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Abstract In this paper, we considered the pulsatile flow of blood through catheterized tapered

artery in the presence of an x-shaped stenosis. Blood flow is modelled as homogeneous incompress-

ible couple stress fluid. Further the effects of velocity slip at the arterial wall are also examined. The

analysis is carried out analytically and closed form solutions are obtained with the assumption of

mild stenosis. In the present study, we analyze the effects of various fluid and geometric parameters

on the physiological parameters such as resistance to flow and shear stress at the wall. The variation

in the resistance to the flow and wall shear stress with respect to stenosis size (�;w), radius of the
catheter (Rc), couple stress fluid parameters (b;x), Reynolds number (Re) and pulsatile parameter

(r) has been studied. In particular shear stress at the wall is reckoned at both the locations

corresponding to the maximum height of the stenosis. It has been observed that this physiological

parameter is independent of the location of the maximum height in case of nontapered artery while

these locations significantly impact the shear stress at the wall in case of tapered artery. The loca-

tions of the critical and maximum heights with corresponding annular radii are summarized in the

form of Table 1. We also focussed our attention on the analysis of the wall shear stress over the

entire stenosis region for various values of the geometric and fluid parameters. It is observed that

the impedance and wall shear stress are increasing with increase in the radius of catheter and steno-

sis size while they are decreasing as the tapered parameter and the couple stress fluid parameters are

increasing. It is observed that slip velocity and diverging tapered artery facilitate the fluid flow.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cardiovascular diseases (CVDs) are the group of disorders of

heart and blood vessels. CVDs include coronary heart disease,
cerebrovascular disease, peripheral arterial disease, rheumatic
heart disease, congenital heart disease and deep vein
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thrombosis and pulmonary embolism. Over the period of past
few decades it has been the leading cause of death worldwide
[1]. Lot of research efforts are going on to prevent, control

and cure these disorders. Most of the deaths occur because
of heart attacks and strokes apart from conditions of ischae-
mia, atherosclerosis and thrombosis. Heart attacks and strokes

are usually acute events mainly caused by blockage/s that
prevent the flowing of blood to the heart or brain. The
build-up of fatty deposits on the inner walls of the blood

vessels, that supply blood to the heart or brain is one of the
most-common causes. Strokes can be caused by bleeding from
a blood vessel in the brain or from blood clots. The abnormal
narrowing of blood vessels in various locations of cardio-

vascular system due to the deposition of the cholesterol and
other fatty substances leads to a medical condition called as
stenosis [2]. Stenoses lead to circulatory disorders such as

atherosclerosis. The ethological studies on stenosis suggest that
deposition of calcium, fatty components and cholesterol on the
inner walls of the artery prevent the flowing of blood leading to

rupture of the artery and thrombosis. Thrombus can form
emboli which occlude the smaller vessels.

The dynamics of the blood flow is drastically affected in all

these conditions and has adverse effects on the blood circula-
tion and its control by cardiovascular system. Stenosis
increases the resistance to the flow of blood in arteries resulting
in increased blood pressure. It is now a well established fact

that stenosis induces substantial changes in blood flow veloc-
ity, pressure distribution, wall shear stress and impedance.
Currently most of these conditions cannot be detected in

routine check-ups and CT scan remains a major technique to
diagnose stenosis conditions. It is imperative to understand
the behaviour of blood flow in a stenosed artery which is quite

different in comparison to the normal ones. Information about
the flow parameters such as velocity, flow rate, pressure drop
in diseased vessel can be crucial and can help to save the

further fatality and prevent the occurrence of the disease. It
can help patients to get right treatment at right time. The
mathematical modelling and numerical simulation studies have
the huge potential and can very well interpret existing in vivo

data and eventually help in the improved diagnosis. The
assumptions of blood flow parameters made from mathemati-
cal modelling can be crucial and life saving. In this paper we

try to model the blood flow in stenosed artery to understand
the behaviour of blood and connect it to the possible leading
medical condition.

Initial understanding of blood flow dynamics was done by
considering blood as a Newtonian fluid [3–5]. But theoretical
and experimental investigations indicated that blood cannot
be treated as a single phase homogeneous viscous fluid while

flowing through small arteries [6,7]. It is now well established
that blood is a suspension of corpuscles (cellular particles) in
an aqueous saline solution of plasma which indicates that

blood is having a non-Newtonian structure. Siddiqui et al.
[8] have investigated the pulsatile nature of blood by modelling
blood as a Casson fluid. They observed that the yield stress

increases with a decrease in the mean and steady flow rates.
Sankar et al. [9] observed the effects of non-symmetric stenosis
on the physiological properties of the flow by treating blood as

Herschel Bulkley fluid. Varshney et al. [10] noticed the effect of
time-dependent radius of the artery on flow rate, wall shear
stress, etc., by considering the blood as power-law fluid. The
influence of heat and mass transfer on blood flow through
asymmetric stenosis was discussed by Akbar et al. [11,12],
where in blood is modelled as Jefferey fluid and Sisko fluid
respectively. A perturbation method was used to examine

biomechanical analysis of Prandtl fluid flow through stenosed
tapered artery by Akbar et al. [13].

