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Abstract

In this paper an integrated modelling approach for object-oriented systems is proposed. The integrated
language consists of three layers. On the first layer UML class diagrams are used to define the structure of
the modelled systems and OCL expressions specify queries, which do not modify the object configuration.
On the second layer transformation rules model local state modifications of the system. On the third layer
Nassi-Shneiderman diagrams describe complex control flows built over the rules and queries on the lower
layers. The proposed integrated language is evaluated by a running example on modelling doubly linked
lists and the mergesort algorithm.
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1 Introduction and Related Work

The Unified Modeling Language (UML) [10] has become the pre-dominant modelling
language in object-oriented software development. The behavioural techniques pro-
vided by the UML, however, do not contain a method for the declarative, rule-based
specification of modifications on object structures. Moreover, the interconnection
between different behavioural techniques is treated rather superficially in the UML
specification, because the UML tries to permit as many usage and interconnection
scenarios as possible.

In this paper an integrated modelling approach is proposed, which tries to elimi-
nate these deficiencies by giving a layered collection of specification techniques with
a clear separation of concerns and well-defined interconnections. The proposed
integrated language is organised in three constitutive layers.

On the first layer UML class diagrams are used to specify the structure of the
system. Expressions of the Object Constraint Language (OCL) [9] specify the be-
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haviour of query operations, which do not change the object configuration of the
system. This layer is introduced in Sect. 2.

On the second layer local state changes are modelled using a variant of single-
pushout graph transformation rules [1] tailored to the UML on this layer. This layer
is described in Sect. 3. Object-Based Graph Grammars [11] and Object-Oriented
Graph Grammars [7,6] are other approaches using graph transformation rules to
specify the behaviour of object-oriented systems. They are, however, designed as
self-contained specification techniques without relation to the UML.

On the third layer the assembly of the queries and rules from the previous layers
into complex control flows is achieved by structured flowcharts [8], which are also
known as Nassi-Shneiderman diagrams. The third layer is explored in Sect. 4.
Structured flowcharts are favoured over e. g. UML activity diagrams in this paper,
because we believe that they provide a viable alternative for the visual modelling
of control flows. On the one hand, they are close to the structure of the constructs
in most contemporary, imperative programming languages, which could lead to a
broader acceptance among programmers and software designers. On the other hand,
the separation of concerns realised by the layered, integrated language facilitates the
compactness and comprehensibility of the flowcharts making them easier to grasp
than the source code of a programming language. Different approaches to control
the application of graph transformation systems are proposed in the literature.
Transformation Units [4] are one of the most prominent examples. They provide
an abstract framework for the definition of control structures over transformation
rules, where the structured flowcharts of this paper could probably be integrated
into that framework as a sophisticated specification language for control structures.

These layers are integrated in the sense that the interconnections between the
different layers are precisely defined: The queries on Layer 1 are only allowed to
call other queries on Layer 1. The transformation rules on Layer 2 may use OCL
expressions on Layer 1 in their attribute specifications. The structured flowcharts
on Layer 3 can use OCL experessions on Layer 1 and call arbitrary other operations,
which may be specified by transformation rules on Layer 2 or other flowcharts on
Layer 3. The integrated language is intended to be constructive in the sense that
the behaviour of a system can (and should be) completely described using the
sublanguages on the appropriate layers.

The Fujaba Tool Suite [3] uses Story Diagrams [2], which are a combination of
activity and collaboration diagrams, to specify transformations on object-oriented
systems. The Fujaba approach is very similar to the one proposed in this paper. In
contrast to Fujaba, which employs Java source code for the specification of low-level
expressions, we use OCL expressions, which are on the one hand already integrated
into the UML family of languages, on the other hand they aid in keeping the ap-
proach platform independent. Another difference is the strict separation of con-
cerns with transformation rules and flowcharts specified in self-contained diagrams,
respectively, where Fujaba uses the integrated Story Diagrams. The separation
of concerns eases the reuse of transformation rules in different flowcharts and of
flowcharts in other flowcharts. The choice of visualisation techniques for rules and
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control flow is the last main difference. Fujaba uses collaboration diagrams to visu-
alise rules, while in this paper a seperate visualisation of left- and right-hand-side
is chosen, because the collaboration visualisation cannot adequately capture the
change of attribute values and the specification of negative application conditions.
In Fujaba UML activity diagrams are used for the control flow, where our reasons
for choosing structured flowcharts have already been given above.

