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Proteins are one of the most important molecules in organisms. Protein function can be inferred from its
3D structure. The gap between the number of discovered protein sequences and the number of structures
determined by the experimental methods is increasing. Accurate prediction of protein contact map is an
important step toward the reconstruction of the protein’s 3D structure. In spite of continuous progress in
developing contact map predictors, highly accurate prediction is still unresolved problem. In this paper,
we introduce a new predictor, JUSTcon, which consists of multiple parallel stages that are based on adap-
tive neuro-fuzzy inference System (ANFIS) and K nearest neighbors (KNNs) classifier. A smart filtering
operation is performed on the final outputs to ensure normal connectivity behaviors of amino acids pairs.
The window size of the filter is selected by a simple expert system. The dataset was divided into testing
dataset of 50 proteins and training dataset of 450 proteins. The system produced an average accuracy of
45.2% for the sequence separation of six amino acids. In addition, JUSTcon outperformed SVMcon and
PROFcon predictors in the cases of large separation distances. JUSTcon produced an average accuracy
of 15% for the sequence separation of 24 amino acids after applying it on CASP9 targets.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Proteins play a vital role in our life because they perform impor-
tant tasks such as catalysis of biochemical reactions, transport of
nutrients, and transmission of signals [1]. The importance of pro-
teins in our life drives biologists to discover more proteins and
study their biological functions. The 3D structure of a protein can
be used as a good indicator of its function. The determination of
3D structure by biological methods such as X-ray [3] and NMR
[4] is very cumbersome and costly [2].

Despite the improvement in experimental procedures to deter-
mine protein structure, the gap between the number of known
protein sequences and their structures continues to increase [5].
Therefore, developing new machine learning approaches or
improving current approaches to predict protein structure can de-
crease this gap.

Earlier studies indicate that developing an accurate protein
contact map predictor will be very helpful in the reconstruction
of protein 3D structure [6–8,13]. Accordingly, much research is
implemented in this problem due to the current low accuracy
[9–11].
ll rights reserved.
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teeb).
Researchers have used several techniques to improve the accu-
racy of prediction. For example, Cheng and Baldi developed a new
contact map predictor (SVMcon) that uses support vector ma-
chines (SVMs) to predict residues contact in the proteins [9]. Vullo
et al. [14] separated the task into two stages. The first stage is de-
voted for the prediction of the contact map’s principal eigenvector
(PE) from the primary sequence using bi-directional recurrent neu-
ral networks. The second stage is dedicated for the reconstruction
of the contact map from the PE and primary sequence based on
DAG-RNNs that was described in [10]. The PROFcon method [11]
was introduced by Punta and Rost. In this method, they combine
information from sequence alignments, predictions of the second-
ary structure, predictions of solvent accessibility, the region be-
tween two residues, and from average properties of the entire
protein. All of these inputs are fed to a simple feed-forward neural
network with a back-propagation algorithm. Gobel et al. [16] used
the correlated mutation approach to predict contact maps. Pollastri
and Bladi proposed a new approach called GIOHMMs [10]. This
method is based on 2D generalization of bi-directional input–
output HMMs (BIOHMMs) and bi-directional recurrent neural net-
works (BRNNs).

2. CASP and protein contact map definition

Critical assessment of techniques for proteins structure predic-
tion (CASP) is an organization that sets up the criteria for assessment
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Fig. 1. Left: A view of protein with 3D representation. Right: The corresponding contact map with the threshold of contact 8 A.
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of protein structure prediction in order to improve the quality of
research [22]. According to CASP, two residues are considered to
be in contact when the 3D physical distance between their C-beta
atoms (C-alpha for GLY) is below a threshold value of 8 Å. Accord-
ingly, the contact map for a protein sequence with N amino acids
is N � N binary symmetrical matrix. The (ith, jth) component of the
map is 1 if the amino acid pair at ith and jth locations fulfills the con-
nectivity condition. Protein 2D structure can be represented as a
contact map as shown in Fig. 1.

In CASP, three regions are classified according to the distance
between an amino-acid contact pair: long-range (at least 24 resi-
dues along the sequence), Medium-range (12 6 separation < 24),
and Short-range (6 6 separation < 12). Two metrics are used in
CASP for measuring the performance: accuracy and coverage.
Accuracy is defined as (1):

Accuracy ¼ TP=ðTP þ FPÞ ð1Þ

where True Positives (TPs) is the number of correctly predicted con-
tacts and False Positives (FPs) is the number of incorrectly predicted
contacts. Coverage or sensitivity is defined as (2):

Coverage ¼ TP=ðNative contactÞ ð2Þ

where Native contact is the number of observed contacts.
According to CASP, the predicted contact values for all amino

acid pairs for a specific protein will be sorted descendingly accord-
ing to the predicted value. After that, the top X values in the sorted
Fig. 2. JUSTcon m
list are used only to calculate the accuracy and coverage. X is usu-
ally selected as 2L, L, L/2, and L/5, where L is the protein length.
Moreover, according to CASP, selecting X = L/5 is preferred over
the others [23].
3. Datasets

In order to produce reliable results, proteins used in a trusted
benchmarking set are used in this work. Evaluation of automatic
protein structure prediction servers (EVA) supports researchers
with huge dataset of proteins under specific criteria. In this work,
the dataset was downloaded on February 7, 2008 from the EVA
servers. Mainly, no pair in a subset has more than 33% identical
residues over more than 100 aligned residues [24,25]. In addition,
the preference is given to high-resolution structures. EVA lists on
its servers a huge database of protein chains and their PDB files,
FASTA files, PSI-Blast files, and other related useful files formats.

A filtering process is applied to eliminate unwanted protein PDB
files [26] that have unusable data. These files may give misleading
results during training stage. This process was adopted in many
previous works [9–11]. It starts by removing the corrupted PDB
files, which may contain erroneous or incomplete data. Then short
and long proteins are removed. Short sequences with less than 30
amino acids are removed because most likely they do not have
actual structure and may disrupt the system during the training
stage, which may result in unreliable outputs for the testing
odel preview.



Table 1
Group-one training dataset and sample numbers.

Dataset Contact
samples

Non-contact
samples

Group-one full dataset 182,014 8,954,458
Group-one training dataset 182,014 448,828
Profile KNN model dataset 165,123 407,883
Secondary structure and solvent accessibility

KNN model dataset
165,132 406,125

General features ANFIS model 164,866 407,054

Table 2
Group-two training dataset.