Chakravarty et al. [14] have studied about the two dimen-

sional blood flow through tapered arteries under stenotic
condition. They mentioned that in most of the earlier studies,
flow in the arteries has been considered in cylindrical tubes

with uniform cross section. But in reality bifurcation of blood
vessels at frequent intervals and variation in the vessel diame-
ter with distance is well known and the most of the vessels
could be considered as long, narrow and slowly tapering cones.

Noreen et al. [15] have analysed the effects of vessel tapering
together with the asymmetric stenosed tapered artery on the
flow characteristics by considering blood as a Nano fluid.

Here authors concluded that velocity profile is rising with
the increase in slip velocity. Peristaltic Newtonian fluid of
chyme flow through small intestine was modelled by Akbar

et al. [16].
There are many treatments available for diagnosing and

treating constricted vessels. Catheterization (thin, flexible tube)

is one of them, in which balloon angioplasty is a specialized
form of catheterization. These procedures are widely used in
the medical field for treating the atherosclerosis. Insertion of
the catheter in a tube creates an annular region between inner

wall of the artery and outer wall of the catheter which
influences the flow field such as pressure distribution, shear
stress at the wall, resistance to flow (impedance). In view of

its immense importance, the effect of the catheter on physio-
logical parameters was discussed by the researchers [17,18].
In particular they considered pulsatile nature of blood flow

when blood is modelled as non-Newtonian fluid.
The shapes of the stenosis in the above aforesaid studies

have been considered to be radially symmetric or asymmetric.

But while stenosis is maturing it may grow up in series manner,
overlap with each other and it would be appear like x-shape.
Daniel et al. [19] observed the pressure gradient force, flow
velocity, impedance and wall shear stress in the overlapping

stenotic zone at the critical height and at the throats of
such stenosis. Here they considered steady nature of flow.
Srivastava et al. [20] explored the arterial blood flow through

an overlapping stenosis by treating the blood as a Casson fluid.
They figured impedance and shear stress for different stenosis
heights. Chakravarty et al. [21] discussed the effects of the

overlapping stenosis under low shear rate flow.
The presence of red cell slip at the vessel wall was recom-

mended theoretically by Vand [22], experimentally by
Bunnett [23] and Nubar [24], Chaturani et al. [25], etc. They

used slip velocity at the wall in their analysis. Lately,
Ponalagusamy [26], Biswas et al. [27] and Ponalagusamy [28]
have developed mathematical models for blood flow through

stenosed arterial segment, by taking a velocity slip condition
at the constricted wall. The extensive discussion on symmetric
and asymmetric slip velocity at the wall was done by Ghosh

et al. [29]. Thus, it is very appropriate to consider velocity slip
at the wall of the stenosed artery in blood flow modeling.

In the stenosed condition, substantial reduction in the

lumen of an artery results in size effects (ratio of haematocrit
to vessel diameter), which influences flow characteristics
significantly. To study the size effect in the fluid flow, Stokes
[30], Eringen [31] and Cowin [32] have proposed continuum
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model. Micro-continuum structure of the fluid is also referred
as couple stress fluid which is proposed by Stokes. The fore-
ground of couple stress fluid is to introduce size dependent

effects as mentioned above that is not present in other classical
viscous fluids. Because of its mathematical simplicity it has
been widely used by number of researchers [33–36].

With the above motivation, an attempt has been made to
study the effects of x-shaped stenosis on the physiological
parameters of the blood flow that is modelled as couple stress

fluid through a catheterized tapered artery. Velocity slip at the
wall is additionally thought of. The analysis is done analyti-
cally and the results are shown diagrammatically. This config-
uration with the related results could be very useful in the

development of various related technologies, Biomedical
equipments and also to those who are engaged in the design
and development of artificial organs.

