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A generalized Reynolds equation ts dertved m the present paper by taking mto 
account the effect of rotation in lubrication problems. The existence of certam fun- 
damental solutions is shown in this extended framework which is not allowed in the 
classtcal Reynolds theory. Results concermng the pressure and the load capacity of 
the resulting bearing system are obtained and interpreted in the respective cases 
when the film thickness is a linear or an exponential functions of the coordinate 
along the bearing length. One of the important results is that while the load 
capacity decreases with increasing values of *: for an exponenttally inclined shder in 
the classical Reynolds theory, it Increases with increasmg values of a m the present 
context. ( 1985 Acddemlc Press. IIIL 

1. INTRODUCTION 

By “hydrodynamic lubrication” we mean a process in which two sur- 
faces, moving at some relative velocity with respect to each other, are 
separated by a fluid film in which forces are generated by virtue of the 
relative motion only. A two-dimensional theory of lubrication was first 
developed by Reynolds [ 11, who showed that the variation of the lubricant 
pressure in the bearing is described by a partial differential equation known 
as the “Reynolds equation” and further that if the lubricant layer is to 
transmit pressure between a shaft and a journal, the layer must have vary- 
ing thickness otherwise the stresses in the lubricant cannot balance the load 
of the shaft [2]. 

It is well known that rotation introduces a number of new elements into 
244 

0022-247X/85 $3.00 
CopyrIght c 1985 by Acadenuc Press, Inc 
All rights of reproductmn m  any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81137623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ROTATION IN LUBRICATION PROBLEMS 245 

a hydrodynamic problem, and some of its consequences are, at first sight, 
unexpected: the role of viscosity is, for example, inverted. The origin of this 
and other consequences of rotation can be traced to certain general 
theorems, relating to vorticity, in the dynamics of rotating fluids. Further, 
there is a fundamental point to remember in the character of the motions 
which prevail when rotation is present. Rotation induces a component of 
vorticity in its direction, and the effects arising from it are predominant; for 
large Taylor numbers it results in the stream lines becoming closely wound 
spirals with motions principally confined to planes transverse to the direc- 
tion of rotation. Recently, Banerjee et al. [3] have pointed out that almost 
all the real physical systems are under the effect of rotation though it may 
be small and they have extended the classical theory of lubrication under 
the effect of rotation. They have shown that in certain situations, the 
qualitative features of the bearing system may be different. More impor- 
tantly, a certain class of fundamental solutions of this problem was omitted 
in their work [3]. 

We therefore mathematically analyse the classical lubrication problem 
[2] under the effect of a uniform rotation about an axis which is transverse 
to the fluid film. The mathematical equations governing the velocity and 
the pressure distributions now depend upon another parameter, the 
rotation number A4 (the square root of the conventional Taylor number), 
in addition to density, viscosity, film thickness, and surface and transverse 
velocities. In order to simplify the mathematical calculations without essen- 
tially sacrificing the characteristics of rotation we regard iA41 to be small. 
This leads to a generalized Reynolds equation. The existence of certain fun- 
damental solutions of this equation are shown which are not allowed in the 
classical Reynolds theory. Results concerning the pressure and the load 
capacity of the resulting bearing system are obtained and interpreted in the 
respective cases when the film thickness is a linear or an exponential 
function of the coordinate along the bearing length. 

FIG. 1. The fluid film 
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2. THE GOVERNING EQUATIONS OF HVDRODYNAMIC 
LUBRICATION IN A ROTATING FRAME OF REFERENCE 

Consider a layer of fluid which is kept rotating at a constant rate. Let s2 
denote the angular velocity of rotation about the z-axis (Fig. 1). The 
hydrodynamical equations of momentum and continuity in the usual ten- 
sor notation are [4]: 

p~+pu&px,--& p-fp(E,,B,r,)’ 
J L 1 
+$($+ti-p$] 
+ 2~4123% (1) 

and 

Applying the standard assumptions of lubrication theory [S] Eqs. (1) 
reduce to 

o= -g+$$+zpQU 

o= -$+$&2pn, 

and 

0-g 

while Eq. (2) for the steady flow gives 

(3) 

(4) 

(5) 

(6) 

where 

P= p - ip(E,kQ,rk)2 

denotes the modified pressure. 
Equations (3)-(6) give the governing hydrodynamical equations of 

momentum and continuity for the problem of steady lubrication. 
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3. DERIVATION OF GENERALIZED REYNOLDS EQUATION 

From Eqs. (3), (4) and (5) we obtain the governing equations for u and u 
as 

4 

!?!A+ - 2pQ * 

( 1 

2pG? aP 
a? p 

u= - 75 

and 

2p~ ap 
v=2-- p ax' 

The boundary conditions on u and u are given by 

u=u, at z=O 

u= u, at z=h 

(7) 

(8) 

(9) 

ab a~ 
pp== at z=O and z=h 

and 

v=o at z=O and z=h 
2 

p~=~+2pmJ, 
8Y 

at z=O (10) 

at z=h. 

