1) X, +sin (1) X, ] in  A(c(1))

where 1/2¢(1)=1/4¢ + ur? and (1) =0 — b. Continuing by induction, if

-

0" X)= Xo+r[cos O(k) X, +sin 0(k) X,], in A(ctk))

o

clk)

then

1
th+ 1) —
0 (X)_Z('(k+1)

in A(c(k+ 1)),

Xo+r[cosOk+1) X, +sn (k) X,]

where 1/2¢(k + 1)=1/4c(k) +pur* and Ak + 1) =0(k) —b=0—(k + 1)b.
The formula for ¢(k + 1) implies that lim ¢(n) = f exists and f # 0. Thus

L1
1 e
25 ap

so that §=1/4ur*. Thus Q"(X) spirals on the cylinder along the x,-axis
of radius r and approaches the circle S(2ur?) on the paraboloid %. This
paraboloid is also Q-invariant, and so we have the following.

PrROPOSITION 6.12. € is asymptotically stable for Q.
ExampLE. The squaring map z+ z2 in the complex numbers C has
attracted a lot of interest because of its connections with chaos [6,4]. In
particular, the restriction of this map to the unit circle S' has chaotic
behavior. In [ 15], we discuss the squaring maps in the quaternions and the
octonians {(or Cayley numbers), and their restrictions to S* and S7.
Devaney [ 6] has defined a map on a metric space to be a chaotic if (1)
it is sensitive to initial conditions, (2} its periodic points are dense, and (3)
it is topologically transitive. Banks ef a/[4] have shown that (2) and (3)
automatically imply (1). However, the common wisdom is that sensitive
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dependence i1s the essential feature of chaos. This being the case, the result
of [4] should be contrasted with the following [ 15].

PROPOSITION 6.13.  Let A denote either the quaternions or the octonians

with 8" as a submanifold, n =73 or 7. Then the squaring map E(X)= X7 in

A

satisfies the following properties .
(1y E
(2} The periodic points of E| are dense in S,

« Is sensitive to initial conditions;

(3)  E|g is not topologically transitive.

ACKNOWLEDGMENTS

The authors thank the referee for a very careful reading, for correcting their mistakes. and

for helping to improve the exposition. They also thank Michael Roth for pointing out an error

in

(8%

13.
14.

an earlier version of Theorem 3.9.

REFERENCES

. A. A. AwBerT (Ed.), “Studies in Modern Algebra,” Stud. Math., Vol. 2, Math. Assoc.
Amer., Washington. DC. 1963.

. A. A. ALBERT, The radical of a nonassociative algebra, Bull. Amer. Marh. Soc. 48 (1942).
891-897.

. V. L. ARNOLD, “Mathematical Methods of Classical Mechanics.” 2nd ed.. Springer-Verlag,
Berlin/Heidelberg/New York. 1989.

. 1. Banks, 1. Brooks, G. Cairns, G, Davis, aND P. STACEY, On Devaney’s definition of
chaos, Amer. Math. Monthly 99 (1992), 332- 334,

. C. W. CurTis, The four and eight square problem and division algebras, in “Studies in
Modern Algebra™ (A. A. Albert, Ed.), Stud. Math., Vol. 2, pp. 100- 125, Math. Assoc.
Amer., Washington, DC, 1963.

. R. DEVANEY, “Chaotic Dynamical Systems.” Addison-Wesley, New York, 1989.

1. EcaLLk, J. MarTINET, R. Moussu, aND J.-P. Ramis, Non-accumulation des cycles
limites, I, II, C.R. Acad. Sci. Paris Sér. I Math. 304 (1987), 375--377, 431-434.

. J.-P. Francoise aNp C. C. PuGH, Keeping track of limit cycles, J. Differential Equations
65 (1986). 139-157.

. W. Haun, “Theory and Application of Liapunov’s Direct Method.” Prentice-Hall,
Englewood Cliffs, NJ, 1963.

. S. HerGason, “Differential Geometry. Lie Groups, and Symmetric Spaces,” Academic
Press, New York, 1978.

. M. Hirsca anD S. SMmaLk, “Differential Equations, Dynamical Systems., and Linear
Algebra.,” Academic Press, New York, 1974.