2. Formulation of the problem

Mathematical model of blood flow through an x-shaped ste-

nosed arterial segment through a tapered artery in the presence
of catheter is to be built to study the impact of various geomet-
ric and fluid parameters on physiological parameters. In par-

ticular modelling is to be done by considering incompressible
homogeneous couple stress fluid to represent blood. The
geometry of the x-shaped stenosis is shown in Fig. 1 and is

expressed mathematically with inputs from [19–21] as

hðzÞ¼

ðR0þfzÞ� 3
2

�
R0L

4
1

11ðz�L0ÞL3
1�47ðz�L0Þ2L2

1

h
þ72ðz�L0Þ3L1�36ðz�L0Þ4

i
;L06 z6L0þL1

ðR0þfzÞ; otherwise

8>>><
>>>:

where R0 is the radius of the annular region in case of nonta-
pered artery in the nonconstricted domain, Rc is the radius of
Figure 1 Schematic represe
the catheter, L1 is the stenosis length, L0 indicates the location

of stenosis, � is the maximum height of the stenosis into the
lumen, fð¼ tan hÞ is the tapering parameter which represents
the slope of the tapered vessel with h being the tapering angle.

/ < 0; / > 0 and / ¼ 0 are for converging taper, diverging
taper and no-taper respectively. z1 and z3 are the left and right
locations on the axial line where the maximum height of the
stenosis is occurring and z2 represents the location on z axis

corresponding to the critical height of the x-shaped stenosis.
The governing equations which describes the couple stress

fluid:

Dq
Dt
þ q r � V
� �

¼ 0 ð1Þ

q
DV

Dt
¼ �rPþ ðkþ lÞrr � Vþ gr2rr � V� gr4V

þ lr2Vþ qfþ 1

2
r� ql

� �
ð2Þ

For couple stress fluid shear stress tensor is not symmetric. The
force stress tensor (s) and the couple stress tensor (M) that

arises in the theory of couple stress fluids are given by

s¼ �PþkrV
� �

Iþl rVþ rV
� �Th i

þ1

2
I� ½rMþqC�

ð3Þ
and

M ¼ m Iþ 2g r r� V
� �� �

þ 2g0 r r � V
� �� �T ð4Þ

where q is the density, V is velocity vector, P is the pressure, k
and l are the viscosity coefficients, g and g0 are couple stress
coefficients. f is a body force and l is a body couple moment.

Further the materials constants l; k; g and g0 satisfy the
inequalities

l P 0; 3kþ 2l P 0; g P 0; g P g0
ntation of the geometry.
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The flow of homogeneous incompressible couple stress fluid, in

the absence of body force and body couple moment the above
field Eqs. (1) and (2) reduce to

r � V ¼ 0 ð5Þ

q
@V

@t
þ V � r
� �

V

� �
¼ �rP� gr4Vþ lr2V ð6Þ

The problem has been studied in cylindrical polar coordinate
system ðr; h; zÞ. Since the flow is assumed axisymmetric, all
the variables are independent of h. The velocity vector

V ¼ ðu; 0;wÞ, where u and w are functions of r; z and t. After
the coordinate transformation, the Eqs. (5) and (6) get trans-

formed into,

@u

@r
þ u

r
þ @w
@z
¼ 0 ð7Þ

r component

q
@u

@t
þ u

@u

@r
þ w

@u

@z

� �
¼ � @P

@r
þ l

@2u

@r2
þ 1

r

@u

@r
� u

r2
þ @

2u

@z2

� �

� g
@4u

@r4
þ 2

@4u

@r2@z2
þ @

4u

@z4
þ 2

r

@3u

@r3

�

þ 2

r

@3u

@r@z2
� 3

r2
@2u

@r2
� 2

r2
@2u

@z2

þ 3

r3
@u

@r
� 3

r4
u

�
ð8Þ

z component

q
@w

@t
þ u

@w

@r
þ w

@w

@z

� �
¼ � @P

@z
þ l

@2w

@r2
þ 1

r

@w

@r
þ @

2w

@z2

� �

� g
@4w

@r4
þ 2

@4w

@r2@z2
þ @

4w

@z4
þ 2

r

@3w

@r3

�

þ 2

r

@3w

@z2@r
� 1

r2
@2w

@r2
þ 1

r3
@w

@r

�
ð9Þ

The above Eqs. (8) and (9) are the r and z component of the
Eq. (6) respectively.

The non-dimensional parameters are obtained as follows:

r0 ¼ r

R0

; w0 ¼ w

u0
; z0 ¼ z

L1

; u0 ¼ L1u

u0�
;

�0 ¼ �

R0

; t0 ¼ Xt; h0 ¼ h

R0

; k0 ¼ k
L
;

f0 ¼ fL1

R0

; h0 ¼ h

R0

; P0 ¼ R2
0P

u0L1l
; s0 ¼ s

R0

lu0

The non-dimensional form of the geometry of stenosis, after
dropping the dashes is

hðzÞ ¼
ð1þ fzÞ � 3 �

2
½11ðz� aÞ � 47ðz� aÞ2

þ72ðz� aÞ3 � 36ðz� aÞ4�; a 6 z 6 aþ 1

ð1þ fzÞ; otherwise

8><
>:

