Feature Article

Reversible chain transfer catalyzed polymerization (RTCP): A new class of living radical polymerization

Atsushi Goto, Yoshinobu Tsujii*, Takeshi Fukuda*

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

ABSTRACT

This article introduces the new family of living radical polymerizations with germanium (Ge), tin (Sn), phosphorus (P), and nitrogen (N) catalysts which we recently developed. The polymerizations are based on a new reversible activation mechanism, Reversible chain Transfer (RT) catalysis. Low-polydispersity polymers are obtained in the homopolymerizations and random and block copolymerizations of styrene, methyl methacrylate, and functional methacrylates. The background, performance, and kinetic features of the polymerizations are described. Attractive features of the catalysts include their high reactivity, low toxicity (Ge, P, and N), low cost (P and N), and ease of handling (robustness).

1. Introduction

Living radical polymerization (LRP) has received growing attention as a powerful synthetic tool for well-defined, low-polydispersity polymers [1]. The basic concept of LRP is the reversible activation of the dormant species (Polymer–X) to the propagating radical (Polymer) (Scheme 1 a). A sufficiently large number of activation–deactivation cycles is a requisite for good control of chain length distribution [2–4].

We recently developed a new class of LRP using a tin (Sn) [5,6], germanium (Ge) [5,6], phosphorus (P) [6,7], or nitrogen (N) [8] compound as a catalyst for the reversible activation and have proposed to term the polymerization reversible chain transfer catalyzed polymerization (RTCP) [6] for its new reversible activation mechanism. This is also the first LRP using compounds of typical elements (non-transition metals) as effective catalysts. In this article, we will describe the concept and mechanism (Section 3.1), background (Section 3.2), performance (Section 3.3), and kinetic features (Section 3.4) of RTCP, following a brief survey of currently known LRP systems (Section 2) in a mechanistic point of view.

2. Currently known LRP systems

2.1. Examples of capping agent X

Miscellaneous capping agents X are used for LRP. Examples are listed in Scheme 2. They include sulfur compounds (Scheme 2a [9] and g [10]), stable nitroxides (b) [11–13], stable nitrogen and carbon compounds (c) [14–17], transition metal complexes (d) [18,19], iodine (e) [20], halogens with transition metal catalysts (f) [21–23], and tellurium, stibine, and bismuth compounds (h) [24–26].

2.2. Mechanistic classification of reversible activation processes

The reversible activation reactions in the most successful LRPCs currently known may mechanistically be classified into three types (Scheme 1b–d), which are the dissociation-combination (DC), degenerative chain transfer (DT), and atom transfer (AT) mechanisms.

2.2.1. Dissociation-combination (DC) mechanism

In this mechanism, Polymer–X is thermally or photochemically dissociated into Polymer and X' (Scheme 1b), where a stable (persistent) radical X' is supposed to be stable enough to undergo no reaction other than the combination with Polymer. The best-known examples of the stable radical are nitroxides such as TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxy) [11] and DEPN (N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide) [12] (Scheme 2b). Other examples include nitrogen compounds such as...
2.2.2. Degenerative chain transfer (DT) mechanism

In this mechanism, Polymer−X is attacked by the propagating radical (Polymer•) to form the active species (Polymer•X) and the dormant species (Polymer−X) (Scheme 1c). This is an exchange reaction of X. Two types of LRPs belong to this category. One is the case in which X is an atom or a simple group. In this case, X is simply transferred from radical to radical without forming any kinetically important intermediate. A typical example is the iodide-mediated polymerization ([Scheme 2e]), where X is iodine. Organotellurium-mediated living radical polymerization (TERP: X = MeR2) [24], organostibine (SBRP: X = SbR2) [25], and organobismuthine one (BIRP: X = BiR2) [26] are also based on this mechanism, while interestingly the DC mechanism coexists in TERP and BIRP with the main mechanism being DT in both cases. The cobalt and titanium systems (X = Co and Ti complexes) (Scheme 2d) are also assumed to include the two mechanisms. The other is the case in which X is a group with a double bond that is accessible to the addition of Polymer•. The exchange reaction (Scheme 3) occurs via the addition of Polymer•X to Polymer−X to form the intermediate radical Polymer•(X−)−Polymer• followed by its fragmentation into Polymer• and Polymer−X. This process was named reversible addition–fragmentation chain transfer (RAFT) [10]. Dithioester compounds are representative RAFT agents (Scheme 2g).