Using the nondimensional quantities defined by 

.F = ” 

hc’ 

,&!. 

Vc’ 

p$ 

c 

j+, ,-2 hcP p- 
c VC’ PC vc 

Z -=- 
k’ 

$2 
VC’ 

M _ 2Qh:pc -- (11) 
PC 

&A, p=P 
c PC’ 

and dropping the bars for convenience Eqs. (7)-( 10) and (6), respectively, 
reduce to 
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a4u M2p2 
p+--r 

M~~P u= -?-- 
P p- a? 

a4v lVp2 
i,4+ 

Mu ap 
z Tv=2-- P- p as 

uo u=-= u, 
VC 

at 0 2 = 

Uh UT--Z 
VC 

u2 at z=h 

a% ap 
q== at z=O and z=h 

v=o at z=O and ;=h 

a% ap 
p F=5+MpU, at z=O 

z 
2 

P&=g+~p~z at ==h 
2 

and 

(12) 

(13) 

(14) 

(15) 

For the case when IA41 is small so that terms containing second and 
higher of A4 can be neglected as compared to terms containing first and the 
zeroth of M, the solutions for u and v which satisfy the relevant are given 
by 

z4=+-($-(z-h,+(7) U, 

+(I) U2-&$($)z(--i-2z2h+h3) 

and 

v=$(g)z(z-h, 

_-(z3 - 2z2h + h3) 

(17) 

MP +- 
W 

z[( U3 - U,) z= + 3U, hz - (2U, + U,) h=]. (18) 
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By replacing u and u by their values from Eqs. (17) and (18), we obtain 
from the continuity equation (16) 

+g[$$($):(z3-2z2h+h3)} 

z(z3-2z2h+h3) 

-&[P{(++(+}] 

~~((C’i-l:,);‘+)(l,zh 

-(2U,+U2)h’} . 1 
By integrating with respect to z with the conditions 

M’O 
M’=-=)$, 

vc ’ at :=O 

we have 

P(w,-w,)= -;Jb”jI;if(f$Wz)) 

+$ {z(z) z(z-h)]] dz 

+$/oh[-&{$($)z(z3-2z2h+h3,} 

(19) 

(20) 
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-~oh~[pi(~)U~+(ii)U~)]d~ 

Mhg p2 
--[ -[-z{(C’,-U,jr’+3U,zh 

6 ody ph 

- (2U, + U,) h2} 
I 

dz. (21) 

The upper limit h in the last equation is a function of the coordinates .Y 
and y and performing the integration before differentiation, which is cer- 
tainly permissible in the present case, we obtain 

-; ph~(U,+U2)+(U~-U*)~(ph) [ 1 
(22) 

or 

+~[f-(~~)--g$$J] 

=6((1,-a,)~(ph)+6ph~(U,+U,) 

-~[$+J,+u*)+(u,+u,)~ $ ( )I 
+ 12p(w, - u’, ). (23) 

If the bearing surfaces are inelastic in the direction of x and y, U, and U2 
will be independent of x and y and this gives 

~(u,+u,)=o 

$u,+ UJ=O 
(24) 
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hence Eq. (23) reduces to 

+ 12p(w, - WI). 

Equation (25) is the generalized Reynolds equation with which we shall 
be subsequently concerned in this paper. The above equation can be sim- 
plified in some situations. If, for example, it is reasonable to assume that 
the lubricant is incompressible, that is, the density is constant and further 
the viscosity of the lubricant does not change, then we have from Eq. (25) 

=hp(U,-U,)$;Mp(U,+U,);(h’) 

+ 12p(w, - WI). (26) 

In most practical cases, the bearing is stationary and only the runner in 
the thrust bearings and the shaft in the journal bearings are moving. In 
that case Eq. (26) reduces to 

(27) 

which is the same for both thrust and journal bearing with U the sliding 
velocity of either runner or journal. For the case of pure sliding Eq. (27) 
becomes 
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4. EXISTENCE OF MORE FUNDAMENTAL SOLUTIONS 
OF THE GENERALIZED REYNOLDS EQUATIONS 

In this section we show the existence of more fundamental solutions of 
the generalized Reynolds equation (28) in one dimension in the sense that 
such solutions cannot be allowed in the classical Reynolds theory. We do 
this for the following two situations, namely, when the film thickness is a 
linear or an exponential function of the coordinate along the bearing 
length. 

4.1. Plane-Inclined Slider 

By far the most common form of lubricated slider bearing system is the 
plane-inclined pad illustrated in Fig. 2. As an example of the application of 
the generalized Reynolds equation to slider bearing systems, we will deter- 
mine the pressure and load capacity for such a configuration. The bearing 
system and notation are illustrated in Fig. 2. Let 

u= 4-u 

h=h(y) and P= P(y). 

