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a b s t r a c t

The parasitic nematode Anisakis simplex occurs in fish stocks in temperate seas. A. sim-

plex contamination of fish products is unsavoury and a health concern considering human

infection with live larvae (anisakiasis) and allergic reactions to anisakid proteins in seafood.

Protein extracts of A. simplex produce complex band patterns in gel electrophoresis and IgE-

immunostaining. In the present study potential allergens have been characterised using

sera from A. simplex-sensitised patients and proteome data obtained by mass spectrometry.

A. simplex proteins were homologous to allergens in other nematodes, insects, and shellfish

indicating cross-reactivity. Characteristic marker peptides for relevant A. simplex proteins

were described.
© 2014 The Authors. Published by Elsevier B.V. on behalf of European Proteomics
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larva [2]. The seafood-transmitted zoonotic disease is caused
1. Introduction

Anisakis simplex (herring or whale worm) is the only known
fishery product-contaminating parasite eliciting clinical aller-
gic responses [1]. In gastro-allergic anisakiasis allergic

symptoms can arise as secondary immune response after a
previous infestation by live larvae [2]. There is, however, an
on-going discussion regarding whether primary sensitisation

Abbreviations: A. simplex, Anisakis simplex; m/z, mass-to-charge rat
ionisation tandem mass spectrometry; OD, optical density.
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by antigens from dead larvae can also occur [3–6]. Four clini-
cal allergic manifestations, i.e. gastric, intestinal, ectopic, and
systemic, have been associated with A. simplex, and responses
might depend on the route of sensitisation [7]. More than 90%
of the anisakiasis cases resulted from infection with a single
io; NanoLC ESI-MS/MS, nano-liquid chromatography electrospray
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by the accidental ingestion of third-stage larvae lying encap-
sulated in the edible tissues of infected fish that is eaten raw
or under-cooked [8]. Allergic incidents can, however, also be
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licited by hidden allergens in processed fish and products
hereof [9], by A. simplex protein transmission through the
ood chain [7], and by occupational exposure to aerosols [4,10].
ecently, the European Food Safety Authority has concluded
hat A. simplex larvae have a considerable allergic potential,
mphasising the need for routine testing of fishery products
6].

The occurrence of anisakid nematodes has been reported
rom all major oceans and seas [11]. The A. simplex life cycle
s complex involving planktonic crustaceans, fish and marine

ammals. In fish, the larvae are mainly situated in the vis-
eral cavity; however, a minor proportion may migrate deeply
nto the fillets [12]. In recent years, an increasing number of
nisakiasis cases have been observed [13], and this develop-
ent has been connected to the increase of marine mammal

opulations, a more globalised cuisine, faster cooking prac-
ices (e.g. microwaving), the trend to avoid overcooked food
or vitamin preservation, and a generally higher consumption
f fish for health reasons [1]. Over 90% of the anisakiasis cases
orld-wide are reported from Japan, and most others occur in
pain, Italy, the USA (Hawaii), the Netherlands, and Germany

n regions, where traditionally raw or undercooked fish dishes
uch as sushi and sashimi, pickled anchovies, lomi-lomi, and
alted herring are consumed [5].

In Norway, a country with proportionally high per-capita
sh consumption, the number of anisakiasis incidents is

ow, possibly because mainly cooked or fried fish prod-
cts are eaten [14]. The demographic IgE sensitisation
o A. simplex proteins is less than 2%, a relatively low
alue as compared to about 12% in Japan and Spain.
mmunoblot analyses using crude A. simplex extracts have
hown very heterogeneous and individually different IgE
ompositions between patients and populations [15–17], and
enetic predisposition is thought to be a possible cause for
he observed differences in disease susceptibility [18]. The
revalence of anti-A. simplex IgE in a population may also
esult from subclinical and undiagnosed anisakiasis, cross-
eactivity with other nematodes or insects due to homol-
gous allergens, or cross-reactions with carbohydrate- and
hosphorylcholine-groups on post-translationally modified
roteins [19].

Since positive IgE values are not a reliable marker for aller-
ic reactivity, the discrimination between symptomatic and
symptomatic individuals by other than serodiagnostic analy-
es is important for the determination of A. simplex allergy [15].
stablished methods include skin prick testing (SPT), basophil
ctivation (BAT) measurement, and oral challenge. How-
ver, even the outcome of double-blind placebo-controlled
ood challenges (DBPCFC) is influenced by patient recruit-

ent and choice of the A. simplex challenge material [5,20].
hereas some studies reported that sensitised patients tol-

rated deep-frozen or well-cooked fish with anisakid larvae,
thers have described patients getting allergic symptoms from
eat-processed contaminated fish.

In addition to the great variability in responsiveness
etween individuals, differences may also result from the

omplexity of the A. simplex proteome and specific protein
haracteristics. Several anisakid allergens have been shown
o be relatively resistant to digestion or heat treatment
nd may even renature under cooling [20,21]. Furthermore,
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allergenicity appeared to be allocated to sequential epitopes
and independent from glycosylation [22].

Three different groups of potential allergenic proteins orig-
inate from A. simplex. Excretory/secretory (ES) proteins are
expressed by the larvae in high amounts during host infesta-
tion, somatic proteins are constituents of the larvae body, and
cuticular proteins on the larvae’s surface serve as protection
from digestion [1]. Together with the different routes of sensi-
tisation (ingestion, inhalation, mucosal, or cutaneous contact)
this diverse immunogenic composition is likely a major cause
for the development of differential clinical responses.

A. simplex protein extracts produce complex band pat-
terns in gel electrophoresis [23,24]. A number of proteins have
been recognised as allergens and are registered in the Aller-
gome database [25]. Among these are known proteins such
as secreted proteinase inhibitors (Ani s1, Ani s 4) and somatic
paramyosin (Ani s 2) and tropomyosin (Ani s 3), but also a num-
ber of un-characterised proteins, whose functions have not yet
been established (Ani s 7, Ani s 10–12, Ani s 24) (Table 1).

The complex binding pattern of A. simplex proteins
observed in IgE immunoblots suggests that the description of
allergens is incomplete. Indeed, several new allergens have
been detected by using high-resolution protein purification
methods and immunoscreening of protein-expressing cDNA
libraries or phage display systems constructed from A. simplex
larvae [26].