The semantics of the UML languages is – sometimes deliberately – left am-
biguous and only given in natural language. In order to allow features like precise
reasoning and code generation, a more restricted and formal approach has to be
considered. Therefore, the integrated modelling language proposed in this paper is
designed to allow the definition of a precise semantics.

It is possible to use graph transformation systems also as the semantic domain
of object-oriented modelling techniques. This is done in [13,5], where UML class,
object, state, collaboration, and use case diagrams are translated into graph trans-
formation systems. This approach is complementary to the one in this paper, where
graph transformations are used as an additional modelling technique on the syntac-
tical level.

2 UML Foundations

In this paper we use UML class diagrams [10] to specify the class structure of the
modelled system. Additionally, the behaviour of query operations, which do not
change the object configuration of the system, is specified by OCL constraints [9],
which are guaranteed to have no side effects on the system state. Note, that we do
not employ OCL invariants and pre-post-conditions in this paper. Those constraints
will be considered in future work on verification, shortly discussed in Sect. 5, where
they will play the role of descriptive specifications against which the constructive
models defined in this paper should be checked.

The two subsequent layers will be designed to closely match and reuse the con-
cepts of class diagrams and OCL constraints. For example, the self and return
parameters of OCL have counterparts in both rules and flowcharts. Additionally,
rules and flowcharts also require OCL expressions in various locations.

As a running example we specify doubly linked lists, whose elements contain
an integer as key and a string as data content. The class diagram of the example
is depicted in Fig. 1. The abstract class ListItem is used as an abstraction of the
common characteristics of lists and the elements in the lists. The objects of the
List class serve as sentinels for the list, such that the next item is the first element
of the list and the previous is the last one. This approach ensures that we do not
have to deal with undefined pointers. Moreover, it allows to check if a list is non-
empty and if an element has another successor by calls to the builtin OCL property
oclIsKindOf(Element) on the next link. Note, that this class diagram would also
allow object structures with multiple instances of List in a list, but the operations
– namely the structure modifications specified by the rules in the next section – do
not allow the creation of such senseless structures.
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next

pkg Lists

context
body: if next.oclIsKindOf(Element) and

next<>self
then

then

endif
else

if key<=next.key
next.sorted()
false

else true
endif

Lists::Element.sorted():Boolean

moveFirstTo(other:List)
append(new:Element)
create():List

length:Integer

create(i:Integer,s:String):Element

data:String
key:Integer

ElementList

ListItem

mergeSort()
merge(first:List,second:List):List
sorted():Boolean {query}
moveTo(other:List)

sorted():Boolean {query}

context
body: if next.oclIsKindOf(Element)

then next.sorted()
else true
endif

Lists::List.sorted():Boolean

prev

Fig. 1. Class diagram of the example

The underlined operations List.create, Element.create, and List.merge are static
operations, which are called in the context of the class instead of a particular object
of the class. The operations List.sorted and Element.sorted are annotated with a
query property string expressing that they are not allowed to change the configura-
tion of objects and attributes in the system.

The sorted queries are specified by the OCL constraints in Fig. 1. The List.sorted
query returns true for an empty list and calls the Element.sorted query on its first
element otherwise. The Element.sorted query returns true if the element is the last
in the list, i. e. the next link points to the containing instance of List and not to
another instance of Element, or the element is not contained in a list at all, i. e. the
next link points to the element itself. If there is another element in the list, the keys
are compared and false is returned if they are not in the correct order. Otherwise
the query is called recursively on the next element.

3 Transformation Rules

On the second layer of the integrated modelling approach we will use transformation
rules to describe local state changes in object configurations. These rules are a
variant of single-pushout graph transformation rules [1].