2.2.3. Atom transfer (AT) mechanism

In this mechanism, Polymer−X is activated by the catalysis of activator A, and the capping agent is transferred to form a stable species XA• (Scheme 1d). All currently known successful LRPs in this category use a halogen like Cl or Br as a capping agent X and a halide complex of transition metal like Cu [22] and Ru [21] as an activator A (Scheme 2f). These LRPs are often termed atom transfer radical polymerizations (ATRPs) [22].

2.2.4. Experimental establishment of activation mechanism for individual systems

The activation mechanism can experimentally and quantitatively be established by determining the activation rate constants for the three mechanisms k_d (Scheme 1b), k_X (c), and k_s (d) for individual systems [3]. Such an experiment was carried out for the nitroxide (Scheme 2b) [27], iodide (e) [28], ATRP (f) [29], RAFT (g) [30], TERP (h) [31], SBRP (h) [25,32], and BIRP (h) [26] systems. The established mechanisms are summarized in Scheme 4, as the classification was mentioned in the above sections.

3. Reversible chain transfer catalyzed polymerization (RTCp)

3.1. Concept and mechanism

The iodide-mediated polymerization (see above (Scheme 2e: X = I)) is a simple and robust LRP, as it contains only monomer, an alkyl iodide (initiating dormant species), and a conventional radical initiator (source of Polymer•). In this polymerization, as noted above, a polymer-iodide (Polymer−I) (dormant species) is activated by Polymer• (DT: Scheme 1c). However, due to a low exchange frequency of iodine, the control of polydispersity is limited. To this polymerization, we added a Ge, Sn, P, or N compound such as GeI4, developing a new family of LRP. The added GeI4 works as a deactivator (A) of Polymer•, in situ producing GeI3 (Scheme 1e). GeI3 works as an activator (A) of Polymer−I, producing Polymer• and GeI4. This cycle allows a frequent activation of Polymer−I. Mechanistically, this process is a reversible chain transfer (RT) with GeI4 as a chain transfer agent, and Polymer−I is catalytically activated via an RT process. This is a new reversible activation mechanism, and we have proposed to term the related polymerization the RT-catalyzed polymerization (RTCp). In this article, the chain transfer agents (Sn, Ge, P, and N compounds) will be called RT catalysts or simply catalysts.

3.2. Background – radical reactions of Sn, Ge, P, and N compounds in organic chemistry

In organic chemistry, Sn and Ge radicals are known to abstract a halogen from an alkyl halide with a high reactivity to give the alkyl radical and their halides [33]. For best example, tributytin radical (Bu3Sn•) rapidly reacts with alkyl chlorides at a rate constant 102–103 M−1 s−1 [34,35], with alkyl bromides at 106–107 M−1 s−1 [34,36], and with alkyl iodides at 106−108 M−1 s−1 [34,36]. The last value is even close to those in the diffusion controlled limit (Table 1). Such high reactivity of Sn and Ge radicals urged us to use the reaction for the activation process of LRP. In organic chemistry, this reaction and the subsequent reduction of the alkyl radical with a hydride are widely utilized for the transformation of alkyl halide to alkyl hydride [33]. While Sn and Ge (group 14) are overwhelmingly frequently used, other group 14 elements and group 13, 15, 16, and 16 elements (Fig. 1) are also utilized for the transformation. This indicates that a wide variety of elements are possibly applicable to RTCp catalysts. In this article, we will focus on Sn, Ge, P, and N catalysts.

As well as a high reactivity of the activator radical, a high reactivity of the deactivator halide is also essential for RTCp. However, the reactions of a carbon-centered radical to Ge, Sn, and relevant halides are generally slow [33]. The counterparts of the mentioned Bu3Sn•, i.e., the chloride Bu3SnCl, the bromide Bu3SnBr, and even the iodide Bu3SnI, are also virtually unreactive (poor...
deactivators), and thus tributyltins are not useful for RTCP. Thus, we explored appropriate halides. We found that some Ge, Sn, P, and N iodides such as GeI₄ work as very effective deactivators to be used in RTCP.

3.3. Performance

We examined the homopolymerizations and copolymerizations of styrene (St), methyl methacrylate (MMA), and functional methacrylates including benzyl (BzMA), glycidyl (GMA), 2-hydroxyethyl (HEMA), poly(ethylene glycol)methyl ether (PEGMA), and N,N-dimethylaminoethyl (DMAEMA) methacrylates as well as methacrylic acid (MAA) by using several catalysts (Fig. 1). The results will be summarized.