ð10Þ

where a ¼ L0

L1
; u0 is typical axial velocity, X is the circular

frequency.
In Table 1, the location of the extremum heights of the

stenosis (z1; z2; z3) and the corresponding radius of the annular

region for various values of the tapered parameter f are
numerically calculated with fixed values of L ¼ 2;R0 ¼ 1,
L1 ¼ L=2, L0 ¼ ðL� L1Þ=2 summarized.
Using non-dimensional parameters in the Eqs. (7)–(9) we
get,

c
@u

@r
þ u

r

� �
þ @w
@z
¼ 0 ð11Þ

Rerc2d2 @u

@t
þ Recd3 cu

@u

@r
þ w

@u

@z

� �

¼ � @P
@r
þ cd2 @2u

@r2
� u

r2
þ 1

r

@u

@r
þ d2 @

2u

@z2

� �

� cd2

b2

@4u

@r4
þ 2

r

@3u

@r3
� 3

r2
@2u

@r2
þ 3

r3
@u

@r
� 3

r4
u

�

þd2 2
@4u

@r2@z2
þ d2 @

4u

@z4
þ 2

r

@3u

@r@z2
� 2

r2
@2u

@z2

� ��
ð12Þ

Rer
@w

@t
þ Red cu

@w

@r
þ w

@w

@z

� �

¼ � @P
@z
þ @2w

@r2
þ 1

r

@w

@r
þ d2 @

2w

@z2

� �

� 1

b2

@4w

@r4
þ 2

r

@3vz
@r3
� 1

r2
@2w

@r2
þ 1

r3
@w

@r
þ d4 @

4w

@z4

�

þ2d2 @4w

@r2@z2
þ 1

r

@3w

@z2@r

� ��
ð13Þ

where c ¼ �=R0, d ¼ R0=L1, Re ¼ qu0R0=l is the Reynolds

number, b ¼ R0

ffiffiffiffiffiffiffiffi
l=g

p
is the couple stress fluid parameter

and the pulsatile parameter is r ¼ R0X=u0.
Under the assumption of mild stenosis i.e., cð¼ �=R0Þ � 1

and further assuming that dð¼ R0=L1Þ � Oð1Þ, Eqs. (12) and
(13) get transformed into

@P

@r
¼ 0 ð14Þ

Rer
@w

@t
¼ � @P

@z
þ @2w

@r2
þ 1

r

@w

@r

� �

� 1

b2

@4w

@r4
þ 2

r

@3w

@r3
� 1

r2
@2w

@r2
þ 1

r3
@w

@r

� �
ð15Þ

Let D2 ¼ @2

@r2
þ 1

r
@
@r
, then the Eq. (15) can be written as

Rer
@w

@t
¼ � @P

@z
þD2w� 1

b2
D4w ð16Þ

The corresponding non-dimensional boundary conditions are
as shown below

w ¼ m at r ¼ hðzÞ
w ¼ 0 at r ¼ Rc

@2w

@r2
� x

r

@w

@r
¼ 0 at r ¼ hðzÞ & r ¼ Rc ð17Þ

Here m is the slip velocity at the wall of the artery and no slip at
the catheter wall is considered. x ¼ g0=g is the couple stress

fluid parameter. x is the parameter which accounts for the
effect of local viscosity due to particles in addition to bulk vis-
cosity of the fluid (l). The effects of couple stresses will be
absent in a material for which g ¼ g0. This is equivalent to

requiring that the couple stress tensor be symmetric. If couple
stress tensor is symmetric, then the Eq. (17) shows that, the
couple stresses are vanishing at the wall of the artery and the



Table 1 Locations of the extremum height of the stenosis.

f Location of z hðzÞ for fixed value of � ¼ 0:1

0.005 z1 = 0.6876 0.8774

z2 = 1.0012 0.9300

z3 = 1.3112 0.8805

0 z1 = 0.6882 0.8740

z2 = 1.0000 0.9250

z3 = 1.3118 0.8740

�0.005 z1 = 0.6888 0.8705

z2 = 0.9988 0.9200

z3 = 1.3124 0.8674
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catheter, as the mechanical interactions at the wall are equipol-
lent to a force distribution only.