In the present study a different approach using mass
spectrometry-based proteomic analysis was attempted to
characterise A. simplex proteins and to identify potential novel
allergens.

2. Materials and methods

2.1. Patients

Sera from two different patient populations were obtained
including 14 Norwegian and 13 Spanish patients with IgE
against A. simplex and positive skin prick tests (Table 2). The
Norwegian patients were originally recruited by newspaper
advertisements for a study on shellfish allergy; however, they
were also tested for cross-reactivity to A. simplex and mite.
Skin prick testing (SPT) was performed with total PBS extract
of A. simplex 3rd stage larvae retrieved from contaminated
Blue Withing (Micromesistius poutassou) caught in the Nor-
wegian Sea. Positive responders were studied further using
a basophile activation test, ImmunoCapTM (Phadia, Uppsala,
Sweden) analyses, and immunoblotting. Specific IgE levels to
A. simplex (p4, Anisakis spp.), shrimp (f24, Pandalus borealis,
Penaeus monodon, Metapenaeopsis barbata, Metapenaus joyneri),
and mite (d1, Dermatophagoides pteronyssinus) were measured.
The sera were stored in conformity with Norwegian law in a
registered diagnostic bio-bank.

The Spanish patients were admitted to clinical treat-
ment either because of anisakiasis or allergy to A. simplex
proteins. Skin prick tests were performed with A. simplex

antigen (Lab IPI, Madrid, Spain), and SPT responses were
considered positive when they had a mean diameter of at
least 3 mm × 3 mm. Histamine (1%) and isotonic saline solu-
tion (0.9% NaCl) were the positive and negative controls,

dx.doi.org/10.1016/j.euprot.2014.06.006
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Table 1 – A. simplex allergens described in literature (retrieved from the Allergome database (www.allergome.org) [25].

Allergen Accession no. Protein name MW (kDa) Protein family
AllFam/Pfam

Ani s 1.0101 Q7Z1K3 Animal Kunitz serine protease inhibitor 21.2 AF003/PF00014
Ani s 2.0101 Q9NJA9 Paramyosin 100 AF100/PF01576
Ani s 3.0101Ani s 3.0102 Q9NAS5G4XTD3 Tropomyosin 33.3 33.2 AF054/PF00261
Ani s 4.0101 P83885 Cystatin Fragmenta AF005/PF00031
Ani s 5.0101 A1IKL2 SXP/RAL-2 proteins 16.6 AF137/PF02520
Ani s 6.0101 A1IKL3 Serine protease inhibitor 9.7 AF027/PF01826 & PF08742
Ani s 7.0101 A9XBJ8 Unknown 119 Unknown
Ani s 8.0101 A7M606 SXP/RAL-2 proteins 16.1 AF137/PF02520
Ani s 9.0101 B2XCP1 SXP/RAL-2 proteins 15.5 AF137/PF02520
Ani s 10.0101 D2K835 Unknown 23.3 Unknown
Ani s 11.0101 E9RFF3 Unknown 30.0 Unknown
Ani s 12.0101 E9RFF6 Unknown 32.9 Unknown
Ani s 24 kDa G1FMP3 Unknown 23.5 Unknown
Ani s CCOS3 Q1X6K9 Cytochrome C oxidase subunit 3 29.0 –/PF00510
Ani s cytochrome B Q1X6L0 Cytochrome B 42.2 –/PF00032
Ani s FBPP – Fructose 1,6-bisphosphatase ∼40 –/PF00316b

Ani s NADHDS4L Q1X6K2 NADH dehydrogenase subunit 4L 9.2 –/PF00420
Ani s NARaS – Nicotinic acetylcholine receptor alpha subunit ∼60 –/PF02931b

Ani s PEPB – Phosphatidylethanolamine-binding protein ∼24 –/PF01161b

Ani s troponin Q9U3U5 Troponin C 18.5 AF007/PF00036 & PF01036

a Cystatin in Caenorhabditis elegans 15.6 kDa.

b By comparison with Ascaris suum proteins.

respectively. Measurements of total and specific IgE were per-
formed using ImmunoCapTM. The studies were approved by
the study centre’s institutional review board and all patients
gave their written informed consent.

2.2. A. simplex protein extracts

The protein was extracted from 3rd stage A. simplex larvae that
were freed from host tissue as described earlier [24]. Proteins
were extracted with phosphate-buffered saline (PBS) (pH 7.4)
for 1 h at room temperature. Total protein contents were deter-
mined using the Lowry Protein Assay (BioRad Laboratories,
Hercules, CA). Aliquots were stored at −20 ◦C until use.

2.3. Gel electrophoresis and immunoblot

The NuPage Gel System (Invitrogen, Carlsbad, CA) was
used for electrophoretic separation of protein samples by
SDS-PAGE, in accordance with the manufacturer’s instruc-
tions as previously described [24]. Samples contained 10 �g
and 30 �g A. simplex protein for the immunoblotting and
mass spectrometry experiments, respectively. Proteins were
either stained with SimplyBlueTM Safe Stain (Invitrogen)
and used for in-gel digestion and MS experiments, or
transferred electrophoretically onto nitrocellulose membrane
(Bio-Rad) in an XCell II Blot Module (Invitrogen) and used for
immunostaining.

Immunoblots were developed as described before using
Tris-buffered saline containing 0.1% Tween 20 (TBS-T, pH 7.6)
as washing buffer and TBS-T containing 3% BSA as blocking

and assay buffer [27]. After incubating at 4 ◦C overnight with
1:20 diluted patient sera the blots were washed (3 × 15 min)
and incubated subsequently with rabbit anti-human IgE anti-
body (1:1000; Dako, Glostrup, Denmark) and HRP-conjugated
goat anti-rabbit antibody (1:5000; Zymed, San Francisco,
CA) for 2 h each with intermediate washing. After washing
(3 × 10 min), the membrane was developed with 3,3′,5,5′-
tetramethylbenzidine (TMB) substrate solution (Zymed) until
bands of satisfactory intensity appeared (2–10 min). All wash-
ing and incubation steps were performed under gentle
shaking at RT.