Equation (28) then gives 

(30) 

(29) 

FIG. 2. Plane-inclined slider. 
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Integrating Eq. (30) w.r.t. y and using the condition 

dP 

y=O 
at h=h* 

we have 

(31) 

(32) 

This equation must be integrated with respect to y to yield the pressure 

The film thickness can be expressed at any point as 

h=h, l+Y 
( ) 

where 

(33) 

(34) 

h 
n=l-l 

ho 

This leads to 

(35) 

(36) 

where A is a constant of integration. It will be noted that h* is the value of 
h where dP/dy =O, that is, where the pressure has a maximum value. We 
have two unknowns h* and A, which must be found by the introduction of 
two boundary conditions: 

P=O at y= 0 

P=O at y= L. 
(37) 



254 GUPTA AND BANERJEE 

Note that pressures are expressed as gauge pressures, that is, P=O 
represents ambient pressure. Substitution of these two conditions gives 

h*3 = 
2hi(n + 1 )’ 

(n+2) 

and 

A= -L(n+l)’ 

n(n + 2) . 

(38) 

(39) 

These can now be substituted in the pressure equation (36) to give 

MPU p= -~ 
2 

i 

Y+ 
L(n + 1)’ 

1 2 -1 . (40) 
n(n+2) (11 1 +F 

It is easily seen that pressure as given by Eq. (40) is non-negative 
everywhere in the flow domain. 

A further integration of the pressure gives the normal load capacity of 
the bearing system per unit length 

W=lL Pdy. 
0 

Using Eq. (40) the load capacity for the inclined slider is given by 

4.2. Exponentially Inclined Slider 

In this case (Fig. 3) 

u= -u 

h=h(y) and P= P(y). 

(42) 

(43) 

FIG. 3. Exponentially inclined slider. 
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Equation (26) then gives 

f h3f =;MpU-&Z). .( .I (4) 

Integrating Eq. (44) w.r.t. v and using the condition 

dP 
3’0 at h=h* (45) 

we have 

-=- (46) 

This equation must be integrated with respect to y to yield the pressure 

(47) 

The film thickness can be expressed at any point as 

h=h,exp(-my). 

This leads to 

(48) 

h*3 

hi exp( - 3~) 1 4 
h*3 exp(3cry) + A 

3ah; 1 
(49) 

(50) 

where A is a constant of integration. 
Using the boundary conditions 

we have 

and 

P=O at y=O 

P=O at y=-L 

h*3= - 
3ciLh; 

exp( - 3crL) - 1 

L 
A=-- 

exp( - 3ctL) - 1’ 

(51) 

(52) 

(53) 
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These can now be substituted in the pressure equation (50) to give 

pzMpU - y+L I i 
exp( 3cl)p) - 1 

2 II exp(-3crL)-1 ’ 

It is easily seen that pressure as given by Eq. (54) is non-negative 
everywhere in the flow domain. 

A further integration of the pressure gives the normal load capacity of 
the bearing system per unit length 

w= 
5 

0 

P &. (55) 
-L 

Using Eq. (54) the load capacity for the exponentially inclined slider is 
given by 

6aL+(2+3aL){exp(-3ctL)- I)> 

1 {l-exp(-3aL)J ’ (56) 

5. DISCUSSION AND CONCLUSIONS 

The effect of a uniform rotation on the velocity components u and o is 
given by Eqs. (7) and (8). These equations show that the governing 
equations for u and v are of order four, instead of two which is the case 
when rotation is absent, and as a consequence small extents of rotation 
induce additional Poiseuille-type flow which is clearly shown by the 

FIG 4. Plot of load capacity versus a for exponentially mclined slider. 
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solutions for u and u as given by Eqs. (17) and (18). The modified Reynolds 
equation remains a second-order linear partial differential equation though 
it contains additional terms. Two of these terms are proportional to M and 
contain first-order partial derivatives of P while a third term which is also 
proportional to M is non-homogeneous in character. This non- 
homogeneous term which contains density and not viscosity is responsible 
for introducing more fundamental solutions of the generalized Reynolds 
equation which are not allowed in the classical Reynolds theory. This point 
is well established in Section 4. The pressures and the load capacities are 
calculated for the plane-inclined slider and an exponentially inclined slider 
and some important results are obtained (Fig. 4). Thus, while the load 
capacity decreases with increasing value of a for an exponentially inclined 
slider in the classical Reynolds theory [6], it increases with increasing 
values of a in the present context. Further, while the load capacity has an 
optimum value with respect to n is the classical case of the plane-inclined 
slider [5], it is a monotonically increasing function of 12 in our case. 
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