3. Solution of the problem

As the flow considered is pulsatile in nature and using the fact
that the Eqs. (14) and (16) are linear, it is appropriate to con-
sider the solution as [18]

wðr; z; tÞ ¼ Reðw�ðr; zÞeitÞ; Pðr; z; tÞ ¼ ReðP�ðr; zÞeitÞ ð18Þ

By using Eq. (18), the Eqs. (14) and (16) become,

@P�

@r
¼ 0 ð19Þ

D4w� � b2D2w� þ iRerb2w� ¼ �b2 @P
�

@z
ð20Þ

Let, n21 þ n22 ¼ b2 and n21 � n22 ¼ iRerb2 then Eq. (20) is simpli-

fied to the form,

ðD2 � n21ÞðD2 � n22Þw� ¼ �b2 @P
�

@z
ð21Þ

The solution of above equation is

w� ¼ c1ðzÞI0ðn1rÞ þ c2ðzÞK0ðn1rÞ þ c3ðzÞI0ðn2rÞ

þ c4ðzÞK0ðn2rÞ �
1

iRer
@P�

@z
ð22Þ

where I0ðni rÞ and K0ðni rÞ are modified Bessel function of order

zero of first and second kind respectively (for i= 1, 2). ci for
i= 1, 2, 3, 4 are calculated by using boundary conditions.

Therefore, the non-dimensional volumetric flow rate (Q)
across the radial distance is expressed as,

Q ¼
Z hðzÞ

Rc

2 rw� dr ð23Þ

is obtained in the form Q ¼ 2 @P�

@z
F hðzÞ;Rc½ �, where

F½hðzÞ;Rc� ¼
d1
n1
ðhI1 ½n1h� � RcI1 ½n1Rc�Þ þ

d2
n1
ðRcK1 ½n1Rc�

� hK1 ½n1h�Þ þ
d3
n2
ðhI1 ½n2h� � RcI1 ½n2Rc�Þ

þ d4
n2
ðRcK1 ½n2Rc� � hK1 ½n2h�Þ �

h2 � R2
c

2iRer
ð24Þ

where @P�

@z
di ¼ ci, for i = 1, 2, 3, 4. The pressure drop DP

across the stenosis between the sections z ¼ 0 and z ¼ L is

obtained by DP ¼ Q
2

R L

0
1

F½hðzÞ;Rc � dz.
3.1. Resistance to flow (Impedance)

The impedance depends on flow rate of the fluid and variation
in pressure drop. Hence it is very important to analyse the
resistance to the flow, influenced by different fluid and geome-

try parameters. The resistance to the flow is calculated as

k ¼ DP
Q

k ¼ 1

2

Z L

0

1

F½hðzÞ;Rc�
dz

k ¼ 1

2

Z L0

0

1

F½hðzÞ;Rc�
dz

�

þ
Z L0þL1

L0

1

F½hðzÞ;Rc�
dzþ

Z L

L0þL1

1

F½hðzÞ;Rc�
dz

�
ð25Þ

The non-dimensional form of resistance to flow is given by

k ¼ w
2

Z a

0

1

F½h;Rc�
dzþ

Z aþ1

a

1

F½h;Rc�
dzþ

Z 1
w

aþ1

1

F½h;Rc�
dz

" #

ð26Þ

where w ¼ L1

L
, a ¼ L0

L1

3.2. Wall shear stress

Since shear stress at the wall significantly influences the flow
characteristics and rate of mass transport across the artery

wall, our prime objective of the problem is to evaluate wall
shear stress in the constricted artery.

The shear stress ðsrzÞ is the sum of symmetric and antisym-

metric parts and is calculated at the wall of the stenosed artery
using the follow expression

srz ¼ sSrz þ sA
rz ð27Þ

where the symmetric part ðsSrzÞ and antisymmetric part ðsA
rzÞ of

the stresses are given as

sSrz ¼ l
@w

@r

and

sA
rz ¼

1

2

@mrh

@r
þmrh þmhr

r

� �

where the couple stress components mrh and mhr are expressed
as

mrh ¼
1

2
�g

@2w

@r2
þ g0

r

@w

@r

� �
and mhr ¼

1

2
�g0

@2w

@r2
þ g

r

@w

@r

� �

Substituting these expressions and using the Eq. (3), the non-
dimensional total shear stress at the wall is given by

sw ¼ n1 c1I1ðn1rÞ � c2K1ðn1rÞð Þ 1� n21
4ðn21 þ n22Þ

� �

þ n2 c3I1ðn2rÞ � c4K1ðn2rÞð Þ 1� n22
4ðn21 þ n22Þ

� �
ð28Þ

Wall shear stress is calculated in the stenosis region and at the
extreme heights of the stenosis, the locations of which can be
obtained from Eq. (10) by using simple calculus.
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4. Results and discussion