Dataset Contact samples Non-contact samples

Group-two full training dataset 6182 246,371
Group-two training dataset 6182 12,346
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dataset. Long proteins with sequences more 400 amino acids are
also removed because they could compromise the computation
process in term of processing time. All structures that were ex-
tracted using NMR method were removed from the list [27]. Fur-
thermore, proteins that have broken chains were removed.

3.1. Generating training and testing datasets

The final dataset used in this work contains 500 proteins after
eliminating all unwanted proteins from the original dataset. These
proteins were divided into three groups: group-one training pro-
teins, group-two training proteins, and test proteins. The size of
each group dataset is 430, 20, and 50 proteins, respectively. For
the full dataset and according to CASP criteria, the samples of ami-
no acid pairs are defined as in contact or non-contact. The majority
of samples were non-contact. To balance between contact and
non-contact samples in the training datasets, all contact samples
were used and only 5% of the non-contact samples were randomly
selected and used.

3.1.1. Group-one training proteins
Group-one dataset is used to train the first layer of the system.

Fig. 2 shows that the first layer contains three parts: Profile-KNN,
the secondary structure and solvent accessibility (SSSA) KNN, and
the first ANFIS (general information). In order to obtain more accu-
rate results and to increase the generalization capability of the sys-
tem during the training phase, each part in the first-layer of the
system is trained by a dataset, which is 90% randomly, selected
from group-one training dataset. Table 1 provides more details
about each dataset and the associated number of contact and
non-contact samples.

3.1.2. Group-two training proteins
Group-two training dataset is formed from 20 separate pro-

teins. This dataset is generated with the same features and criteria
that have been used for group-one training dataset. A 5% randomly
selected non-contact samples are used with full contact samples as
shown in Table 2. This dataset is used to select the best K values for
the KNN models in the first-layer of the model In addition, it is
used as a validation dataset while training the ANFIS in first layer.
Furthermore, this dataset is used to select the best model parame-
ters like window size, window count, and factorization numbers
(NMF). The full dataset in group two training proteins is used to se-
lect the best parameters for the expert system and a suitable filter
window size. Finally, it is used to select the best output pattern. For
this training group, the accuracy is calculated in a similar way to
that for a full protein. After sorting the predicted values, the accu-
racy is calculated by checking the best 6182 highly predicted items
since the number of contact samples in the original set was 6182.
3.1.3. Testing proteins
The testing dataset consists of 50 proteins. All samples should

be presented to the model to get full outputs of the testing pro-
teins. The distribution of samples was 22,024 for contact and
1,187,738 for non-contact.
4. JUSTcon model

4.1. Model preview

Fig. 2 shows the architecture of the new protein contact map
prediction model (JUSTcon). It consists of multiple parallel stages
of neuro-fuzzy inference system [17,18] and KNN classifier [19].

Before using this model, one has to select the protein dataset,
eliminate unwanted data, and preprocess it as mentioned previ-
ously. After the features are extracted, the KNN models are built,
which are related to profiles, secondary structure [20,21], and sol-
vent accessibility (SSSA). In parallel, An ANFIS model is trained by
proteins and samples of amino acid pairs’ general information. In
the second layer, an ANFIS model works as a combiner that takes
the outputs of KNNs and the previous ANFIS to provide an initial
prediction of the contact map. Finally, a filtering operation is per-
formed on the initial prediction, which is supervised by a simple
expert system that determines the filter window size. This expert
system uses the protein type and the needed sequence separation
distance to ensure that the amino acid pairs are consistent and
have a normal profile.

The difficulty of building a predictor system comes from the
complexity of the protein structure, the variety of features sources,
and the huge dataset. These factors drive us to adopt a modular ap-
proach that divides the system into parallel-multi-stage systems.
Selection of a specific machine leaning system is related to the type
of the features; the features that have fuzziness behavior like the
general information of amino acid pair should be fed to ANFIS sys-
tem. On the other hand, the features that could be recognized by
the similarity are fed to a KNN system. Furthermore, the second
stage is an ANFIS system that works as a merger of the first layer
outputs because of the uncertainty in their behavior.
4.2. Features selection

Some features have been identified and used by other research-
ers [9–11]. The same features are adopted in this work after some
manipulation to fit with the machine-learning model. Some of
these features are predicated by other servers like secondary struc-
ture and solvent accessibility, while the others are obtained from
huge databases like PSI-Blast outputs [28,29]. Using external
prediction servers to prepare the features was used in previous re-
search like SVMcon [9] and PROFcon [11]. The features can be cat-
egorized as local window features and general information about
amino acid pair.
4.2.1. Local window features
This feature set includes information from the protein profile,

secondary structure predictions, and solvent accessibility predic-
tions. Five windows of size nine amino acids are used for studying
every amino acid pair. Two windows are centered at each amino
acid of the studied pair and three windows are selected at equidis-
tance from the segment between the amino acid pair.



Table 3
The affinity score matrix.