A rule is given by a left- and a right-hand-side consisting of instance specifi-
cations. The left-hand-side (LHS) is connected to the right-hand-side (RHS) by a
partial, injective mapping. Since the application of a rule should be determined by
the parameters given to the operation, we require the LHS to be uniquely navigable
from the instance specifications representing the parameters, whose type is a class.
A special parameter self is available in non-static operations to denote the object on
which the operation is called. If the operation has a return parameter, the special
parameter return has to be used on the RHS to designate the output of the rule.
For attributes the instance specifications on the LHS may declare OCL constraints,
which have to hold for the rule to be applicable. The instance specifications on
the RHS may then specify the new values of attributes by OCL constraints, which
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prev
rule Lists::List.create():List

return:List

length=0 next

(a) Creating a List

prev
rule Lists::Element.create(i:Integer,s:String):Element

return:Element

key=i
data=s

next

(b) Creating an Element

Fig. 2. Transformation rules for creating instances of ListItem

may similarly to post-conditions use the @pre operator to access the attribute values
before the rule application. The OCL attribute constraints may also use any data
type parameters given to the operation.

Given a match of the LHS in an object configuration, the application of the rule
can be constructed by removing the parts of the LHS not mapped to the RHS and
adding the parts of the RHS, which do not have a preimage in the LHS. Since we
assume an execution environment with garbage collection, we will use only rules,
which are non-deleting on objects. Matches may in general be non-injective, but
if there are contradicting attribute constraints for objects identified by the match,
then the rule is not applicable. Operation invocations leading to a non-applicable
rule should result in some kind of error handling, e. g. by throwing an exception,
but the integration of exception handling is outside the scope of this paper and is
left as future work.

In addition to the LHS and RHS, negative application conditions (NAC) may
be defined for a rule. Such conditions are defined as non-injective extensions of the
LHS, where non-injectivity is used to forbid the identification of certain elements
by the match and extensions are used to forbid auxiliary object structures. If the
NAC can be matched compatibly with the match of the LHS, then the rule is not
applicable.

It may be argued that rules, which are allowed to manipulate all structures
navigable from the called object and the call’s parameters, contradict the object-
oriented paradigm of encapsulation of object behaviour, but for the modelling of
complex structure changes it seems appropriate to specify them as a rule operating
under the control of one of the participating objects rather than dividing the op-
eration, which logically belongs together, into operations on the different objects.
In a more elaborated framework, which takes into account visibility and accessibil-
ity constraints to facilitate object encapsulation, these visibilities and accessibilities
would of course have to be respected by the rules.

For our running example, the transformation rules in Fig. 2 can be used to create
lists and elements. The List.create rule in Fig. 2(a) creates an empty list, while the
Element.create rule in Fig. 2(b) creates an element containing the given integer as the
key and the given string as the data content. The created element is not contained
in a list, which is expressed by the next and previous links pointing to the element
itself. Since these operations are both static, there is no self instance in the LHS.
The return parameter is used to transmit the created instances as operation results
to the caller.

The rules in Fig. 3 modify a given list. The List.append rule in Fig. 3(a) appends
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prev

self:List 1:ListItem

new:Element

length=length@pre+1

self:List
1:ListItem new:Element

rule Lists::List.append(new:Element)

next prev

next
prev

next

next

prev

(a) Appending an Element

prev

self:List 1:Element 2:ListItem length=length@pre−1

self:List
2:ListItem

length=length@pre+1

other:Listother:List 3:ListItem 3:ListItem 1:Element

rule Lists::List.moveFirstTo(other:List)

next prev
next

prev

next next next

next

prev prev prev

(b) Moving the first Element

prev

rule Lists::List.moveTo(other:List)

NAC:

next prev

next

prev

next

next

1:ListItemself:List
self:List

length=0
2:ListItem

other:List

length=length@pre+
self.length@pre

3:ListItem
next

1:ListItem 2:ListItem3:ListItemother:List

self,1.2:List

other:List 3:ListItem

prev
next

next

prev

prev

next

prev

prev

(c) Moving the whole List

Fig. 3. Transformation rules for modifying a List

a given element to the end of the list. The rule is not applicapble if new is already
contained in another list, because the previous and next links are required to point
to new itself. The List.moveFirstTo rule in Fig. 3(b) moves the first element of a
list to the end of another list. This rule is not applicable if the self list is empty,
because then there is no match for 1:Element, and if the caller tries to move to the
same list, because the conflicting attribute specifications for self and other prohibit
their identification. The List.moveTo rule in Fig. 3(c) moves a whole list to another
empty list. Again, the rule is not applicable, when self and other refer to the same
object, because of the conflicting attribute specifications. Additionally, the given
NAC forbids the application on an empty list, because the application would lead
to an ill-formed object configuration with the self list contained in the other list.