3.3.1. St with Ge, Sn, P, and N iodides as deactivators

The polymerization of St was carried out at 80 °C, using 1-phenylethyl iodide (PE-I: Fig. 1) as a low-mass alkyl iodide (dormant species), GeI₄ as a catalyst (deactivator), and benzoyl peroxide (BPO) as a conventional radical initiator [5,6]. In this polymerization, Polymer₁, which is originally supplied by BPO, is supposed to react with GeI₄, in situ producing the activator radical GeI₃ (and Polymer–I). If GeI₃ effectively abstracts I from PE–I (or Polymer–I) to produce PE (or Polymer), cycles of activation and deactivation (RT) will be started. Table 2 (entries 1 and 2) and Fig. 2 (filled circles) show the results. The M_n linearly increased with conversion and well agreed with the theoretical value M_ntheo. The small deviations from M_ntheo at a later stage of polymerization are ascribed to the increase in the number of chains by the...
decomposition of BPO. The polydispersity index (PDI or M_w/M_n) reached a low value of about 1.2 from an early stage of polymerization, indicating a high frequency of the activation–deactivation cycle. The small amount of I_2 (2–5 mM (200–500 ppm)) required to control the polydispersity suggests a high reactivity of GeI$_4$. The activation of Polymer–I occurs not only by RT (Scheme 1e) but also by DT (c). However, the system without GeI$_4$ (iodide-mediated polymerization) (Fig. 2 (open circles)) gave much larger PDIs than that with GeI$_4$ (filled circles) (with other conditions set the same). This means that RT plays a main role in the GeI$_4$ system, with a small contribution of DT. Besides GeI$_4$, another Ge catalyst GeI$_2$ [5,6], Sn catalysts SnI$_4$ and SnI$_2$ [5,6], a P catalyst PI$_3$ [6,7], and a N catalyst N-iodosuccinimide (NIS) (Fig. 1) [8] were also effective for St (entries 3–7 in Table 2 and Fig. 3a). Low polydispersity was achieved with a small amount (0.5–5 mM (50–500 ppm)) of the catalysts at 60–100 °C.

3.3.2. St with phosphorus hydrides as precursors

Instead of adding a deactivator, a precursor of a deactivator or an activator radical may be used as a starting compound to give a catalyst. For example, we used phosphorus hydrides $R_2PH(=O)$ as starting compounds (precursors) to in situ produce an activator radical $R_2P (=O)$ (A’ in Scheme 1e) in the presence of a peroxide (radical initiator) [6,7]. The peroxide gives an oxygen-centered radical, which abstracts a hydrogen from $R_2PH(=O)$ to produce $R_2P(-O)$ (Scheme 5). The abstraction by oxygen-centered radicals is known to be fast [37]. We carried out the polymerization of St with PE–I, dicumyl peroxide (DCP), and (BuO)$_2$P(=O) or (EtO)P(=O) as a precursor at 100 °C. With 10–30 mM of each precusor (entries 8 and 9 in Table 2 and Fig. 3a), small PDIs (≤ 1.2) were obtained from an early stage of polymerization. Thus, with these two phosphorus hydrides, this alternative method was confirmed to be useful.

3.3.3. Methacrylates

The polymerization of MMA was carried out with Ge [6], P [6,7], and N [8] catalysts (entries 10–13 in Table 2 and Fig. 3b). To ensure a fast initiation from the alkyl iodide, we used a tertiary alkyl iodide, 2-cyanopropyl iodide (CP–I: Fig. 1), instead of the secondary one, PE–I. As a Ge catalyst, p-CH$_3$-C$_6$H$_4$-GeI$_3$ (tolyl-GeI$_3$) (entry 10) was used instead of GeI$_4$, which was effective for St but not active enough for MMA. With 5 mM of tolyl-GeI$_3$, low-polydispersity polymers were successfully obtained. As a P catalyst, PI$_3$ (entry 10) was effective for MMA as well as for St. A precursor catalyst, (EtO)$_2$P(=O), was also applicable to MMA with BPO as a peroxide (entry 13 in Table 2 and Fig. 3b). For the MMA polymerization, the N catalyst, NIS, exhibited particularly good performance (entry 12 in Table 2 and Fig. 3b). Even with 1 mM of NIS, which is among the lowest concentrations of the studied catalysts, PDI was small (1.15–1.4) from an early stage to a later stage of polymerization both in bulk and anisole solution. Notably, the temperature for MMA (70–80 °C) was even lower than that for St (80–100 °C) with the Ge, P, and N catalysts.