A C D E F G H I K L M N P Q R S T V W Y

A 0.16 0.24 0.06 0.06 0.21 0.12 0.11 0.23 0.07 0.20 0.18 0.08 0.10 0.09 0.08 0.10 0.13 0.23 0.16 0.17
C 0.24 1.00 0.13 0.10 0.43 0.24 0.27 0.37 0.14 0.38 0.37 0.17 0.14 0.19 0.17 0.25 0.23 0.40 0.55 0.38
D 0.06 0.13 0.03 0.01 0.08 0.08 0.13 0.06 0.08 0.05 0.05 0.09 0.07 0.04 0.10 0.08 0.07 0.07 0.06 0.09
E 0.06 0.10 0.01 0.00 0.06 0.05 0.07 0.08 0.07 0.05 0.06 0.04 0.05 0.03 0.09 0.06 0.08 0.00 0.08 0.08
F 0.21 0.43 0.08 0.06 0.30 0.14 0.17 0.32 0.08 0.28 0.28 0.10 0.13 0.11 0.12 0.16 0.17 0.31 0.25 0.24
G 0.12 0.24 0.08 0.05 0.14 0.15 0.12 0.12 0.06 0.11 0.12 0.10 0.10 0.10 0.09 0.11 0.13 0.14 0.13 0.15
H 0.11 0.27 0.13 0.07 0.17 0.12 0.21 0.16 0.04 0.13 0.16 0.10 0.11 0.08 0.10 0.12 0.13 0.16 0.18 0.17
I 0.23 0.37 0.06 0.08 0.32 0.12 0.16 0.44 0.09 0.36 0.29 0.09 0.11 0.10 0.13 0.12 0.19 0.43 0.23 0.27
K 0.07 0.14 0.08 0.07 0.08 0.06 0.04 0.09 0.01 0.07 0.05 0.05 0.04 0.04 0.02 0.07 0.07 0.09 0.08 0.11
L 0.20 0.38 0.05 0.05 0.23 0.11 0.13 0.36 0.07 0.33 0.24 0.07 0.10 0.09 0.10 0.11 0.15 0.35 0.27 0.26
M 0.18 0.37 0.05 0.06 0.28 0.12 0.16 0.29 0.05 0.24 0.21 0.10 0.12 0.10 0.09 0.12 0.16 0.25 0.23 0.23
N 0.08 0.17 0.09 0.04 0.10 0.10 0.10 0.09 0.05 0.07 0.10 0.11 0.09 0.07 0.08 0.10 0.12 0.09 0.12 0.11
P 0.10 0.14 0.07 0.05 0.13 0.10 0.11 0.11 0.04 0.10 0.12 0.09 0.10 0.09 0.08 0.09 0.10 0.12 0.15 0.16
Q 0.09 0.19 0.04 0.03 0.11 0.10 0.08 0.10 0.04 0.09 0.10 0.07 0.09 0.05 0.07 0.07 0.09 0.11 0.12 0.15
R 0.08 0.17 0.10 0.09 0.12 0.09 0.10 0.13 0.02 0.10 0.09 0.08 0.08 0.07 0.05 0.10 0.10 0.12 0.14 0.16
S 0.10 0.25 0.08 0.06 0.16 0.11 0.12 0.12 0.07 0.11 0.12 0.10 0.09 0.07 0.10 0.11 0.12 0.12 0.11 0.13
T 0.13 0.23 0.07 0.08 0.17 0.13 0.13 0.19 0.07 0.15 0.16 0.12 0.10 0.09 0.10 0.12 0.13 0.18 0.12 0.16
V 0.23 0.40 0.07 0.09 0.31 0.14 0.16 0.43 0.09 0.35 0.25 0.09 0.12 0.11 0.12 0.12 0.18 0.42 0.24 0.27
W 0.16 0.55 0.06 0.08 0.25 0.13 0.18 0.23 0.08 0.27 0.23 0.12 0.15 0.12 0.14 0.11 0.12 0.24 0.23 0.31
Y 0.17 0.38 0.09 0.08 0.24 0.15 0.17 0.27 0.11 0.26 0.23 0.11 0.16 0.15 0.16 0.13 0.16 0.27 0.31 0.26

Fig. 3. Window filter with window size 2 and the original contact value between
amino acid pair is in gray.
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4.2.1.1. Protein profile. A protein profile is extracted from the PSI-
Blast file. This file is based on the output of sequence alignments
on sequences stored in multi-databases. EVA server provided us
with the PSI-Blast files for every protein included on the dataset.
The profile comprises a matrix of 21 rows (20 amino acids and 1
for gab) and the length of the protein as columns. Each cell in
the profile represents the frequency of specific amino acid in spe-
cific location of the profile.
4.2.1.2. Secondary structure predictions. The secondary structures
are predicted using PROFsec tool [30]. This tool uses the PSI-Blast
output file as input. According to EVA, the accuracy of the PROFsec
is about 76%, which can make a good improvement in contact map
prediction. Every amino acid position in a protein chain is repre-
sented by three values: Alpha-helix, Beta sheet, and coil. It repre-
sents the probability of being at that amino acid.
4.2.1.3. Solvent accessibility predictions. Solvent accessibility is used
to increase the prediction accuracy of the contact map using PRO-
Facc [24], which can achieve 78% accuracy. Two values are used
from the output of PROFacc: predicted relative solvent (range
0–90) and reliability index (range 0–9).
4.2.2. Amino acid pairs general information
For specific amino acid pair, the general information is repre-

sented by six inputs. The length of the protein plays an important
role as well as the distance between amino acid pair. Affinity score,
which is a statistical value, represents how much specific amino
acid is most likely to be in contact with other amino acids. Finally,
the average of probabilities of Alpha-helix, Beta-sheet, and coil be-
tween the amino acid pair are used as three inputs.
4.3. Features vectors preprocessing

In order to reduce the size of features vectors and extract
important features, Non-negative Matrix Factorization (NMF)
[31] is used. In the case of profile features, the size of features vec-
tor is 21 times the window size. For that, the profile features vector
is reduced using NMF with a 25% factorization factor. On the other
hand, the size of the features vector in the case of the secondary
structure is three times the window size, while it is twice the win-
dow size in the case of the solvent accessibility. In both cases, NMF
will represent the features vector by a new one with a same size
and extract hidden and important features.

One of the most known tools for NMF algorithm is bioNMF. This
tool contains a user-friendly graphical interface to interactively ex-
plore results and facilitate the data analysis process. Standard NMF
implements the classical Lee and Seung [32] NMF algorithm, which
was used in this work.
4.4. KNN model

KNN model is a simple approach that selects the nearest K sam-
ples from the training dataset to the testing sample vector. After
selecting the closest K training samples, their outputs are summed
then divided by K. Selecting the best K value is obtained by apply-
ing a different dataset that is not included in the training set of
KNN model. After that, the K value that has the largest accuracy
is used on testing dataset.

In both KNN models, after selecting the main parameters
including the window size, window count, and factorization factor,
a simple operation is performed to select all possible windows
from the first group of training dataset. These windows are used
to train the NMF model to produce the H matrix (Encoding vector),
which is used to convert any sample window to a new one.

In the training stage of the NMF model, some preprocessing was
done on the NMF training windows. First, each vector’s mean is
mapped onto 0 and deviation onto 1. Then, an offset value is added
to avoid negative values, which is a precondition of the NMF. The
same operations are performed on all samples. Therefore, the same
mapping parameters and the same offsets will be used in any win-
dow sample from the training or testing datasets to give correct re-
sults when it is multiplied by the encoding vector.