2.4. GelPro Analyzer® image analysis

Immunoblots were scanned and processed using GelPro
Analyzer® Version 6.3 (MediaCybernetics, Bethesda, MD).
IgE-binding signal intensities were determined by applying
Standard Optical Density Fitting (second order polynomial)
correlating the number of pixels measured to the optical
density (OD). The relative protein amount in an individual
band was approximated in proportion to the protein quantity
loaded in each lane (10 �g). All lanes were processed individ-
ually so that potential lane-to-lane intensity differences were
compensated.

2.5. Sample preparation for MS experiments

Protein bands of interest were excised from the SDS-page
gels, destained, alkylated, digested and extracted as described
previously [27]. Briefly, the gel slices were destained with
acetonitrile/50 mM NH4HCO3 (50/50) at room temperature
(RT), dried, reduced with dithiothreitol (Sigma Chemicals, St.
Louis, MD) at 56 ◦C, alkylated with iodoacetamide at RT in
the dark, washed and dried. Proteins were digested in gel

with 0.1 �g/ml trypsin (Trypsin Gold mass spectrometry grade,
Promega, Madison, WI) at 37 ◦C overnight. Tryptic peptides
were extracted from the gel, acidified with formic acid, and
analysed by mass spectrometry.

dx.doi.org/10.1016/j.euprot.2014.06.006
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Table 2 – Patient groups from Norway and Spain. Results of total serum IgE analysis and analysis of individual IgE to
Anisakis spp., shrimp (Pandalus borealis, etc.), and house dust mite (Dermatophagoides pteronyssimus). Several patients
were positive in skin prick testing with A. simplex extract.

ID Age Sex Total IgE
(kU/l)

A. simplex Shrimp Mite SPTb

Classa IgE (kU/l) Classa IgE (kU/l) Classa IgE (kU/l)

Norwegian group
N1 38 F 51 0 <0.35 0 <0.35 1 0.6 +
N2 37 F 780 2 1.5 3 6.3 2 2.2 ++
N3 33 M 124 2 3.5 4 24.5 3 4.4 +++
N4 49 M 71 2 0.8 3 5.5 2 2.3 +++
N5 43 M 268 0 <0.35 0 <0.35 3 7.7 −
N6 55 M 2308 0 <0.35 3 10.7 3 12.9 −
N7 21 M 3287 3 3.6 3 12.1 3 8.2 −
N8 59 M 610 0 <0.35 1 0.6 3 7.0 −
N9 65 M 491 0 <0.35 2 2.5 2 1.9 −
N10 27 M 328 3 8.5 4 43.1 4 39.9 +++
N11 37 M 242 3 5.6 5 56.3 5 58.5 ++
N12 45 F 4569 2 1.0 2 1.6 4 39.0 −
N13 50 M 1237 1 0.4 2 2.6 2 1.5 −
N14 42 F 467 0 <0.35 3 4.2 3 3.7 +++

Spanish group
S1 37 F 106 2 2.4 3 8.0 3 8.0 pos.
S2 32 F 271 3 14.7 5 70.0 3 10.5 pos.
S3 33 F 92 2 2.8 2 0.8 0 <0.35 pos.
S4 58 F 57 1 0.8 2 1.6 2 1.2 pos.
S5 24 F 27 1 0.5 2 2.4 ≥1 ≥0.35 pos.
S6 40 F 229 3 9.4 2 2.5 n.m. n.m. pos.
S7 48 F 199 2 0.9 2 2.9 ≥1 ≥0.35 pos.
S8c 41 M 434 3 7.2 2 2.3 ≥1 ≥0.35 pos.
S9c 39 M 87 3 8.0 2 1.3 ≥1 ≥0.35 pos.
S10c 49 F 441 3 12.3 1 0.4 1 0.4 pos.
S11c 65 M 141 3 10.2 0 <0.35 n.m. n.m. pos.
S12c 68 M 75 3 14.2 0 <0.35 n.m. n.m. pos.
S13c 60 M 166 4 18.1 0 <0.35 n.m. n.m. pos.

a IgE classes by ImmunoCap according to IgE levels (kU/L): class 0: <0.35; class 1: 0.35–0.7; class 2: 0.8–3.5; class 3: 3.6–17.5; class 4: 17.6–50; class
5: 51–100; class 6: >100.

b Skin prick testing: −: no reaction; +: <20% of positive control; ++: <50%; +++: ≤80%; pos.: positive; n.m.: not measured.
c Patients with gastro-allergic anisakiasis.
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.6. Protein identification by nanoLC/quadrupole ion
rap MS/MS

ryptic A. simplex peptides were analysed by reversed-phase
ano-liquid chromatography electrospray quadrupole-iontrap
ass spectrometry (nanoLC ESI-MS/MS) using an Agilent

100 HPLC-system equipped with a nanopump coupled to
n Agilent LC/MSD Trap XCT Plus (Agilent Technologies, Palo
lto, CA) mass spectrometer. Peptides were loaded onto a
orbax C18 column (75 �m ID × 10 cm, 300 Å porosity, 5 �m
articles) (Agilent Technologies) for 2 min using a micro-well
late autosampler and a capillary pump delivering a flow of
�l/min without split. Peptides were eluted by a gradient of
olvent A (0.1% formic acid) and solvent B (90% acetonitrile,
.1% formic acid) at a flow rate of 300 nl/min. The gradient
as ramped from 3% to 8% B in 1 min, from 8% to 45% B
n 85 min, and finally to 90% B in 5 min, until the mobile
hase was returned to the initial conditions after 10 min.
pray was established using 8 �m ID emitters (New Objec-
ive, Woburn, MA) and a capillary voltage of 1600 V. Spectra
were collected over 350–1800 m/z. Three fragmentation spectra
were collected for the three most abundant m/z values. Subse-
quently, those m/z were excluded from analysis for 1 min and
the next three most abundant m/z values were selected for
fragmentation to enable analysis of lower abundance peptide
ions.