4 Structured Flowcharts

In this section we use structured flowcharts [8] as defined by Nassi and Shneiderman
to describe control flows. The flowcharts are built over the queries and rules defined
in the previous sections. Because the details of state changes are delegated to the
rule-based operation specifications, the control flows remain concise and compre-
hensible.
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var:Type

Block

(a) Declaration

var:=expr

(b) Assignment

obj.op(par)

(c) Operation call BlockBlock

(d) Parallelism

cond

Block Block

(e) Decision

cond

Block

(f) Iteration with
pre-condition

Block

cond

(g) Iteration with
post-condition

Fig. 4. Symbols used in flowcharts

Flowcharts are constructed using the block symbols in Fig. 4, where these blocks
can be sequentially composed and recursively inserted for the Block nonterminals.
A variable declaration shown in Fig. 4(a) consists of a previously undeclared variable
var and a type Type. The scope of the variable is the contained block. Values can
be assigned to variables by an assignment as shown in Fig. 4(b), where the variable
var can be a previously declared variable or the special variable result. Note that
neither the parameters of the operation including self, nor attributes may appear
on the left side of an assignment, because modifications of the object structure
should be specified by rules not by direct assignments. The expression expr with
corresponding return type is constructed similar to OCL expressions, but it is, in
contrast to OCL, also allowed to contain calls to non-query operations. Operations
without return parameter can be called with the block in Fig. 4(c), where obj is a
navigation path from a parameter or variable to an object, op is an operation of the
class of that object, and par are parameters for the operation. Control flows, which
can be executed parallely independent, can be expressed by the block in Fig. 4(d).
A decision as in Fig. 4(e) is given by an OCL expression cond with Boolean return
type, which is constructed over the parameters and previously declared and defined
variables. If the query evaluates to true, the left block is executed, if it evaluates
to false, the right block is chosen. The iteration with precondition in Fig. 4(f)
corresponds to a while-loop in common programming languages. While the Boolean
query cond evaluates to true, the block is executed. Conversely, the iteration with
postcondition in Fig. 4(g) corresponds to a repeat-loop, where cond is evaluated for
the first time after the first iteration.

For our example of doubly linked lists, we will specify the Natural Mergesort
algorithm [12], which utilises sublists that are already sorted to optimise the perfor-
mance of the sorting procedure. In Fig. 5 we first specify an auxiliary operation for
merging two already sorted lists. As long as both lists contain elements, the first
elements are compared and the smaller one is moved to the resulting list. When
one of the lists becomes empty, the rest of the other one is moved to the result and
the operation terminates.

The Natural Mergesort algorithm itself is specified in Fig. 6. If the list is empty,
nothing is done, otherwise the main part of the algorithm is started, which consists
of two parts. First, the list is broken up into already sorted sublists, which are
stored in the work array of lists, where this array is declared to contain at most
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second.next.oclIsKindOf(Element)

flow Lists::List.merge(first:List,second:List):List

return:=List.create()

and

first.moveFirstTo(return) second.moveFirstTo(return)

first.moveFirstTo(return)

second.moveFirstTo(return)

first.next.key<=second.next.key

first.next.oclIsKindOf(Element) second.next.oclIsKindOf(Element)

first.next.oclIsKindOf(Element)

Fig. 5. Flowchart of merging two sorted lists

work[0].moveTo(self)

flow Lists::List.mergeSort()

work:List[length]
number:Integer

number:=0

next.oclIsKindOf(Element)

work[number]:=List.create()

moveFirstTo(work[number])

next.oclIsKindOf(Element)

moveFirstTo(work[number])

number:=number+1

number>1

i:Integer
j:Integer

next.oclIsKindOf(Element)

work[number].prev.key<=next.keyand

i:=0

i:=i+1

work[i]:=merge(work[j],work[j+1]) work[i]:=work[j]

j+1<number

j<number

j:=0

j:=j+2

number:=(number+1)/2

Fig. 6. Flowchart of the Natural Mergesort algorithm

length lists. The actual number of sorted lists is stored in the number variable.
Then, these lists are merged pairwise, which halves the number of sorted lists in
each pass. This is done until only one list remains and this list is moved to the self
list.