Functional methacrylates, BzMA (with a benzyl group), GMA (with an epoxide), HEMA (with a hydroxy group), and PEGMA (with ethylene oxide units) were examined, using NIS, for example (entries 14–17 in Table 2 and Fig. 3b) [8]. NIS is attractive for its good tolerance to functional groups. In all cases, M_n well agreed with M_n,theo, and PDI was about 1.1–1.4 from low to high conversions. This suggests that the high reactivity of NIS retained in these monomers. BzMA and GMA are widely applied to photoresists (electronic materials), and HEMA and PEGMA, to biomaterials. No conductivity and low toxicity of NIS may be particularly attractive for these applications.

3.3.4. Random and block copolymerizations

With the NIS catalyst, the random copolymerizations of functional methacrylates, e.g., copolymerizations of BzMA with MAA (with a carboxylic acid), with DMAEMA (with a dimethylamino group), and with HEMA were also successful (entries 18–20 in Table 2) [8]. The compositions of MAA and DMAEMA were 15 mol% and that of HEMA was 22 mol%. With a small amount of NIS (1–2 mM), low-polydispersity polymers (PDI ≈ 1.21–1.37) were obtained up to high conversions (60–90%). For methacrylates (both homo-polymerizations (see above) and copolymerizations), the polymerization was fairly fast: the conversion reached 70–90% in 1–6 h, in the studied conditions (Table 2).

With the PI$_3$ [38] and NIS [8] catalysts, the block copolymerizations using a PMMA–I macroinitiator (first block) were attempted, where PMMA is poly(methyl methacrylate). Using St and BzMA for the second block monomers (entries 21 and 22 in Table 2), block copolymers with small PDIs (≈ 1.2) were obtained. Instead of using an isolated macroinitiator (see above), successive addition of two monomers was also attempted. To a polymerization of MMA (100 equiv) (first monomer) with CP–I (1 equiv) (alkyl iodide) at a conversion of 54%, the addition of BzMA (100 equiv) (second monomer) yielded PMMA-block–[PMMA-random–PBzMA], with reasonably small PDIs (≈ 1.4) (entry 23 in Table 2), where PBzMA is poly(benzyl methacrylate).

3.3.5. Use of alkyl iodide in situ formed

Instead of using a preformed alkyl iodide, we may add molecular iodine I_2 and an azo compound to the system as starting compounds and use the alkyl iodide in situ formed in the polymerization. This method may be practically useful due to the general lack of the long-term stability of alkyl iodides upon storage. This method was invented by Lacroix-Desmazes et al. and adopted

Table 1

<table>
<thead>
<tr>
<th>Alkyl halide (R-X)</th>
<th>Rate constant (M$^{-1}$ s$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-C$_4$H$_9$I-Cl</td>
<td>7 × 101</td>
<td>[35]</td>
</tr>
<tr>
<td>n-C$_6$H$_5$Br</td>
<td>3 × 102</td>
<td>[36]</td>
</tr>
<tr>
<td>CH$_3$I</td>
<td>4 × 109</td>
<td>[36]</td>
</tr>
</tbody>
</table>
Table 2