The Spectrum Mill database search algorithm (Agilent
Technologies, Santa Clara, CA) was used to search the NCBInr
and UniProt databases, employing the taxonomy filter for
nematodes. Parameters used for the search included the
monoisotopic mass, a peptide mass tolerance of 1.2 Da and
a fragment ion mass tolerance of 0.6 Da. Furthermore, tryp-
tic peptides were only allowed two missed cleavages, and
carbamidomethylation of cysteine was chosen as a fixed
modification. Post-translational modifications (glycosylations
and/or phosphorylations) as possible variable peptide modifi-

cations were not included in the search parameters. Database
matches were validated by reverse database scoring using
SpectrumMill software. Proteins with SpectrumMill scores
above 13, peptide scores above 10 and scored percent intensity

dx.doi.org/10.1016/j.euprot.2014.06.006
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(SPI) of 70% were used as a cutoff for initial “hit” vali-
dation. Additionally, search result using MASCOT were
included when protein scores were above the significance
threshold (p < 0.05) and peptide expectation values below
10−5.

2.7. High resolution proteomics by
nanoLC-ESI-orbitrap-MSMS

The tryptic A. simplex peptides were further analysed using
high-resolution reversed-phase nano-liquid chromatographic
ESI-Orbitrap-MSMS. The system consisted of two Agilent
1200 HPLC binary pumps (nano and capillary) with autosam-
pler, column heater and integrated switching valve (Agilent,
Waldbronn, Germany) coupled to a nanoelectrospray LTQ-
Orbitrap XL mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany). Peptide solutions (4 �L) were extracted
on 5-mm × 0.3-mm Zorbax 300 SB-C18 5 �m columns (Agi-
lent) by washing with 97% 0.1% formic acid/3% acetonitrile
at a flow rate of 4 �L/min provided by the capillary
pump. After 7 min, the integrated switching valve was acti-
vated, and peptides were eluted onto a 150-mm × 0.075-mm
C18, 3-�m resin column (GlycproSIL C18-80 Å, Glycpro-
mass, Stove, Germany). Chromatographic separation was
achieved using an acetonitrile/water (0.1% formic acid)
binary gradient from 5% to 55% acetonitrile in 70 min
and a flow rate of 0.2 �L min−1 provided by the nanoflow
pump.

Mass spectra were acquired in the positive ion mode apply-
ing a data-dependent automatic switch between survey scan
and tandem mass spectra (MS/MS) acquisition. Peptide sam-
ples were analysed with a high-energy collisional dissociation
(HCD) fragmentation method, acquiring one Orbitrap survey
scan in the mass range of m/z 300–2000 followed by MS/MS
of the three most intense ions in the Orbitrap. The target
value in the LTQ-Orbitrap was 1,000,000 for survey scans
at a resolution of 30,000 for m/z 400 using lock masses for
recalibration to improve the mass accuracy of precursor ions.
Collision-induced fragmentation was performed with a tar-
get value of 5000 ions. The ion selection threshold was 500
counts. Selected sequenced ions were dynamically excluded
for 180 s.

Mass spectrometric data were first analysed by generating
msf-files from raw MS and MS/MS spectra using the Proteome
Discoverer 1.0 software (Thermo Fisher Scientific). Database
searches were performed by using the NCBI-database applying
the taxonomy filter for nematodes. Both the SEQUEST search
engine (La Jolla CA, USA) involving the criteria enzyme name
(trypsin), missed cleavage sites (2), precursor mass tolerance
(10 ppm), fragment mass tolerance (0.6 Da), fixed modifica-
tions (carbamidomethyl), variable modification (oxidation),
and the MASCOT search engine (Matrix Science Inc., Boston,
MA) with the criteria enzyme name (trypsin), fixed modifica-
tions (carbamidomethyl), variable modifications (oxidation),
mass values (monoisotopic), protein mass (unrestricted),
peptide mass tolerance (±7 ppm), fragment mass tolerance

(±0.6 Da), and maximum missed cleavages (1) were used. Pro-
teins were considered as significant hits if the XCorr was
higher than 1.5 (SEQUEST) or if the score was higher than 30
(MASCOT).
4 ( 2 0 1 4 ) 140–155

3. Results

3.1. Norwegian patients included in the study

The 14 Norwegian patients (Table 2) had serous total IgE
levels ranging from 51 to 4569 kU/L and specific IgE levels
of classes 0–4 (<0.35–8.5 kU/L) for Anisakis ssp, classes 0–5
(<0.35–56.3 kU/l) for shrimp, and classes 1–5 (0.6–58.5 kU/l) for
mite. Skin prick testing (SPT) with total A. simplex extract
resulted in strong reactions in four patients, medium reac-
tions in two patients and a slight reaction in one patient
whereas there was no reaction in seven patients. Reactivity in
SPT and specific IgE serum levels appeared not to be directly
correlated. Patient N14 had no measurable anti-Anisakis IgE,
but experienced one of the strongest reactions in SPT. Patient
N7 had class 3 anti-Anisakis IgE, but was negative in SPT,
and N10 had both high anti-Anisakis IgE and a strong SPT
reaction.

All patients were additionally sensitised to house dust
mite, and several were also sensitised to shrimp. Patients N3,
N4, N10, and N11 had IgE classes of 2–5 for all three allergens,
and strong SPT reactions. N1 and N14 were sensitised to mite
and not to Anisakis; however, they were positive in SPT. Four
patients, N5, N6, N8, and N9, had no anti-Anisakis IgE, and were
negative in SPT, but were included in the study because of their
elevated anti-mite IgE levels with the aim to study potential
cross-reactivity.

3.2. Spanish patients included in the study

The 13 Spanish patients (Table 2) could be divided into two
subgroups: Patients S1–S7 were allergic to A. simplex, whereas
patients S8–S13 had been diagnosed with gastro-allergic (GA)
anisakiasis. All patients were positive in SPT with A. simplex
and had at least class 1 serum IgE again Anisakis ssp. proteins,
although in average the GA-patients had higher levels. S13
had the highest anti-Anisakis IgE serum level of all patients
included in this study. Patients S1–S7 were also sensitised to
shrimp, and partly also to mite, whereas S8–S13 had little or
none IgE to shrimp and mite.