5 Summary and Future Work

In this paper an integrated modelling approach for object-oriented systems has been
developed, which is organised in three constitutive layers. The first layer employs
OCL to yield a functional description of query operations without side effects. On
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the second layer transformation rules are used to define the behaviour of operations,
which change the object configuration locally. Finally, structured flowcharts are
used on the third layer to specify complex control flows.

Interesting lines of future work include the extension of the presented approach
with respect to further structural and behavioural aspects of the UML, like multi-
plicities, visibilities, signal and exception handling, and redefinition. The presented
languages should be aligned with the UML metamodel by giving metamodels for
the three layers. The definition of the abstract syntax by a graph grammar could
complement the metamodel, where this also permits the use of graph transformation
rules for refinement, refactoring, code generation, and other model transformations.

One of the main motivations for the work in this paper is to define a fully formal-
ized object-oriented modelling technique. Hence, the languages will also be given an
integrated formal semantics, which will then be used to facilitate formal verification.
For the purpose of verification the constructive modelling techniques presented here
will be complemented by descriptive specification techniques like OCL invariants
and pre- and post-conditions or UML sequence diagrams. The system described by
the constructive techniques can then be verified against the properties required by
the descriptive techniques using a variety of verification methods.
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[6] Lüdtke Ferreira, A. P., “Object-Oriented Graph Grammars,” Ph.D. thesis, Universidade Federal do Rio
Grande do Sul, Porto Alegre, Brazil (2005).

[7] Lüdtke Ferreira, A. P. and L. Ribeiro, Towards object-oriented graphs and grammars, in: Formal
Methods for Open Object-Based Distributed Systems, FMOODS 2003, LNCS 2884, Springer, 2003
pp. 16–31.

[8] Nassi, I. and B. Shneiderman, Flowchart techniques for structured programming, ACM SIGPLAN
Notices 8 (1973), pp. 12–26, http://www.geocities.com/SiliconValley/Way/4748/nsd.html.

[9] Object Management Group, “OCL Specification, Version 2.0,” (2005), http://www.omg.org/cgi-bin/
doc?ptc/05-06-06.

B. Braatz / Electronic Notes in Theoretical Computer Science 211 (2008) 251–260 259

http://www.fujaba.de/
http://www.geocities.com/SiliconValley/Way/4748/nsd.html
http://www.omg.org/cgi-bin/doc?ptc/05-06-06
http://www.omg.org/cgi-bin/doc?ptc/05-06-06


[10] Object Management Group, “UML Superstructure Specification, v2.0,” (2005), http://www.omg.org/
cgi-bin/doc?formal/05-07-04.

[11] Ribeiro, L., F. L. Dotti and R. Bardohl, A formal framework for the development of concurrent object-
based systems, in: Formal Methods in Software and Systems Modeling, LNCS 3393, Springer, 2005 pp.
385–401.

[12] Rolfe, T. J., List processing: Sort again, naturally, ACM SIGCSE Bulletin 37 (2005), pp. 46–48,
http://penguin.ewu.edu/~trolfe/NaturalMerge/NatMerge.html.

[13] Ziemann, P., K. Hölscher and M. Gogolla, From UML models to graph transformation systems, in:
Visual Languages and Formal Methods, VLFM 2004, ENTCS 127, Elsevier, 2005 pp. 17–33.

B. Braatz / Electronic Notes in Theoretical Computer Science 211 (2008) 251–260260

http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://penguin.ewu.edu/~trolfe/NaturalMerge/NatMerge.html

	Introduction and Related Work
	UML Foundations
	Transformation Rules
	Structured Flowcharts
	Summary and Future Work
	Acknowledgement 
	References