For example, in the case of profile KNN, assuming the window
size is five, and the factorization factor is 25%. The original window



Fig. 4. (a) Behavior of connectivity between amino acid (7) and other amino acids (0, 1, 2, 3, and 4). Note that the numbers inside the cells represent the order in the protein
sequence; the sequence starts from 0 then 1, etc. (b) Normal connectivity behavior between pairs; (7-2) has the largest connectivity, followed by (7-1) and (7-3), and so on. (c)
Irregular connectivity behavior, which most likely does not represent a real contact, and therefore, it will be filtered out as a noisy output. (d) The windowing process, where
for the case shown in figure (a) n = 0,1,2,3 and 4 (called vertical) and m = 5, 6, 7, 8 and 9 (called horizontal).

Fig. 5. Behavior of connectivity between parallel amino acid pairs. Sequence passes through amino acids in the same as their order. (b) and (c) Show the regular and irregular
connectivity behaviors between amino acids, respectively. (d) The region of the window filer assuming n = 0, 1, 2, 3, and 4 and m = 5, 6, 7, 8, and 9.

Fig. 6. Behavior of connectivity between anti-parallel amino acid pairs. (b) and (c) Show the regular and irregular connectivity behaviors between amino acids, respectively.
(d) The region of window filer assuming n = 0, 1, 2, and 4 and m = 9, 8, 7, 6, and 5.

Table 4
Results for selecting the best K value for the Profile KNN and SSSA-KNN models using
the best parameters.

Model Best (K) number Accuracy (%)

Output Pattern 1 Profile KNN 4 70.55
Output Pattern 2 3 70.74
Output Pattern 3 5 70.25

Output Pattern 1 SSSA KNN 8 76.73
Output Pattern 2 6 76.70
Output Pattern 3 6 76.46
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size (profile size) is 105 (21 � 5 = 105). After preprocessing, the
encoding matrix of the profile NMF model will have a size of
105 � 26 (25% � 105 = 26). As a result, the profile NMF model will
be trained using the all possible windows in the group-one training
dataset to generate that Encoding matrix. Then, a protein with N
� 105 matrix, where N is the number of samples in that protein
and 105 is the original window size is extracted. After that, the
generated matrix N � 105 will be multiplied by the encoding ma-
trix (105 � 26), a new reduced matrix will be generated with N
� 26 size. In the SSSA-KNN model, the feature vector consists of
predicted secondary structure and solvent accessibility as one
combined vector.
4.5. General information ANFIS

In this stage, an ANFIS model is used to predict the contact for
given samples. One of the feature factors is affinity score. This fea-
ture was calculated statistically from Group-one training dataset
by building a 20 � 20 symmetrical matrix. This matrix represents
how much amino acid X is most likely in contact with amino acid
Y. The values of the cells in the matrix are calculated as follows:

Affinity ðA;BÞ ¼ Contact ðA;BÞ=ðContact ðA;BÞ
þ NonContact ðA;BÞÞ ð3Þ

where Contact (A,B) is the total number of contacts between (A) and
(B) in the group-one full training dataset and NonContact (A,B) is the
number of non-contacts between (A) and (B). The amino acid pair
was calculated for pairs with separation distance P6. Table 3 shows



Fig. 7. The contact output patterns, (1) the contact value in pattern 1 is calculated proportional to separation physical distance between amino acid pair. (2) The contact value
in pattern 2 is 1 for all distances from 0 to 8 A and it then linearly decreases to zero at 16 A distance. (3) The contact values in pattern 3 are Boolean with a separation point at
8 A; the contact for distances <8 A is 1 and 0 otherwise.

Table 5
The accuracy (L/5) when changing the filter window size with separation P6, P12 and P24.

Separation FWS = 0 (%) FWS = 1 (%) FWS = 2 (%) FWS = 3 (%) FWS = 4 (%) FWS = 5 (%) Avg. (%)

Pattern 1 P6 42.83 43.35 41.69 43.94 44.58 43.79 43.36
Pattern 2 35.85 44.42 39.95 39.54 41.00 41.49 40.38
Pattern 3 44.98 41.90 40.07 40.82 41.71 41.36 41.81

Pattern 1 P12 37.89 42.69 41.72 41.78 40.68 41.12 40.98
Pattern 2 29.21 39.32 39.24 38.23 39.51 39.13 37.44
Pattern 3 36.63 40.99 41.28 39.92 40.34 39.74 39.82

Pattern 1 P24 26.10 31.16 33.35 32.26 33.70 32.93 31.58
Pattern 2 20.62 29.10 30.87 30.36 30.63 30.39 28.66
Pattern 3 27.34 30.36 31.00 31.31 31.44 31.43 30.48

Table 6
Shows the expert system rules.

Separation Type 1: more alpha Type 2: more beta Type 3: other

P6 4 1 4
P 12 4 2 1
P24 4 5 2
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the generated affinity score from the group-one full training dataset
after scaling it in the range from 0 to 1.

After generating the dataset for ANFIS-Layer one, fuzzy subtrac-
tive clustering with a cluster’s center range of influence of 0.25 was
used to determine the number of rules and antecedents member-
ship functions [33,34]. GenFis2 function in Matlab@Mathworks
was used for this purpose. Using this function, six fuzzy rules were
generated. After that, the ANFIS model is trained using the ANFIS
training dataset and group-two training dataset for validation.