3.3. Determination of allergenic A. simplex proteins
using patient sera

Sera from 14 Norwegian and 13 Spanish patients (Table 2)
were used to detect allergenic A. simplex proteins using
immunoblot. The individual sera bound to multiple protein
bands, creating patient-specific binding patterns. The sig-
nal intensities of 39 individual protein bands ranging from
5 to 200 kDa were determined using image analysing soft-
ware (Fig. 1a). The respective molecular weights of the signal
bands (presented with a decimal for better differentiation)
were determined by the software in relation to the pre-stained
molecular weight marker. For each band, the approximated
relative protein amounts were summed up for all patients

(Fig. 1b). A. simplex proteins ranging from 25 to 80 kDa showed
particularly strong IgE-binding. Several proteins were detected
by all sera, and IgE-binding to the band at 55.5 kDa was the
strongest, followed by bands at 37.7 and 73.3 kDa. Second to

dx.doi.org/10.1016/j.euprot.2014.06.006
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Fig. 1 – (a) IgE-immunoblot with total A. simplex extract using sera from14 Norwegian (N1–N14) and 13 Spanish (S1–S13)
patients with sensitivity to A. simplex (s. Table 2). Relevant lanes were extracted from the scanned individual patient
immunoblots and presented as a composite gel. M: SeeBluePlus2 molecular weight marker; relative protein molecular
weights (kDa) are indicated on the right. (b) Bar Chart showing summarised binding intensities of 27 patients for 22
IgE-binding signals on immunoblot (Fig. 1a). Protein molecular weights (kDa) as determined by GelPro Analyzer® are given
on the ordinate, protein amounts (ng), calculated as described in Section 2, are on the abscissa. The contributions of
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ndividual patients to the combined results are marked by d

his triplet were four protein bands at 40.8, 47.5, 63.7, and
8.0 kDa, followed by a group of eight bands at 25.3, 34.4, 35.9,
9.3, 43.2, 50.3, 58.6, and 204.6 kDa. In contrast, some pro-
eins were recognised with considerable strength only by a
ew patient sera such as 18.2 kDa by N1, N4, N7, S4, and S6 and
3.7 kDa by N12, S11, S12, and S13. Only S11 bound to a protein
and at 5.5 kDa.

Evaluating the two patient groups separately (figures not
hown) showed very similar binding patterns for the Norwe-
ian and Spanish sera. There were, however, slight differences

or five protein bands. Whereas the combined Norwegian sera
ppeared to bind stronger to the protein at 68.0 kDa, the Span-
sh sera showed stronger binding to bands at 13.7, 25.3, 47.5,
nd 63.7 kDa.
nt patterns as shown in the legend.

3.4. Characterisation of A. simplex proteins using
MS-based proteomics

Total protein extract from A. simplex was separated by
one-dimensional gradient electrophoresis under denaturing
conditions (Fig. 2). At least 22 protein bands in the range from
3 to 200 kDa were visible after gel staining, forming a multi-
band pattern. Protein bands at about 40, 48, 56 and 73 kDa
were particularly intense, but many other bands in the upper
molecular range were also clearly visible.
Tryptic peptides of 16 A. simplex protein bands (Fig. 2) were
analysed with LC/MSMS. The resulting peptide masses, pat-
terns and sequences were compared to the database entries
for nematodes. A. simplex proteins were identified by peptide

dx.doi.org/10.1016/j.euprot.2014.06.006
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Table 3 – Anisakis simplex proteins identified by proteomic analysis using ESI-Iontrap or ESI-Orbitrap mass spectrometry
and database search (UniProt).

No.a Protein name Protein family
AllFam/Pfam

Access. no. MW (kDa)a Peptide
matchb

Mascot
score

Sequence
coverage (%)c

1 Myosin-4 AF007/PF00063& PF0273 F1KQ88 200 45 1323 27 (Asc s)
Filamin-A –/PF00630 F1KPN0 6 146 3 (Asc s)
Apolipophorin AF092/PF01347 & PF09172 F1KPM2 3 45 1 (Asc s)
Carbonic anhydrase AF139/PF00194 E0VS50 1 44 <1 (Ped h)

2 RAS GTPase-activating
protein

–/PF03836 F1KR99 170 3 89 2 (Asc s)

Clathrin heavy chain –/PF00637 F1KQ49 2 36 1 (Asc s)
ATP-dependent
RNA-helicase

–/PF00270 & PF04408 Q7QCW2 23 32 20 (Ano g)

Coiled-coiled protein –/PF03915 Q7PQ25 13 32 17 (Ano g)

3 Pyruvate carboxylase 1 –/PF02786 & PF02436 F1KRV7 100 10 84 8 (Asc s)
Kinesin light chain –/PF09311 & PF00515 Q05090 18 33 25 (Str p)
Calponin-like protein AF164/PF00307 & PF00402 F1KPY3 56 34 26 (Asc s)

4 Elongation factor 2 –/PF00009 & PF00679 F1KWZ4 91 25 772 33(Asc s)
�-Actinin AF164/PF00307 & PF00435 F1KR95 21 486 25 (Asc s)
Glycogen phosphorylase –/PF00343 F1KSK3 17 413 20 (Asc s)
Tetrahydrofolate synthase –/PF01268 F1KRW4 8 342 11 (Asc s)
Transitional endoplasmic
reticulum ATPase 1

–/PF02359 & PF2933 F1LCZ2 8 376 26 (Asc s)

10-Formyltetrahydrofolate
dehydrogenase

AF040/PF00551 & PF00171 F1KT06 14 279 13 (Asc s)

Paramyosin (Ani s 2) AF100/PF01576 Q9NJA9 12 251 17 (Ani s)
Nuclease-domain
containing protein 1

–/PF00565 & PF00567 F1KT77 8 195 10 (Asc s)

26S proteasome subunit 2 –/PF01851 F1KV05 5 164 5 (Asc s)
Aminopeptidase –/PF01433 & PF11838 F1KUM7 6 138 9 (Asc s)
Glycine dehydrogenase –/PF02347 F1KTS9 4 72 5 (Asc s)

5 Propionyl-CoA carboxylase
�

–/PF00289 & PF00364 F1KUZ6 83 20 1123 30 (Asc s)

Methylmalonyl-CoA
mutase

–/PF01642 F1KWB3 20 836 35 (Asc s)