During the formulation and solution, the locations on the axial
axis corresponding to the maximum height of the stenosis

which are dependent on the tapered parameter are computed
and summarized in Table 1. Further resistance to the flow
and wall shear stress at the extreme heights of the stenosis

and across the entire length of the stenosis are computed. In
this section we discuss our results corresponding to various
fluid and geometry parameters such as the tapered parameter
(f), radius of the catheter (Rc), height of the stenosis (�), the
couple stress fluid parameters (b;x), Reynolds number (Re),
Strouhal number (r) and slip velocity (m) on physiological
parameters impedance and shear stress at the wall. It is

reported [37] that fluid near the wall is moving slowly or can
be stopped which creates reverse flow against the main stream
flow and separate the main stream from the wall i.e., sep-

aration of flow. In the present analysis, it has been observed
that the impedance and wall shear stress are decreasing and
are negative for a short period of time before again becoming

positive. The brief period for which the physiological parame-
ter is negative before becoming positive is corresponding to
separation of flow [2]. As a matter of fact the major separation
is settled near the maximum height of stenosis when the steno-

sis is moderate, very severe or of slowly growing type [38]. It is
clear that the flow rate will be smaller for higher impedance.
Also the volume of fluid flow in the artery is determined by

the resistance to the flow. Fig. 2 represents the variation of
impedance with respect to time in case of tapered parameter
(f). It is observed that in case of converging artery impedance

is highest and it keeps on decreasing as the artery diverges.
Accordingly it can be concluded that impedance increases as
the artery is converging. All the future results are obtained

in case of converging tapered artery.
Effect of radius of catheter (Rc) on the impedance is figured

out with the fixed value of other parameters and is presented in
Fig. 3. It is observed that the annular region of artery gets

reduced with the increment in the radius of catheter, that
results in higher pressure distribution which further results in
increase in the resistance to the flow. Hence, catheter has

immense effect on the flow characteristics. In Fig. 4, effect of
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Figure 2 The variation in the resistance to the flow with respect

to f with b ¼ 1:5;r ¼ 3;Re ¼ 10; � ¼ 0:1;x ¼ 0:2; c ¼ 0:5; m ¼
0:0001;Rc ¼ 0:1.
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Figure 5 The variation in the resistance to the flow with respect

to w with b ¼ 1:5;r ¼ 3;Re ¼ 10; � ¼ 0:1;x ¼ 0:2; f ¼ �0:005;
m ¼ 0:0001;Rc ¼ 0:1.
height of stenosis (�) on impedance is analysed. Here impe-
dance increases as the height of the constriction grows in the

artery. Further the effect of length of the stenosis (w) is



0 0.5 1 1.5 2 2.5 3 3.5

−250
−200
−150
−100
−50

0
50

100
150
200
250

t

λ

β = 1.0
β = 1.5
β = 2

Figure 6 The variation in the resistance to the flow with respect to

b with w ¼ 0:5; r ¼ 3;Re ¼ 10; � ¼ 0:1;x ¼ 0:2; f ¼ �0:005; m ¼
0:0001;Rc ¼ 0:1.
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Figure 7 The variation in the resistance to the flow with respect

to x with w ¼ 0:5;b ¼ 1:5;r ¼ 3;Re ¼ 10; � ¼ 0:1; f ¼ �0:005;
m ¼ 0:0001;Rc ¼ 0:1.
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Figure 8 The variation in the resistance to the flow with respect

to Re with w ¼ 0:5;b ¼ 1:5;r ¼ 3; � ¼ 0:1;x ¼ 0:2; f ¼ �0:005;
m ¼ 0:0001;Rc ¼ 0:1.
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Figure 9 The variation in the resistance to the flow with respect

to r with w ¼ 0:5;b ¼ 1:5;Re ¼ 10; � ¼ 0:1;x ¼ 0:2; f ¼ �0:005;
m ¼ 0:0001;Rc ¼ 0:1.

0 0.5 1 1.5 2 2.5 3 3.5

−100

−50

0

50

100

t

λ

ν = 0.0005
ν = 0.001
ν = 0.002

Figure 10 The variation in the resistance to the flow with respect

to m with w ¼ 0:5; b ¼ 1:5;x ¼ 0:2;r ¼ 3;Re ¼ 10; � ¼ 0:1; f
¼ �0:005;Rc ¼ 0:1.
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observed in Fig. 5. Due to the constriction proliferation in the
intima, there is an increase in the resistance to the flow as a
result of large fluctuations in the pressure difference.