4.6. The initial contact prediction ANFIS model

In this step, we train the ANFIS in layer-two, which works as a
merger of the outputs from the previous layers and provides the
initial prediction of the contacts. The training is done by using
group-two training dataset and 20 randomly selected proteins
from group-one training dataset. The contact samples were
11,597 and non-contact samples were 25,314. Similar to the previ-
ous ANFIS model, GenFis2 was used to generate suitable fuzzy
rules that comprise three rules. Then, the group-two training data-
set was used to train the ANFIS model.
4.7. Post processing – filter

The final step after generating the initial contact image is to fil-
ter the output. The filtering is performed using N � N special aver-
aging windows. Fig. 3 shows an example of that filter with window
size 2. The filtering operation is based on the idea that the contact-
ing behavior of amino acid pairs, which are close to each other in a
small window, could be generally consistent and have a normal
profile. That is, if amino acid i is in contact with amino acid j, the
connectivity should fall down or rise up gradually as we go away
from j as can be seen in Figs. 4–6. In all cases, the filter output is
calculated as in Eq. (4). In general, the filter role is to give extra
weight to the predicted contact value of amino acid pair that is
in contact and has regular connectivity behavior around it. On
the contrary, it will decrease the weight of the predicted contact
value of amino acid pair that has irregular connectivity pattern.
Consequently, the sort operation will set the predictions of amino
acid pairs that have regular pattern on the top of the list to enter
accuracy and coverage analysis. The output of the filter is given by:

OutputðWjÞ ¼
Xi¼WS&i–0

i¼�1�WS

ðContact ðk; lÞ � ððWS� AbsðiÞ þ 1Þ=ðWS

� ðWSþ 1ÞÞÞ ð4Þ

where Wj is the type of the window (1 horizontal, 2 vertical, 3 par-
allel connection, and 4 anti-parallel connection), WS is the window
size, Contact (k, l) is the value of contact map at specific index (k, l), k
and l are calculated according to Wj and i, and Abs is the absolute
value.

It is clear that the cases of parallel (Wj = 3) and anti-parallel
(Wj = 4) will not occur in the same sample. Therefore, the filter se-
lects the higher value in calculating the final output for that spe-
cific amino acid pair. As a result, the final output is given by (5):

Filter final output ðk0; l0Þ ¼ ðContact ðk0; l0Þ þ Output ðW0Þ
þ Output ðW1Þ
þMax ðOutput ðW2Þ;Output ðW3ÞÞ=4:

ð5Þ

where k0, l0 are the indexes in the initial contact map.

4.8. Selecting the best parameters for the KNN Models

The parameters that play a major role in generating the KNN
model are the window size, the window count, the NFM



Table 7
Samples of JUSTcon prediction outputs.

Protein info Generated contact map image Protein info Generated contact map image

Name: 1c9h Name: 1dn2
Chain: A Chain: A
Length: 107 Length: 207
Class: A+ Class: B

Name: 1cuo Name: 1dxh
Chain: A Chain: A
Length: 129 Length: 335
Class: B Class: A/B

This table shows samples of JUSTcon prediction contact map images. The first column shows protein information and the second column shows the output images. It shows
the top 2L contacts and the upper right side represents the predicted image and the lower left side represents the actual contact image. The class means the type of protein: A
means all alpha helix, B means beta sheet, A/B means alpha helix alternating beta sheet, and A + B means alpha helix and beta sheet.
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factorization percentage, and the K value. In order to select the best
parameters, group-two training dataset was applied to both
systems by changing these parameters. In addition, the value of
K in the KNN model is varied from 1 to 46 to select the value that
produces the best accuracy.

After studying the effect of changing the main parameters, the
Profile KNN parameters were: window size = 9, window count = 5,
and NMF factorization percentage = 25% and the parameters for
the SSSA KNN model were: window size = 9 and window count = 5.
The next step was selecting the best K values for both models as
shown in Table 4.

The first column shows the contact value pattern according to
Fig. 6, the second column shows the KNN model either for Profile
or SSSA, the third column shows the best K value should be used,
and the forth column shows the accuracy of testing that on the
group-two data set

4.9. Contact output patterns

In this study, three output patterns were studied which repre-
sent the contact behavior between amino acid pairs. Fig. 7 shows
the output patterns where X-axis represents the physical separa-
tion distance between amino acid pair in Angstrom and the Y-axis
shows the contact value.

4.10. Selecting the best output pattern

In order to select the best output pattern to be used for the test-
ing dataset, the full model is used on a protein dataset. This protein
dataset is the same 20 proteins, which were used for generating
the group-two training dataset. Using the best parameters that
were found in last sections for each pattern, the accuracy of (L/5)
is calculated for each pattern with changing the filter window size
to study the full behavior of each pattern. Changing the filter win-
dow size will result in different accuracies that are averaged for
each pattern. Table 5 shows the results after applying the full mod-
el on the 20 proteins using different filter window sizes and output
patterns for different separations.
This table shows the accuracy after applying the system with
preferred parameters on the full mode of the group-two dataset.
The first column shows the pattern different types, the second col-
umn shows the separation distance between amino acids pair, and
the other columns show the accuracy when changing the filter
window size.

It is clear from the results that the average accuracy of the first
pattern is better than the other patterns. Therefore, pattern one
will be used for the rest of this study for generating final proteins
contact map images. There is no conflict between JUSTcon and
CASP or other prediction systems since they use pattern three
and we use pattern one. We use pattern one as a representation
of the data to feed the JUSTcon model so we do not break the rule
by using different pattern. However, in this work we use pattern
three to calculate the accuracy and coverage of the final output
according to CASP criteria.
4.11. Building the expert system

In order to select the best window size for the filter, an expert
system is added in the final stage, which selects the suitable win-
dow size based on two factors: the protein general class and the
minimum sequence separation distance.

To build an unbiased expert system, we will use the same 20
proteins dataset that were used before to generate group-two
dataset. This protein dataset was applied on the full model in order
to study the effects of the protein type and the minimum separa-
tion distance on selecting the best filter window size.

Table 6 shows the results after testing on group-two proteins.
The rows show the window size according to a specific separation
and the columns show the type of protein extracted from its pre-
diction file, which was generated from PROFsec. In this experiment,
the accuracy of (L/5) was used to decide the best window size.

First column shows the separation distance, the first row shows
the type of the protein, and the internal cells shows the preferred
window size for the filter.

The protein type is determined by calculating the predicted
values of secondary structure from the output of PROFsec. The



Table 8
Detailed prediction results for 50 testing proteins using different sequence separations and different number of selected residues pairs.