Polymersizations of St and methacrylates with Ge, Sn, P, and N catalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Monomer (equiv to [R–I])</th>
<th>Catalyst</th>
<th>R–I</th>
<th>In</th>
<th>[R–I]/[In]/[catalyst]0 (mM)</th>
<th>T (°C)</th>
<th>t (h)</th>
<th>Conv (%)</th>
<th>Mn,obs (Mn,tho)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>St (100 equiv)</td>
<td>Gel4</td>
<td>PE–I</td>
<td>BPO</td>
<td>80/20/10</td>
<td>80</td>
<td>2</td>
<td>81</td>
<td>8200 (8500)</td>
<td>1.16</td>
</tr>
<tr>
<td>2</td>
<td>St (100 equiv)</td>
<td>Gel4</td>
<td>PE–I</td>
<td>BPO</td>
<td>80/40/2</td>
<td>80</td>
<td>7</td>
<td>78</td>
<td>8200 (8500)</td>
<td>1.24</td>
</tr>
<tr>
<td>3</td>
<td>St (100 equiv)</td>
<td>Gel4</td>
<td>PE–I</td>
<td>BPO</td>
<td>80/20/1</td>
<td>80</td>
<td>7</td>
<td>77</td>
<td>8200 (8500)</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>St (100 equiv)</td>
<td>SnI4</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/20/5</td>
<td>80</td>
<td>4</td>
<td>93</td>
<td>7800 (7800)</td>
<td>1.28</td>
</tr>
<tr>
<td>5</td>
<td>St (100 equiv)</td>
<td>SnI2</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/20/1</td>
<td>80</td>
<td>4</td>
<td>94</td>
<td>8000 (8000)</td>
<td>1.28</td>
</tr>
<tr>
<td>6</td>
<td>St (100 equiv)</td>
<td>Pl3</td>
<td>PE–I</td>
<td>DCP</td>
<td>80/80/0.5</td>
<td>100</td>
<td>23</td>
<td>93</td>
<td>5200 (5200)</td>
<td>1.25</td>
</tr>
<tr>
<td>7</td>
<td>St (100 equiv)</td>
<td>NIS</td>
<td>PE–I</td>
<td>DCP</td>
<td>80/80/5</td>
<td>100</td>
<td>23</td>
<td>95</td>
<td>5200 (5200)</td>
<td>1.24</td>
</tr>
<tr>
<td>8</td>
<td>St (100 equiv)</td>
<td>(BuO)2PH(=O)</td>
<td>PE–I</td>
<td>DCP</td>
<td>80/80/10</td>
<td>100</td>
<td>23</td>
<td>95</td>
<td>5200 (5200)</td>
<td>1.24</td>
</tr>
<tr>
<td>9</td>
<td>St (100 equiv)</td>
<td>(EtO)IPE(=O)</td>
<td>PE–I</td>
<td>DCP</td>
<td>80/80/30</td>
<td>100</td>
<td>23</td>
<td>95</td>
<td>5200 (5200)</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>MMA (100 equiv)</td>
<td>Tolyl–GeI3</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/20/5</td>
<td>70</td>
<td>6</td>
<td>82</td>
<td>6900 (8400)</td>
<td>1.19</td>
</tr>
<tr>
<td>11</td>
<td>MMA (100 equiv)</td>
<td>Pl3</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/20/2</td>
<td>70</td>
<td>4</td>
<td>78</td>
<td>9600 (7800)</td>
<td>1.28</td>
</tr>
<tr>
<td>12</td>
<td>MMA (100 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>60/10/1</td>
<td>80</td>
<td>2</td>
<td>79</td>
<td>7000 (7900)</td>
<td>1.29</td>
</tr>
<tr>
<td>13</td>
<td>MMA (200 equiv)</td>
<td>(EtO)IPE(=O)</td>
<td>CP–I</td>
<td>BPO</td>
<td>40/20/10</td>
<td>70</td>
<td>6</td>
<td>74</td>
<td>13000 (15000)</td>
<td>1.29</td>
</tr>
<tr>
<td>14</td>
<td>GMA (100 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>60/10/1</td>
<td>80</td>
<td>1</td>
<td>71</td>
<td>9700 (9100)</td>
<td>1.29</td>
</tr>
<tr>
<td>15</td>
<td>BzMA (100 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/10/1</td>
<td>80</td>
<td>0.8</td>
<td>70</td>
<td>13300 (13000)</td>
<td>1.26</td>
</tr>
<tr>
<td>16</td>
<td>HEMA (100 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>40/15/10</td>
<td>80</td>
<td>1.5</td>
<td>57</td>
<td>7900 (7400)</td>
<td>1.36</td>
</tr>
<tr>
<td>17</td>
<td>PEGMA (100 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/10/2</td>
<td>80</td>
<td>1</td>
<td>39</td>
<td>8600 (9600)</td>
<td>1.33</td>
</tr>
<tr>
<td>18</td>
<td>MAABzMA (15/85 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/40/1</td>
<td>80</td>
<td>1</td>
<td>60</td>
<td>6400 (9700)</td>
<td>1.21</td>
</tr>
<tr>
<td>19</td>
<td>DMAEMA/BzMA(15/85 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/10/1</td>
<td>80</td>
<td>1.25</td>
<td>90</td>
<td>19000 (15600)</td>
<td>1.34</td>
</tr>
<tr>
<td>20</td>
<td>HEMA/BzMA (22/78 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>80/20/2</td>
<td>80</td>
<td>1.25</td>
<td>90</td>
<td>18500 (15200)</td>
<td>1.37</td>
</tr>
<tr>
<td>21</td>
<td>St (200 equiv)</td>
<td>Pl3</td>
<td>PMMA–I</td>
<td>DCP</td>
<td>40/40/1</td>
<td>100</td>
<td>24</td>
<td>90</td>
<td>27000 (24000)</td>
<td>1.25</td>
</tr>
<tr>
<td>22</td>
<td>BzMA (100 equiv)</td>
<td>NIS</td>
<td>PMMA–I</td>
<td>AIBN</td>
<td>80/10/1</td>
<td>80</td>
<td>1</td>
<td>63</td>
<td>11000 (15000)</td>
<td>1.20</td>
</tr>
<tr>
<td>23</td>
<td>MMA (100 equiv) + BzMA (100 equiv)</td>
<td>NIS</td>
<td>CP–I</td>
<td>AIBN</td>
<td>40/10/1</td>
<td>80</td>
<td>1.5</td>
<td>54</td>
<td>5400 (5400)</td>
<td>1.31</td>
</tr>
<tr>
<td>24</td>
<td>MMA (100 equiv)</td>
<td>NIS</td>
<td>l2</td>
<td>AIBN</td>
<td>40/80/5</td>
<td>80</td>
<td>3</td>
<td>90</td>
<td>8200 (9000)</td>
<td>1.28</td>
</tr>
<tr>
<td>25</td>
<td>MMA (100 equiv)</td>
<td>(EtO)IPE(=O)</td>
<td>l2</td>
<td>AIBN</td>
<td>40/80/10</td>
<td>80</td>
<td>2.17</td>
<td>95</td>
<td>10300 (9500)</td>
<td>1.22</td>
</tr>
<tr>
<td>26</td>
<td>MMA (100 equiv)</td>
<td>Succinimide</td>
<td>AIBN</td>
<td>40/80/10</td>
<td>80</td>
<td>3.08</td>
<td>90</td>
<td>7400 (9000)</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>MMA (100 equiv)</td>
<td>Maleimide</td>
<td>AIBN</td>
<td>40/80/30</td>
<td>80</td>
<td>3.16</td>
<td>62</td>
<td>6300 (6200)</td>
<td>1.29</td>
<td></td>
</tr>
</tbody>
</table>