Heat shock protein 90 AF042/PF00183 C1KG49 20 495 29 (Asc s)
6-Phosphofructokinase –/PF00365 F1KSL6 8 326 13 (Asc s)
Aconitate hydratase AF186/PF00330 & PF00694 F1KYA7 7 268 10 (Asc s)

6 Heat shock protein 70 AF002/PF00012 A8Q5Z6 70 21 946 35 (Bru m)
Phosphoenolpyruvate
carboxykinase

–/PF00821 Q05893 21 617 35 (Asc s)

1,4-�-Glucan-branching
enzyme (�-amylase)

AF033/PF00128 & PF02806 F1KTZ0 9 283 15 (Asc s)

Transketolase-1 –/PF00456 A8WUX5 6 281 8 (Cae b)
Moesin –/PF00769 &PF03979 F1KX42 9 193 20 (Asc s)
Glycogen synthase –/PF05693 F1KYL5 9 147 14 (Asc s)
ATP synthase subunit A AF048/PF00006 F1KW99 8 131 13 (Asc s)
Intermediate filament
protein B

AF008/PF00038 P23731 2 114 4 (Asc s)

Succinate dehydrogenase –/PF00890 & PF02910 Q8WSR3 3 64 6 (Asc s)
Endochitinase AF077/PF00704 F1L1F6 1 42 3 (Asc s)

7 Glutamate dehydrogenase –/PF00208 & PF02812 F1L1D2 56 11 780 23 (Asc s)
Glucose-6-P-isomerase –/PF00342 F1KUW6 9 570 17 (Asc s)
Heat shock protein 60 –/PF00118 F1KVK8 13 287 20 (Asc s)
Phosphoglucomutase-1 –/PF02878 & PF00408 F1L0Y5 8 230 15 (Asc s)
Disulphide isomerase AF023/PF00085 B2REF9 7 145 17 (Asc s)
Protein phosphatase PP2A –/PF02985 F1KVC0 4 83 8 (Asc s)
Plastin-2 –/PF00307 F1KY27 2 63 3 (Asc s)
Myophilin AF164/PF00307 Q24799 1 59 9 (Ech g)
Translation initiation factor
3

–/PF10255 F1KUY0 2 55 2 (Asc s)

Calrecticulin AF055/PF00262 Q0VJ74 2 52 7 (Hel p)
Aldehyde dehydrogenase AF040/PF00171 F1KZ18 1 37 1 (Asc s)
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Table 3 – (Continued)

No.a Protein name Protein family
AllFam/Pfam

Access. no. MW (kDa)a Peptide
matchb

Mascot
score

Sequence
coverage (%)c

8 Tubulin � AF025/PF00091 & PF03953 F1L649 52 15 695 43 (Asc s)
Tubulin � AF025/PF00091 & PF03953 F1L7U3 15 649 43 (Asc s)
ATP-synthase subunit B AF048/PF00006 F1L006 7 311 15 (Asc s)
Dihydrolipoyl
dehydrogenase

–/PF00070 & PF02852 F1L686 7 263 22 (Asc s)

Propionyl-CoA carboxylase
�

–/PF01039 F1L4Y2 6 255 14 (Asc s)

UTP-G-1-P-
uridylyltransferase

–/PF01704 F1KYX7 9 240 21 (Asc s)

Fumarase –/PF00206 & PF10415 E1FRT7 6 228 21 (Lol l)
Cytosolic dipeptidase –/PF01546 & PF07687 F1L670 5 184 15 (Asc s)
6-Phosphogluconate
dehydrogenase

–/PF00393 &PF03446 F1L0I1 6 147 15 (Asc s)

26S protease subunit 4 –/PF00004 F1L7Q7 4 108 9 (Asc s)
Importin � –/PF00514 F1L5L6 2 43 5 (Asc s)
Glycine/serine
hydroxymethyltransferase

–/PF00464 B7PG87 1 42 1 (Ixo s)

9 Enolase AF031/PF00113 & PF03952 Q8MU59 49 30 4392 80 (Ani s)
Rab GDP dissociation
inhibitor �

–/PF00996 F1KV11 12 596 40 (Ani s)

Elongation factor 1 � AF011/PF00009 Q9U600 10 534 36 (Ani s)
Phosphoglycerate kinase AF145/PF00162 F1L2P3 10 235 25 (Asc s)
Adenosylhomocysteinase –/PF05221 & PF00670 E1FVC1 4 201 11 (Lol l)
Hexokinase –/PF00349 & PF03727 F1KVA2 5 174 17 (Asc s)
Isocitrate dehydrogenase –/PF00180 F1L8D7 5 157 13 (Asc s)
Initiation factor 4A –/PF00270 & PF00271 F1KY60 8 131 18 (Asc s)
4-Hydroxybutyrate-CoA
transferase

–/PF02550 F1KWR3 1 83 4 (Asc s)

CAMP-dependent protein
kinase regulatory subunit

–/PF00027 & PF02197 F1LA32 2 63 9 (Asc s)

Serpin serine proteinase
inhibitor

AF018/PF00079 F4MST7 5 45 12 (Ani s)

Imidazolone propionase –/PF13147 F1L4M6 2 43 4 (Asc s)
Nucleosome assembly
protein

–/PF000956 Q9U602 1 36 8 (Ani s)

10 Actin –/PF00022 Q25010 42 20 521 58 (Hel a)
Pyruvate dehydrogenase –/PF00676 P26268 9 44 30 (Asc s)

11 Glyceraldehyde-3-P-
dehydrogenase

AF184/PF00044 & PF02800 P48812 40 12 424 37 (Bru m)

Tropomyosin (Ani s 3) AF054/PF00261 Q9NAS5 11 299 37 (Ani s)
Fructose-1,6-
bisphosphatase (Ani s
FBPP)

–/PF00316 E3MYI5 3 233 15 (Cae r)

Fructose-bisphosphate
aldolase 1

–/PF00274 A8P3E5 3 230 15 (Bru m)

Haemoglobin AF009/PF00042 P26914 3 149 5 (Pse d)
Malate dehydrogenase AF014/PF00056 & PF02866 F1L7C0 3 102 5 (Asc s)
Arginine kinase AF049/PF00217 & PF02807 E1GBI0 3 53 10 (Lol l)
60S acidic ribosomal
protein