Separation P 6 Separation P 12 Separation P 24

Protein
name + chain
ID

SCOP type Length Total
contact
numbers

(%)
Accuracy
(2L)

%
Coverage
(2L)

%
Accuracy
(L/5)

%
Coverage
(L/5)

Total
contact
numbers

%
Accuracy
(2L)

%
Coverage
(2L)

%
Accuracy
(L/5)

%
Coverage
(L/5)

Total
contact
numbers

%
Accuracy
(2L)

%
Coverage
(2L)

%
Accuracy
(L/5)

%
Coverage
(L/5)

1dt0_a Alpha 197 382 41.6 42.9 71.8 7.3 316 37.8 47.2 66.7 8.2 239 32.5 53.6 51.3 8.4
1efy_A Alpha 350 776 5.9 5.3 11.4 1.0 723 5.1 5.0 2.9 0.3 617 6.0 6.8 1.4 0.2
1ew6_A Alpha 137 164 12.8 21.3 14.8 2.4 138 14.6 29.0 7.4 1.5 120 14.2 32.5 44.4 10.0
1eyh_A Alpha 144 217 20.5 27.2 41.4 5.5 181 13.2 21.0 31.0 5.0 145 9.7 19.3 17.2 3.5
1f06_A Alpha 320 718 16.3 14.5 60.9 5.4 639 13.1 13.2 54.7 5.5 494 10.3 13.4 37.5 4.9
1f2u_B Alpha 145 222 29.3 38.3 69.0 9.0 172 23.8 40.1 65.5 11.1 116 21.4 53.5 55.2 13.8
1f4o_A Alpha 165 221 26.4 39.4 57.6 8.6 175 19.4 36.6 54.6 10.3 123 14.9 39.8 39.4 10.6
1fbv_A Alpha 388 691 7.6 8.5 7.7 0.9 559 6.1 8.4 9.0 1.3 431 3.1 5.6 9.0 1.6
1fk0_A Alpha 93 144 10.2 13.2 26.3 3.5 126 8.1 11.9 15.8 2.4 106 4.8 8.5 5.3 0.9
1ft5_A Alpha 210 356 8.8 10.4 16.7 2.0 284 3.6 5.3 2.4 0.4 216 2.6 5.1 4.8 0.9
1fyz_E Alpha 168 190 6.6 11.6 8.8 1.6 151 2.1 4.6 2.9 0.7 132 3.6 9.1 2.9 0.8
1hm6_A Alpha 345 602 27.1 31.1 63.8 7.3 512 28.4 38.3 62.3 8.4 451 25.9 39.7 62.3 9.5
1hnw_D Alpha 208 343 7.2 8.8 9.5 1.2 276 3.4 5.1 7.1 1.1 189 2.4 5.3 0.0 0.0
1i1r_A Alpha 302 805 16.6 12.4 23.3 1.7 696 12.9 11.2 15.0 1.3 513 5.5 6.4 6.7 0.8
1i94_D Alpha 208 351 8.2 9.7 14.3 1.7 285 6.0 8.8 7.1 1.1 195 2.4 5.1 4.8 1.0
1cvi_a Alpha/Beta 342 716 12.4 11.9 32.4 3.1 631 8.3 9.0 20.6 2.2 535 4.4 5.6 4.4 0.6
1dxe_A Alpha/Beta 253 571 30.0 26.6 47.1 4.2 486 29.1 30.3 58.8 6.2 358 15.2 21.5 49.0 7.0
1dxh_a Alpha/Beta 335 791 46.0 38.9 85.1 7.2 700 44.9 43.0 77.6 7.4 607 39.7 43.8 77.6 8.6
1e6k_A Alpha/Beta 130 244 40.0 42.6 88.5 9.4 203 40.4 51.7 88.5 11.3 136 33.1 63.2 76.9 14.7
1e6l_A Alpha/Beta 127 235 47.2 51.1 100.0 10.6 203 46.1 57.6 100.0 12.3 144 39.4 69.4 100.0 17.4
1evi_A Alpha/Beta 340 869 19.1 15.0 42.7 3.3 789 16.0 13.8 35.3 3.0 680 12.8 12.8 35.3 3.5
1f1m_A Alpha/Beta 162 251 10.5 13.6 28.1 3.6 212 8.0 12.3 12.5 1.9 180 8.0 14.4 15.6 2.8
1f5o_A Alpha/Beta 149 223 20.1 26.9 50.0 6.7 194 19.5 29.9 50.0 7.7 168 16.8 29.8 50.0 8.9
1faa_A Alpha/Beta 120 232 52.1 53.9 95.8 9.9 201 49.2 58.7 95.8 11.4 158 45.0 68.4 95.8 14.6
1i0z_A Alpha/Beta 333 759 50.6 44.4 83.6 7.4 655 50.0 50.8 74.6 7.6 532 44.0 55.1 89.6 11.3
1c9h_A Alpha+Beta 107 267 66.4 53.2 95.2 7.5 230 63.6 59.1 95.2 8.7 180 58.9 70.0 95.2 11.1
1e8i_A Alpha+Beta 117 276 49.2 41.7 73.9 6.2 216 42.7 46.3 65.2 6.9 171 38.9 53.2 65.2 8.8
1eoe_A Alpha+Beta 100 152 40.0 52.6 70.0 9.2 109 33.0 60.6 70.0 12.8 81 27.5 67.9 70.0 17.3
1euv_A Alpha+Beta 220 448 19.3 19.0 63.6 6.3 373 15.5 18.2 50.0 5.9 278 13.0 20.5 13.6 2.2
1ezv_F Alpha+Beta 125 104 5.2 12.5 4.0 1.0 82 0.4 1.2 0.0 0.0 81 0.0 0.0 0.0 0.0
1fnt_K Alpha+Beta 198 451 26.5 23.3 25.0 2.2 367 24.5 26.4 25.0 2.7 284 21.5 29.9 27.5 3.9
1fwk_A Alpha+Beta 296 793 15.7 11.7 22.0 1.6 690 11.2 9.6 13.6 1.2 559 7.9 8.4 1.7 0.2
1g24_A Alpha + Beta 211 457 13.5 12.5 31.0 2.8 402 10.9 11.4 26.2 2.7 351 7.8 9.4 7.1 0.9
1g62_A Alpha + Beta 224 617 25.2 18.3 42.2 3.1 502 17.9 15.9 35.6 3.2 357 14.5 18.2 33.3 4.2
1hqm_E Alpha + Beta 91 88 6.0 12.5 16.7 3.4 61 2.8 8.2 0.0 0.0 56 9.9 32.1 11.1 3.6
1io1_A Alpha + Beta 395 855 4.8 4.4 6.3 0.6 720 2.7 2.9 1.3 0.1 560 0.6 0.9 0.0 0.0
1qi7_A Alpha + Beta 253 572 35.2 31.1 58.8 5.2 477 32.4 34.4 64.7 6.9 359 26.5 37.3 64.7 9.2
1c3g_A Beta 170 364 18.2 17.0 35.3 3.3 300 18.2 20.7 17.7 2.0 200 4.7 8.0 8.8 1.5
1cuo_A Beta 129 332 62.0 48.2 92.3 7.2 290 60.9 54.1 92.3 8.3 241 58.9 63.1 92.3 10.0
1dn2_a Beta 207 509 48.1 39.1 90.2 7.3 440 47.8 45.0 95.1 8.9 314 36.7 48.4 95.1 12.4
1dqi_A Beta 124 303 22.2 18.2 32.0 2.6 248 16.9 16.9 24.0 2.4 174 4.8 6.9 24.0 3.5
1ds0_a Beta 323 817 5.7 4.5 16.9 1.4 744 4.3 3.8 10.8 0.9 689 5.4 5.1 7.7 0.7
1eo2_B Beta 238 547 10.3 9.0 31.3 2.7 473 7.8 7.8 14.6 1.5 399 7.1 8.5 10.4 1.3
1eqd_A Beta 184 464 22.0 17.5 27.0 2.2 395 13.3 12.4 32.4 3.0 254 1.1 1.6 0.0 0.0
1ff5_A Beta 219 563 20.3 15.8 31.8 2.5 486 15.1 13.6 18.2 1.7 364 5.9 7.1 0.0 0.0
1g43_A Beta 160 451 11.9 8.4 3.1 0.2 407 11.3 8.9 3.1 0.3 335 5.9 5.7 3.1 0.3
1hwm_B Beta 264 746 29.4 20.8 39.6 2.8 589 15.7 14.1 30.2 2.7 395 3.6 4.8 1.9 0.3
1i5i_A Beta 174 457 20.4 15.5 31.4 2.4 392 14.7 13.0 11.4 1.0 299 5.8 6.7 0.0 0.0
1i94_Q Beta 104 188 55.8 61.7 100.0 11.2 159 50.5 66.0 100.0 13.2 101 35.1 72.3 100.0 20.8
1df9_C SMALL 70 130 51.4 55.4 85.7 9.2 106 45.0 59.4 85.7 11.3 66 30.7 65.2 64.3 13.6
AVG 207.48 440.48 25.2 24.9 45.5 4.6 375.3 21.8 25.5 40.0 4.8 294.66 17.0 26.8 34.7 5.6