a	In – conventional radical initiator; BPO – benzoyl peroxide; AIBN – azois(isobutyronitrile) and DCP – dicumyl peroxide.
b	Determined by GPC with polystyrene-calibration for entries 1–9 and 21, poly(methyl methacrylate)-calibration for entries 10–13, 18–20, 22–27, and a multangle laser light-scattering detector (MALLS) for entries 14–17.
c	Solution polymerization with 25 vol% anisole for entries 12 and 14, 15 vol% 1-propanol and 35 vol% methyl ethyl ketone for entry 16, and 50 vol% anisole for entry 23.
d	Molecular weight – 246.
e	Mn,obs = 4100 and PDI = 1.12 for entry 21, and Mn,obs = 3900 and PDI = 1.14 for entry 22.

Fig. 1. Periodic table and structures of catalysts and alkyl iodides (low-mass dormant species).
polymeric adduct PSt–I was used as a starting alkyl iodide to focus on the kinetics of polymer region.

3.4.1. Reversible activation

In the presence of a deactivator XA (a catalyst), a Polymer-I can be activated via the RT process (Scheme 1e) with an activator radical A/C15 (rate constant \(k_a \)) and the DT process (Scheme 1c) (rate constant \(k_{ex} \)). Thus, \(k_{act} \) (Scheme 1a) is generally given by

\[
k_{act} = k_{ex}\text{[Polymer'] + } k_a\text{[A']}
\]

(1)

In the quasi-equilibrium of the RT process (Scheme 1e), Eq. (1) takes the form

\[
k_{act} = k_{ex}\text{[Polymer'] + } k_{da}\text{[Polymer'] \left(\frac{[XA]}{[Polymer-X]} \right)}
\]

(2)

where \(k_{da} \) is the deactivation rate constant with XA (Scheme 1e). Thus, \(k_{act} \) increases with the ratio \([XA]/[Polymer-X]\). Fig. 5 shows the plots of \(k_{act} \) vs the ratio for the St/PSt–I/BPO systems (80 °C) with GeI4 [6], SnI4 [38], and NIS [38] as XA, where \(k_{act} \) was experimentally determined at a fixed value of \([Polymer]_0\).

In all cases, \(k_{act} \) linearly increased with the ratio, as expected from Eq. (2). The plot for GeI4 suggests that in the typical case with \([GeI_4]/[PSt-I] = 5 \text{ mM}/80 \text{ mM} = 0.0625 \) (entry 1 in Table 2), \(k_{act} \) is about 20 times larger than in the absence of GeI4. This explains why low-polydispersity polymers were obtained from an early stage of polymerization for the GeI4 system. SnI4 and NIS also exhibited large \(k_{act} \) values at the same ratio, about 15 and 10 times larger than in their absence, respectively (Fig. 5). Of the three, GeI4 was the...
most active for St at 80 °C. It should be noted that the activity depends on temperature and monomer. For St at a lower temperature 60 °C, SnI4 was the most active, and for MMA, NIS was the most active, for example (data not shown), as the details will be discussed in future publication.