The couple stress fluid parameter (b) gives the size depen-
dent effect on the impedance. Non-polar theory does not pre-
dict size dependent effects. Hence modelling blood by a polar
fluid like couple stress fluid is very appropriate. As shown in

Fig. 6, impedance increases as the couple stress fluid parameter
(b) decreases. It is to be noted as b!1, properties of couple
stresses in the fluid vanish and hence behaves like a Newtonian

fluid. Hence it is understood that impedance is more in couple
stress fluid when compared to that of Newtonian fluid. The
effect of another parameter (x) arising out of the fluid consid-

ered is shown in Fig. 7, from which it is observed that impe-
dance and x are inversely related. This is true because, the
couple stress tensor effects will be absent when x! 1. The

couple stress components become equal as x! 1 (i.e.,
g ¼ g0) and further because of the boundary condition (17) it
becomes zero. Hence shear stress becomes symmetric as
skew-symmetric part of shear stress becomes zero. Hence it

is justified that the presence of couple stresses increases the
impedance.
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Figure 11 The variation of shear stress at wall with respect to f
at both maximum height in the stenosis with w ¼ 0:5;b ¼ 0:5;
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Figure 12 The variation of shear stress at wall with respect to f
at z3 with w ¼ 0:5; b ¼ 0:5;x ¼ 0:5;r ¼ 0:5;Re ¼ 10; � ¼ 0:1; m ¼
0:0001;Rc ¼ 0:1.
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Figure 13 The variation of shear stress at wall in stenosed region

with respect to f when w ¼ 0:5;b ¼ 0:5;r ¼ 0:5;Re ¼ 5; � ¼ 0:1;

x ¼ 0:5; m ¼ 0:0001;Rc ¼ 0:1.
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Figure 14 The variation of shear stress at wall with respect to �

at z3 with w ¼ 0:5; b ¼ 0:5;x ¼ 0:5;r ¼ 0:5;Re ¼ 10; f ¼ �0:005;
m ¼ 0:0001;Rc ¼ 0:1.
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Figure 15 The variation of shear stress at wall in stenosed region

with respect to � when w ¼ 0:5; b ¼ 0:5;r ¼ 0:5;Re ¼ 5;x ¼ 0:5;

f ¼ �0:005; m ¼ 0:0001;Rc ¼ 0:1.
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Figure 16 The variation of shear stress at wall with respect to Rc

at z3 with w ¼ 0:5; b ¼ 0:5;x ¼ 0:5;r ¼ 0:5;Re ¼ 10; � ¼ 0:1; m ¼
0:0001; f ¼ �0:005.
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Figure 17 The variation of shear stress at wall in stenosed region

with respect to Rc when w ¼ 0:5;b ¼ 0:5;r ¼ 0:5;Re ¼ 5; � ¼ 0:1;

x ¼ 0:5; m ¼ 0:0001; f ¼ �0:005.
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Figure 18 The variation of shear stress at wall with respect to b
at z3 with w ¼ 0:5;x ¼ 0:5;r ¼ 0:5;Re ¼ 10; � ¼ 0:1; f ¼ �0:005;
m ¼ 0:0001;Rc ¼ 0:1.
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Figure 19 The variation of shear stress at wall in stenosed region

with respect to b when w ¼ 0:5;r ¼ 0:5; � ¼ 0:1;Re ¼ 5;x ¼
0:5; f ¼ �0:005; m ¼ 0:0001;Rc ¼ 0:1.
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Figure 20 The variation of shear stress at wall with respect to x
at z3 with w ¼ 0:5;b ¼ 0:5;r ¼ 0:5;Re ¼ 10; � ¼ 0:1; f ¼ �0:005;
m ¼ 0:0001;Rc ¼ 0:1.
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Figure 21 The variation of shear stress at wall in stenosed region

with respect to x when w ¼ 0:5; b ¼ 0:5;r ¼ 0:5;Re ¼ 5;

� ¼ 0:1; f ¼ �0:005; m ¼ 0:0001;Rc ¼ 0:1.
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Figure 22 The variation of shear stress at wall with respect to Re

at z3 with w ¼ 0:5; b ¼ 0:5;x ¼ 0:5;r ¼ 0:5; � ¼ 0:1; f ¼ �0:005;
m ¼ 0:0001;Rc ¼ 0:1.
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The effects of Reynolds number (Re) on impedance are

depicted in Fig. 8. From this figure it can be seen that as
Reynolds number is increasing impedance is also increasing
for small period of time and then starts decreasing. Here it is
observed that inertial forces are dominating for small period
of time and later viscous forces seem to be dominating.

Same trend is observed in case of Strouhal number (r) as
shown in Fig. 9. It is to be noticed that unsteady forces are
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dominating for small period of time while inertial forces are
dominating after that small time period. From these two
results it appears that the separation of flow moves towards

the value of z where the maximum height of the stenosis
occurs. Womersely number effect can be understood as it is
the product of Reynolds number (Re) and Strouhal number

(r). Significant effect of slip velocity at the arterial wall on
the impedance is studied from Fig. 10. Here it is observed that
in case of high slip velocity impedance is less. Hence no-slip at

the wall of the artery makes the fluid to stick to the boundary
thus providing more resistance to the blood flow.