This table shows the full prediction output of the testing dataset. First column shows the protein name as PDB code and its chain, the second column shows the SCOP type (Alpha, Beta, Alpha/Beta and Alpha + Beta), the third
column shows the length of the protein, the other columns show the accuracy and the coverage of the prediction for different separation sequence (P6, P12 and P24) and different number of select contact pairs (2L and L/5).
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Table 9
Accuracy and coverage comparison between JUSTcon, SVMcon and PROFcon with
different separation sequences and different number of selected amino acids pairs.

Server Separation Accuracy Coverage

2L
(%)

L
(%)

L/2
(%)

L/5
(%)

2L
(%)

L
(%)

L/2
(%)

L/5
(%)

JUSTCon P6 25.2 32.1 38.6 45.5 24.9 15.9 9.6 4.6
SVMcon 23.1 30.9 38.1 46.8 22.9 15.5 9.6 4.8
PROFcon 20.1 25.5 30.5 38.0 20.2 13.0 7.9 4.0

JUSTCon P12 21.8 29.2 34.8 40.0 25.5 17.2 10.4 4.8
SVMcon 17.9 24.0 30.0 36.6 20.6 14.1 8.9 4.4
PROFcon 15.8 20.2 24.5 30.7 18.9 12.1 7.5 3.8

JUSTCon P24 17.0 23.0 28.7 34.7 26.8 18.3 11.7 5.6
SVMcon 13.6 18.4 23.6 32.0 20.2 14.0 9.3 5.1
PROFcon 11.9 15.3 18.7 23.1 18.8 12.0 7.4 3.6

Table 10
Accuracy comparison between JUSTcon, SVMcon, and PROFcon with different protein
lengths.

Server Length Separation P 6 P12 P24

2L L/5 2L L/5 2L L/5

JUSTCon Short 34.7 62.1 31.2 58.0 26.4 56.9
SVMcon 24.4 48.9 18.5 40.9 15.6 35.3
PROFcon 19.9 37.0 15.9 29.2 14.7 28.5

JUSTCon Middle 20.9 36.4 16.9 30.3 11.2 20.6
SVMcon 23.4 41.4 18.1 30.7 12.3 29.0
PROFcon 21.1 41.4 16.2 32.3 9.9 17.8

JUSTCon Long 19.0 38.0 16.9 31.5 13.8 27.8
SVMcon 20.6 53.3 16.9 41.1 13.2 32.7
PROFcon 18.5 33.5 14.8 30.0 11.5 24.9

Table 11
Accuracy comparison between JUSTcon, SVM, and PROFcon with different protein
types.

Server Type Separation P 6 P12 P24

2L L/5 2L L/5 2L L/5

JUSTCon Alpha 15.3 29.7 12.5 23.1 10.2 21.0
SVMcon 18.0 41.8 13.5 30.4 10.0 32.9
PROFcon 17.0 36.1 13.4 27.9 10.1 19.5

JUSTCon Beta 27.2 44.3 23.0 37.5 14.6 28.6
SVMcon 28.5 41.7 23.5 33.7 16.9 28.1
PROFcon 22.6 37.8 17.6 33.2 11.0 19.7

JUSTCon Alpha+Beta 25.6 42.4 21.4 37.2 18.9 32.5
SVMcon 21.9 47.7 15.1 32.9 12.4 26.5
PROFcon 18.9 34.9 14.1 22.4 11.8 15.8

JUSTCon Alpha/Beta 34.3 70.5 32.1 67.1 26.9 62.3
SVMcon 22.8 45.8 22.0 56.3 17.0 45.4
PROFcon 22.9 46.1 18.9 40.8 16.3 41.7
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PROFsec predicts the secondary structure type on specific amino
acid including more alpha, more beta, and others. Therefore, for
each protein, a summation was done for each type in all amino acid
sequence, and then the most frequent type was used to represent
the type of the protein.
5. Results and comparisons

5.1. Testing JUSTcon and comparison with other predictors

After tuning the JUSTcon full model, it was tested and compared
with other predictor servers. The testing dataset consists of 50 pro-
teins. All samples should be presented to the model because of the
need to get full outputs of the testing proteins. The outputs of the
test dataset after presentation to the model are used to construct
the contact map of the protein as shown in Table 7. Table 8 shows
all testing protein chains, protein length, SCOP type [5], the num-
ber of contact pairs, the accuracy, and the coverage for 2L and
L/5 under sequence separations P6, P12, and P24, respectively.