AF070/PF00428 & PF00466 A8PQF5 1 42 3 (Bru m)

Antigenic IgI-domain –/PF07679 Q8MY16 7 34 20 (Asc s)

12 14-3-3 Protein –/PF00244 F1KXW6 34 13 880 42 (Asc s)
Proteasome subunit � 1 AF149/PF00227 F1L3M2 7 226 33 (Asc s)
40S ribosomal protein S3 AF185/PF00189 & PF07650 F1L5X2 7 200 34 (Asc s)
60S ribosomal protein L5 –/PF00861 & PF14204 F1L6Y6 2 111 23 (Bru m)
Glucosamine-6-phosphate
deaminase

–/PF01182 F1KZ94 2 92 10 (Sac k)

ADP/ATP translocase –/PF00153 F1LB38 5 71 15 (Asc s)
3-Oxoacyl-reductase AF028/PF00106 O17915 2 64 9 (Asc s)
GTP-binding nuclear
protein ran-1

–/PF00071 F1KXW6 3 48 14 (Cae e)
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Table 3 – (Continued)

No.a Protein name Protein family
AllFam/Pfam

Access. no. MW (kDa)a Peptide
matchb

Mascot
score

Sequence
coverage (%)c

13 Triosephosphate isomerase AF032/PF00121 P91919 27 4 166 20 (Cul p)

14 Thioredoxin peroxidase 2 AF167/PF10417&PF00578 Q17172 22 4 107 29 (Bru m)
60S ribosomal protein L11 –/PF00281 & PF00673 Q94793 4 74 30 (Tox c)
40S ribosomal protein S7 –/PF01251 P33514 8 62 32 (Ano g)
Glutathione-S-transferase AF010/PF00043 & PF02798 P46436 5 50 15 (Asc s)

15 SXP/RAL-2 protein (Ani s 8) AF137/PF02520 A7M6Q6 15 4 40 28 (Ani s)
Calmodulin AF007/PF00036 & PF01036 O16305 1 (20) 11 (Cae e)
Troponin-like protein (Ani s
troponin)

AF007/PF00036 & PF01036 Q9U3U5 1 (10) 14 (Ani s)

16 Histone 4 –/PF00047 Q6WV72 12 14 38 83 (Myt t)

a Protein band number and molecular weight from SDS-PAGE gel (Fig. 1).
b Proteins characterised by only one peptide match are uncertain.
c Sequence coverages as found to homologous protein species in other ecdysozoan species including Anisakis simplex (Ani s), Anopheles gambiae

(Ano g), Ascaris suum (Asc s), Brugia malayi (Bru m), Caenorhabditis briggsae (Cae b), Caenorhabditis elegans (Cae e), Caenorhabditis remanei (Cae
r), Culex pipiens (Cul p), Echinococcus granulosus (Ech g), Helicoverpa armigera (Hel a), Heligmosomoides polygyrus (Hel p), Ixodes scapularis (Ixo
s), Loa loa (Lol l), Mytilus trossulus (Myt t), Pediculus humanus corporis (Ped h), Pseudoterranova decipiens (Pse d), Saccoglossus kowalevski (Sac k),

Strongylocentrotus purpuratus (Str p), Toxocara canis (Tox c).

homologies to known nematode proteins (Table 3). The num-
bers of detected matching peptides varied from only 1 to 56,
resulting in uncertainties for proteins with low hit rates. How-
ever, among the 10 proteins described by one peptide (Table 3)
were two known A. simplex proteins.

103 A. simplex proteins were characterised in this study, of
which 94 had not been described before. Currently, both the
Universal Protein Knowledgebase (UniProtKB) and the NCBI
database contain data for 44 unique A. simplex proteins, some
of them listed with many protein species and fragments so
that the total numbers of entries are 153 and 536, respectively.

The proteins characterised in the present study
(Tables 3 and S1) included many structural proteins and
locomotoric muscle proteins. Furthermore, proteins associ-
ated with transcription or translation processes, the cellular
energy supply, or the nuclear DNA repair system, and
protein synthesis-associated proteins such as ribosomal
subunits, translation initiation factors, and elongation factors
were identified. In addition, regulatory proteins as well as
transport-related proteins were discovered in the A. simplex
extract, but catabolic enzymes accounted for the biggest
part of the characterised proteins (Table 3). Many of the
enzymes achieving the best Mascot scores were involved
in sugar metabolism processes (glycogenolysis, citric acid
cycle, glycolysis, pyruvate dehydrogenase, pentose phosphate
pathway). Several key enzymes of other metabolic pathways
could also be characterised (Table 3) such as enzymes involved
in amino acid metabolism. Finally, proteins associated with
detoxification reactions as well as invertebrate haemoglobin
were found.

3.5. Allocation of A. simplex proteins to allergen
families
A considerable number of the detected A. simplex proteins
could be classified into 33 allergen families (Table 4) as
defined in the AllFam database (http://www.meduniwien.ac.
at/allergens/allfam) [28]. The classification is only made with
respect to specific peptide sequence motifs and domains and
is without prejudice to the actual allergenicity of the respec-
tive proteins. Nevertheless, each AllFam class contains known
allergens originating from different species. Many of the 16
analysed gel bands (Fig. 2) contained potentially allergenic
proteins.

Several known allergens from A. simplex (Table 1) were
detected in the present analysis, including paramyosin (Ani
s 2) containing myosin tail (AF100), tropomyosin (Ani s
3) (AF054), Ani s troponin including an EF-hand domain
(AF007), SXP/RAL-2 protein Ani s 8 (AF137), and fructose
1,6-bisphosphatase Ani s FBPP (without AllFam number).
However, the majority of the newly characterised A. simplex
proteins, which could be allocated to an allergen family, had
not been described before (Table 4).

3.6. Comparison of potential A. simplex allergens to
known nematode, insect, and shellfish allergens

Focussing on AllFam families containing homologous aller-
genic proteins from potentially cross-reacting species such as
other nematodes, insects, or shellfish, 17 allergen candidates
from A. simplex have been identified in this study (Table 5).