. Ju. S. [L'vasHENKO, “Finiteness for Limit Cycles” (transl. by H. H. Faden), Amer. Math.

Soc., Providence, RI, 1976.

N. Jacosson, “Lie Algebras,” Dover, New York, 1979.

J. KAPLAN AND J. YORKE, Nonassociative real algebras and quadratic differential equa-

tions, Nonlinear Anal. 3 (1979). 49-51.



126 KINYON AND SAGLE

33

34.

5.

36.

37

39.

. M. K. KINYON aND A. A. SAGLE, {Non chaotic dynamics on $* and §7, in preparation.

. 5. KosavasHi anp K. Nomizu. “Foundations of Differential Geometry. 11, Wiley,
New York. 1968.

. D. E. Kopitscaek aAND K. S. NARENDA, The stability of second order quadratic differen-
tial equations, IEEE Trans. Automata Control AC-27 (1982). 783-798.

. M. KoecHer, Die Riccatische Differentialgleichung und nicht-assoziative Algebren, 4bh.
Muath. Sem. Unit. Hamburg 46 (1977), 129- 141,

. J. P. LaSatLe. “The Stability of Dynamical Systems,” Regional Conference Series in
Applied Mathematics, Vol. 25, Soc. Indust. Appl. Math., Philadelphia, 1976.

. J. P. LaSarie, “The Stability and Control of Discrete Processes.” Springer-Verlag,
Berlin/Heidelberg/New York, 1986.

. J. P. LaSaLLE anp S. LErscHETZ, “Stability by Liapunov's Direct Method with Applica-
tions,” Academic Press. New York., 1961.

. D. LUeNBERGER, “Introduction to Dynamic Systems.” Wiley, New York, 1979.

. L. Markus. Quadratic differential equations and nonassociative algebras, in “Ann. Math.
Stud..” Vol. 45, pp. 185-213, Princeton. NJ. Princeton Univ. Press, 1960.

24. T. NEwToN, Two dimensional homogeneous quadratic differential systems, S/AM Rev. 20

(1978), 120-138.

. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 9
(1954). 33-65.

. T. RaTiu, The motion of the free n-dimensional rigid body, Indiana Math. J. 29 (1980},
609-630.

27. H. ROHRL. Algebras and differential equations, Nagova Math. J. 68 (1977). 59-122.

. H. ROHRL, A theorem on non-associative algebras and its application to differential
equations, Manuscripta Marh. 21 (1977), 181 187.

. H. ROHRL AND S. WALCHER. Some classes of algebras and their derivation algebras,
Algebras Groups Geom. 4 (1987), 475-496.

. H. ROHRL aND M. WISCHNEWSKY, Subalgebras that are cyclic as submodules.
Manuscripra Marh. 19 (1976), 195--209.

. A. A. SaGLE, Jordan algebras and connections on homogeneous spaces, Trans. Amer.
Math. Soc. 187 (1974), 405-427.

2. A. A. SAGLE, Invariant Lagrangian mechanics, connections, and nonassociative algebras.

Algebras Groups Geom. 3 (1986}, 199 263.

A. A. SAGLE, Anticommutative algebras with an invariant form, Can. J. Math. 16 (1964),
370-378.

A. A. SAGLE, Nonassociative algebras and invariant mechanical systems, 1. Hadronic J. 7
(1984). 1259-1302.

A. A. SAGLE AND R. WALDE, “Introduction to Lie Groups and Lie Algebras,” Academic
Press, New York, 1973.

R. D. ScHAFER, “Introduction to Nonassociative Algebras,” Academic Press, New York.
1966.

J. SotomayOrR AND R. PaTERLINI, Quadratic vector fields with finitely many periodic
orbits, in “Geometric Dynamics.” Lecture Notes in Math., Vol. 1007, Springer-Verlag.
Berlin/Heidelberg/New York, 1983,

. S. WALCHER, “Algebras and Differential Equations,” Hadronic Press, Palm Harbor, FL.
1991,

F. WARNER, “Foundations of Difterentiable Manifolds and Lie Groups,” Springer-Verlag.
Berlin/Heidelberg/New York. 1983,