The performance of JUSTcon was compared with that of SVM-
con [9] and PROFcon [11] in term of accuracy because they pro-
duced very good accuracy in CASP5 and CASP7. The comparisons
will consider many factors to study the points of strengths and
weaknesses of JUSTcon including the sequence separation dis-
tances (Separation P6, 12, 24), the length of the proteins for three
categories: Short (Length < 153), Middle (l53 < length < 276) and
Long (276 < length < 400), and the SCOP type (Alpha, Beta, Al-
pha + Beta, Alpha/Beta).

Table 9 shows the accuracy and the coverage of the three pre-
dictors using different separation distance P6, P12 and P24
and different number of select contact pairs (2L, L, L/2 and L/5).
These results prove that JUSTcon outperforms SVMcon on the aver-
age by 10% and PROFcon on the average by 35%, especially, when
the separation distance P12 and 24. This is becoming more signif-
icant because CASP is focusing now on getting good accuracy for
separation distance P24.

The other set of experiments were conducted to study the
behavior of JUSTcon while changing the type and the length of test-
ing proteins. Table 10 shows the accuracy of the three predictors
for separation distance P6, P12, and P24 using different length
types.

In addition, the effect of protein SCOP types is studied. Table 11
shows the accuracy of the three predictors for separation distances
P6, P12, and P24 using different protein SCOP types.

These results also prove that JUSTcon outperforms SVMcon and
PROFcon on the average by 48.7% and 89.4%, respectively in term of
predictions for short proteins and it has an acceptable accuracy in
the cases of middle and long proteins. Furthermore, the compari-
son shows that JUSTcon outperforms SVMcon and PROFcon on
the average by 34.8% and 58.5%, respectively for Alpha + Beta type
and Alpha/Beta protein SCOP types and it has an acceptable accu-
racy for Alph and Beta types. According to some previous studies
[10], generating a contact map using top L contacts with an accu-
racy >30% can be used to produce a 3D view of the protein with
low resolution, which already has been achieved by JUSTcon.

5.2. Applying JUSTcon on CASP9 targets

JUSTcon was applied on the targets of CASP9 [12] to study its
performance in comparison with the other state of the art predic-
tors. The CASP9 evaluation criteria focuses on the contact between
residues with sequence separation P24. Similar to CASP9, the
analysis was performed on FM and TBM/FM domains only so 28
domains were tested. According to [15] the average accuracy of
the participant groups where 16.5%, 18% and 20% for L/5, L/10
and Top 5 respectively. The average accuracy of JUSTcon was
15%, 19% and 23% for L/5, L/10 and Top 5 respectively.

In the Fig. 8, the accuracy of the prediction per target is shown.
We included the average prediction accuracy of CASP9 groups for
(L/5). From the Fig. 8, JUSTcon exceeds the average accuracy of
CASP9 on several targets.

The previous analysis shows that JUSTcon is in a good level from
the other competitor servers and located on the top third. So we
believe that some minor improvements will make JUSTcon a high
competitor.

In the Fig. 9 the top two accurately predicated targets by JUST-
con (T0604-D1 and T0553-D1) were represented as contact map
images. The upper right side represents the predicated contact im-
age and the left down side represents the actual contact map.
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Fig. 8. Shows the accuracy per target of L/5, L/10 and top 5 of JUSTcon predictions and the L/5 average accuracy prediction of the participant groups in CASP9.

Fig. 9. Samples of JUSTcon prediction outputs for CASP9. The images show the real
and predicted contact map of domains T0604-D1 (left) and T0553-D1 (right). The
upper right side represents the predicted contact image and the lower left side
represents the real contact image.
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6. Conclusions

In this work, we have proposed a new machine-learning model
(JUSTcon) for protein contact map prediction. The model is based
on adaptive neuro-fuzzy inference system (ANFIS) and K nearest
neighbors (KNN) algorithm. Our proposed model is novel in the
domain for protein contact prediction in terms of its architecture
and accuracy. The model has the ability to produce a set of ami-
no-acid pairs predictions, which are more likely to be in contact.

The model uses many features that are extracted from the
protein PDB files and other protein structure predictor. All of the
proteins data are preprocessed and filtered to ensure correctness
before the features are extracted. The features are then divided into
three groups: profiles, secondary structure and solvent accessibility
(SSSA), and general information. Each group is processed by its own
phase that runs in parallel with the others. The first two groups,
namely profiles and SSSA, are fed into their KNN models, while
the amino acid pairs’general information features are processed
by their own ANFIS model. The outputs from the KNN and ANFIS
models are then passed to another ANFIS model in the second stage
that works as a combiner and provides initial predictions. Finally, a
filtering operation is applied on the final outputs and the window
size of the filter is selected by a simple expert system. This expert
system selects a suitable Filter window size based on the type of
the protein and the targeted sequence separation distance.

Generated contact map using top L contacts with an accuracy
>30% can be used to produce a 3D view of the protein with low
resolution, which already has been already achieved by JUSTcon
since the average accuracy is 32% for L and can reach 45.5% for
L/5. On the other side, the comparison with other competitor serv-
ers proves that JUSTcon outperforms the other predictor on the
average by 10% for SVMcon and 35% for PROFcon. In addition, these
results also prove that JUSTcon outperforms SVMcon and PROFcon
on the average by 48.7% and 89.4%, respectively in term of predic-
tions for short proteins and it has an acceptable accuracy in the
cases of middle and long proteins. Furthermore, the comparison
shows that JUSTcon outperforms SVMcon and PROFcon on the
average by 34.8% and 58.8%, respectively for Alpha + Beta type
and Alpha/Beta protein SCOP types and it has an acceptable accu-
racy for Alpha and Beta types. In other side, JUSTcon produced an
average accuracy of 15% for the sequence separation of 24 amino
acids after applying it on CASP9 targets.
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