For the analysis of the blood flow characteristics through
stenotic tapered artery, wall shear stress is an important

diagnostic element. It has significant role in the development
of arterial diseases. In case of high wall shear stress, inner wall
of the artery (intima) can damage. The development of wall

shear stresses is related to the progress and decay of the
endothelial cells of the arterial wall [39–41]. Hence, appearance
of wall shear stress is imperative in the analysis of the arterial

diseases. The location of critical and extreme heights of steno-
sis which are dependent on the tapered parameter have been
computed and summarized in the form of Table 1. It is also

observed that the locations of the extreme heights have differ-
ent impact on the shear stress at the wall. The same has been
depicted in Fig. 11. Here it is observed that for a converging
tapered artery the shear stress is maximum at z3 and the trend

is reversed in case of diverging tapered artery. Since high wall
shear stress impacts the inner wall of the artery it is important
to consider the effect of wall shear stress at the maximum

height of stenosis where high shear stress occurs and this is
very likely to happen at either z1 or z3. Hence further discus-
sions are done at these locations.

From the Figs. 12 and 13, it is clear that the converging
tapered artery is accounting for more shear stress at the wall
when compared to diverging and non-tapered artery. Further

it is also observed that shear stress at the wall is same at both
the locations of maximum height in case of non-tapered artery
as depicted in Fig. 13. From the same figure it is also observed
that there is variation in shear stress in case of tapered arteries.

Having understood the effect of the location and the tapering
angle, all further analysis has been done at z3 corresponding to
converging tapered artery. Hence all further results for wall
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Figure 23 The variation of shear stress at wall in stenosed region

with respect to Re when w ¼ 0:5; b ¼ 0:5; r ¼ 0:5; � ¼ 0:1;x ¼
0:5; f ¼ �0:005; m ¼ 0:0001;Rc ¼ 0:1.
shear stress are computed for the fixed value of the tapered
parameter (f ¼ �0:005).

Figs. 14 and 15 describe the effect of � on the wall shear

stress at the maximum height of the stenosis and across the
entire stenotic region respectively. It is noticed that as height
of the stenosis increases shear stress also increases. Further it

is maximum at the locations corresponding to the extreme
heights. Insertion of catheter in the stenosed artery has signifi-
cant effect on the flow dynamics in lumen of the artery.

Increment in the radius of catheter reduces the annular region
of the artery. Therefore, pressure on the wall effectively
increases and may damage the inner wall of the artery.
Hence the influence of catheter radius deserves to be noticed

and is exhibited through Figs. 16 and 17. It is worth noting
that the shear stress at the wall is maximum when a thick
catheter is introduced in a converging tapered artery. As the

couple stress fluid parameter (b) approaches to infinity the
fluid starts assuming the Newtonian behaviour. Hence it is
expected that wall shear stress is very small in case of

Newtonian fluid when compared to couple stress fluid.
Further as xð¼ g0=gÞ is approaching towards unity the wall
shear stress is decreasing. Further as x! 1, the stress tensor
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Figure 25 The variation of shear stress at wall in stenosed region

with respect to r when w ¼ 0:5;b ¼ 0:5; � ¼ 0:1;Re ¼ 5;x ¼ 0:5;

f ¼ �0:005; m ¼ 0:0001;Rc ¼ 0:1.
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becomes symmetric. Hence couple stress fluid for which shear

stress tensor is asymmetric has more wall shear stress. The
above behaviours are sketched in Figs. 18–21. The effects of
Reynolds number (Re) and Strouhal number (r) on wall shear

stress are depicted in Figs. 22–25. It is observed that their
effects on wall shear stress are similar to that of their effects
on impedance. Finally the effect of velocity slip on the shear

stress at the wall is understood from Figs. 26 and 27. As the
velocity slip at the wall increases, the stickiness of the fluid
at the wall gets reduced, resulting in high flow velocity. This
results in high wall shear stress.

5. Conclusion

There is a special importance to non-Newtonian fluid than the

Newtonian fluid because of its wide existence such as oil, blood
and polymeric solutions. In view of the above an analytical
approach was followed to solve the mathematical model of

blood flow through stenosed tapered artery under the assump-
tion of mild stenosis. In a nutshell, the main observations are
	 The locations of the extremum heights are different for dif-

ferent tapering angles. It is important to observe that impe-
dance and shear stress at wall are significantly depending on
these noticed locations.

	 Rise in slip velocity reduces the impedance significantly and
at the same time increases the shear stress at the wall.
	 The couple stress fluid model is the most generalized model
because couple stress fluid will behave like classical

Newtonian fluid with certain extreme conditions.
	 The present study enables us to understand mathematically
the variation in impedance and wall shear stress with

respect to fluid and geometric parameters.

The modelling and simulation of the above phenomena is

very realistic and is expected to be very useful in predicting
the behaviour of physiological parameters in the diagnosis of
various arterial diseases.
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