For GeI4, the slope of the line (Fig. 5) gives \(k_{d} \) of 6.0 \(\times 10^{2} \text{ M}^{-1} \text{s}^{-1} \). This is large, nearly as large as the deactivation rate constant (5.7 \(\times 10^{2} \text{ M}^{-1} \text{s}^{-1} \) (120 °C)) [12] for a PSt radical with DEPN, an excellent deactivator for LRP. As shown below, the equilibrium constant \(K \) \(= k_{d}/k_{a} \) for the GeI4 system was estimated to be about 10\(^{-10} \). It follows that, for a typical condition of [Polymer–I] = 10\(^{-2} \) M, [Polymer] = 10\(^{-3} \) M, and [GeI4] = 10\(^{-5} \) M, [GeI2] is 10\(^{-9} \) M (nano-molar). With these \(K \) and \(k_{d} \) values, \(k_{a} \) is estimated to be about 10\(^{6} \) M\(^{-1} \text{s}^{-1} \). This value is remarkably large, meaning that the observed large activation rate is achieved by a nano-molar level concentration of the activator. Such a large \(k_{a} \) is a unique kinetic feature of RTCP.

3.4.2. Polymerization rate

In the presence of the RTCP catalysts, \(R_{p} \) is somewhat smaller than in their absence (iodide-mediated polymerization), as shown in Fig. 6a for the St/PSt–I/BPO systems with and without GeI4 (80 °C) [6]. This is because the activator radicals (\(\text{A}^{+} \)) undergo irreversible cross-termination with Polymer (rate constant \(k_{t}^{+} \)) and irreversible self-termination between \(\text{A}^{-} \) (rate constant \(k_{t}^{-} \)). This mechanism is analogous to the one for the rate retardation in the RAFT polymerization [41], where the intermediate radicals (Polymer–\(\text{X}^{-} \))–Polymer undergo the relevant terminations. In theory, when the quasi-equilibrium of RT holds and the radical concentrations [Polymer] and [\(\text{A} \)] are stationary, \(R_{p} \) is given by Eq. (3)

\[
R_{p} = R_{p,0} \left(1 + 2 \left(\frac{k_{t}^{+}}{k_{t}^{-} K} \right) \frac{[\text{XA}]}{[\text{Polymer–X}]^{1/2}} \right) \frac{[\text{XA}]}{[\text{Polymer–X}]}^{1/2}
\]

where \(R_{p,0} \) is the \(R_{p} \) without \(\text{XA} \). Eq. (3) means that \(R_{p} \) decreases with increasing ratio [\(\text{XA} \)]/[Polymer–\(\text{X} \)]. At a small value of this ratio, the last term on the right-hand side for the self-termination of \(\text{A}^{-} \) may be neglected, and Eq. (3) takes the form

\[
R_{p} = R_{p,0} \left(1 + 2 \left(\frac{k_{t}^{+}}{k_{t}^{-} K} \right) \frac{[\text{XA}]}{[\text{Polymer–X}]}^{1/2} \right)
\]

In the mentioned system (Fig. 6a), \(R_{p} \) (hence [Polymer–\(\text{X} \)]) was stationary in the studied range of time in all cases and decreased with increasing ratio of [GeI4]/[PSt–I] as the theory demands. Fig. 6b shows the plot of \(R_{p} \) vs [GeI4]/[PSt–I]. The plot was linear, confirming the validity of Eq. (4) for [GeI4]/[PSt–I] = 0–0.25. Thus, when this ratio is relatively small (\(\sim 0.00625 \)), as in entry 1 in Table 2, the cross-termination is the main cause for the retardation. The existence of the cross-termination brings about an increase of the termination rate hence the number of dead chain by, e.g., about 20%
in a typical condition (entry 1 in Table 2). However, the effect of this much of dead chains on polydispersity is rather minor in this as well as other LRP systems. The cross-termination also results in a loss of GeI4, but it is also minor, at least at an early stage of polymerization. In cases, the cross-termination products, such as the iodide-mediated polymerization dramatically improves the polydispersity control, it causes little undesirable effects, retaining the robustness of the iodide-mediated polymerization. The good polydispersity controllability, the good tolerance to functional groups, and the prominent robustness may be great advantages for RTCP to serve as a useful synthetic tool for well-defined polymers.

4. Conclusions

The addition of Ge, Sn, P, and N compounds to the iodide-mediated polymerization led to a new class of LRP called RTCP, which is based on a new reversible activation mechanism, reversible chain transfer (RT). Several Ge, Sn, P, and N compounds work as efficient catalysts, successfully controlling the homo- and co-polymerizations of St and (functional) methacrylates. Attractive features of the catalysts include their high reactivity (small amounts being required (e.g., ~ 100 ppm)), high solubility in organic media without ligands, insensitivity to air, and minor color and smell. The Ge, P, and N catalysts may also be attractive for their low toxicity. The P catalysts, particularly the hydrides (precursors) may be attractive for their low cost. Perhaps, the hydrides are the least expensive LRP catalysts/mediators developed so far. Thus, while the addition of the catalyst to the iodide-mediated polymerization dramatically improves the polydispersity control, it causes little undesirable effects, retaining the robustness of the iodide-mediated polymerization. The good polydispersity controllability, the good tolerance to functional groups, and the prominent robustness may be great advantages for RTCP to serve as a useful synthetic tool for well-defined polymers.

Acknowledgment

This work was supported by Grants-in-Aid for Scientific Research, the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grants-in-Aid 17002007 and 19750093), Industrial Technology Research Grant Program in 2007 from New Energy and Industrial Technology Development Organization (NEDO) of Japan, and Mitsubishi Chemical Corporation Fund.

References

(b) Matyjaszewski K, editor. ACS Symposium Ser 1998;685; 2000;768; 2003;854; 2006;944.
(c) Moal G, Rizzard o E, Thang SH. Aust J Chem 2005;58:379;
(c) Hawker CJ, Bosman AW, Harth E. Chem Rev 2001;101:3661;
(b) Chen EK, Teerstra T, Chan-Seng D, Otieno PO, Hicks RG, Georg e K. Macromolecules 2007;40:8609.
(b) Lu Z, Fryd M, Wayland BB. Macromolecules 2004;37:2686;
(c) Desgagne A, Calle JR, Jerome R. Angew Chem Int Ed 2005;1101:44.
(b) Bledzki A, Braun D. Polym Bull 1986;16:19;
(c) Hawker CJ, Bosman AW, Harth E. Chem Rev 2001;101:3661;
(d) Moal G, Rizzard o E, Thang SH. Aust J Chem 2005;58:379;
(b) Matyjaszewski K, Ando T, Sawamoto M. Chem Rev 2001;101:3689;
(c) Kamigaito M, Ando T, Sawamoto M. Chem Record 2004;4:159;

[33] (a) Neumann WP. Synthesis 1987;665;
(b) Chatgilialoglu C, Newcomb M. Adv Organomet Chem 1999;44:67;
(c) Studer A, Amrein S. Synthesis 2002;835.

[37] (a) Brunton G, Ingold KU. Org Magn Reson 1975;7:527;

Yoshinobu Tsujii is a Professor of Polymer Chemistry at the Institute for Chemical Research (ICR), Kyoto University. Educated at Kyoto University (B. Eng. 1983, M. Eng. 1985, and D. Eng. 1991), he joined ICR, Kyoto University in 1989. Major awards include the SPSJ Wiley Award (2003) and the Award of SFST (2005). His research areas include the synthesis of well-defined/highly functional polymer assembles and studies on their structure/property relationships.

Takeshi Fukuda is a Professor Emeritus of Kyoto University, and presently a Research-Specific Professor at the Institute for Chemical Research (ICR), Kyoto University. Educated at Kyoto University (B. Eng. 1967, M. Eng. 1969, and D. Eng. 1973), he joined ICR, Kyoto University in 1973. Major awards/projects include the award of SPSJ (1992) and the Specially Promoted Project of Ministry of ECS, Japan (2005–2008). He has been consistently using physicochemical approaches in his studies of polymer solutions and polymer materials and the mechanisms, kinetics, and applications of conventional and controlled/living radical polymerizations.

Atsushi Goto is an Assistant Professor of Polymer Chemistry at the Institute for Chemical Research (ICR), Kyoto University. Educated at Kyoto University (B. Eng. 1996, M. Eng. 1998, and D. Eng. 2001), he joined ICR, Kyoto University in 2001. His research areas include the kinetics of living radical polymerization (LRP), the development of new classes of LRP, and the applications of LRP.