Myosin-4 contains the well-conserved EF-hand motif of
structural proteins, and some of the major allergens of ani-
mal origin belong to this protein class. Myosin light chain
from German cockroach is an inhalant allergen [29], myosin
heavy chain from biting midge is allergenic by bite [30], and
European white shrimp myosin is a known food allergen [31].
Carbonic anhydrase is a major antigen in human body louse
and the sanyak plant [32]. Lipid transport proteins includ-
ing apolipophorin, and vitellogenin have been determined as

allergens in German cockroach and three species of house dust
mites [33]. Calponin-like protein, belonging to the EB1 family,
is as a major allergen in pig roundworm [34]. Myophilin, from
the same protein family, is recognised as a muscle-specific

dx.doi.org/10.1016/j.euprot.2014.06.006
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Table 4 – Classification of detected A. simplex proteins to known allergen families.

AllFam Protein family No.a Taxonomy A. simplexb

AF002 Heat shock protein (HSP) 70 6 Fungi, plants, animals HSP70
AF007 EF hand domain allergens 63 Plants, animals Myosin-4, Ani s troponin,

calmodulin
AF008 Intermediate filament

protein
1 Animal Intermediate filament protein B

AF009 Globin 11 Animals Haemoglobin
AF010 Glutathione S-transferase 8 Fungi, plants, animals Glutathione S-transferase
AF011 Eukaryotic elongation

factor 1
1 Fungus Elongation factor 1�

AF014 Lactate/malate
dehydrogenase

3 Fungi, plants Malate dehydrogenase

AF018 Serpin serine protease
inhibitor

4 Plants, animals Serine protease inhibitor

AF023 Thioreduxin 11 Fungi, plants, animals Disulphide isomerase
AF025 Tubulin/FtsZ family 2 Animals Tubulin �, tubulin �

AF028 Short-chain dehydrogenase 3 Fungi 3-Oxoacyl-reductase
AF031 Enolase 12 Fungi, plants, animals Enolase
AF032 Triosephosphate isomerase 4 Plants, animals Triosephosphate isomerase
AF033 Alpha-amylase 10 Bacteria, fungi, plants, animals �-Amylase
AF040 Aldehyde dehydrogenase 3 Fungi 10-Formyltetrahydro-folate

dehydrogenase,
aldehydedehydrogenase

AF042 Heat shock protein (HSP) 90 2 Fungi, plants HSP90
AF048 ATP synthase 1 Animal ATP synthase subunit A, ATP

synthase subunit B
AF049 ATP:guanido

phosphotransferase
11 Animals Arginine kinase

AF054 Tropomyosin 47 Animals Tropomyosin
AF055 Calreticulin family 1 Fungus Calrecticulin
AF070 60S acidic ribosomal

protein
11 Fungi, plants, animals 60S acidic ribosomal protein

AF077 Glycoside hydrolase family
18

9 Plants, animals Endochitinase

AF092 Lipoprotein 6 Animals Apolipophorin
AF100 Myosin tail 5 Animals Paramyosin (Ani s 2)
AF137 SXP/RAL-2 family 3 Animals SXP/RAL-2 protein (Ani s 8)
AF139 Eukaryotic-type carbonic

anhydrase
1 Plant Carbonic anhydrase

AF145 Phosphoglycerate kinase 1 Fungus Phosphoglycerate kinase
AF149 Proteasome subunit 1 Plant Proteasome subunit � 1
AF164 EB1 family 1 Animal Calponin-like protein, �-actinin,

myophilin
AF167 Peroxiredoxin 1 Plant Thioredoxin peroxidase 2
AF184 Glyceraldehyde

3-phosphate
dehydrogenase

2 Fungus, animal Glyceraldehyde 3-phosphate
dehydrogenase

AF185 Ribosomal protein S3 1 Fungus 40S ribosomal protein S3
AF186 Aconitase 1 Fungus Aconitase

a Number of known allergens in this AllFam protein family [28].

a
i
b
i
g
m
s
a
i
T
c

b Extracted from Table 3.

ntigen in dog tapeworm [35]. Alpha-amylase has homologues
n yellowfever mosquito, mites, and midge, which all have
een shown to elicit allergenic reactions by sting, bite, or

nhalation [33]. Heat shock protein 70 (HSP70) is a known aller-
enic inhalant in house dust mite [36], storage mite, biting
idge, black fly, and cockroach [29]. Endochitinase, a glyco-

ide hydrolase from the chitinase class III group, was detected

70 kDa. The weight of the nematode aglycone from A. suum

s 40 kDa but chitinases are generally highly glycosylated.
he enzyme has been identified as a major mite allergen for
ats, dogs, and humans [33,37]. Disulphide isomerase contains
a thioredoxin domain. Thioredoxins (TRX) with IgE-binding
potential have been determined in Indian meal moth and
white shrimp. Tubulin � has been found to cause asthma
and allergy after inhalation of dust containing fodder mite
or dust mite. Enolase is a major cross-reacting allergen in
plants, fungi, and fish, and has also been recognised as an
allergen in cockroach [29]. Arginine kinase (ATP-guanido phos-

photransferase) is an important cross-reactive pan-allergen in
invertebrates. So far, IgE-binding arginine kinases have been
identified in 11 insect and shellfish species, including cock-
roaches, mite, moth, shrimps, crabs, and lobster. Haemoglobin

dx.doi.org/10.1016/j.euprot.2014.06.006
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Table 5 – Potential novel allergens in A. simplex and homologues in nematodes, insects, and crustaceans.

Protein MWa (kDa) AllFamb Homologous
allergensc

Apolipophorin 353.6 AF092 Cockroach (Bla g vitellogenin)
Mite (Der p 14, Der f 14, Eur m 14)

Calponin-like protein 256.1 AF164 Roundworm (Asc s calponin)
Carbonic anhydrase 233.7 AF139 Louse (Ped h carbonic anhydrase)
Myosin-4 218.6 AF007 Cockroach (Bla g 8)

Midge (For t myosin)
Shrimp (Lit v 3)

�-Amylase 84.4 AF033 Mite (Blo t 4, Der p 4, Eur m 4, Tyr p 4)
Mosquito (Aed a 4)
Midge (Cul n 8)

Heat shock protein 70 70.5 AF002 Mite (Der f HSP, Blo t HSP)
Cockroach (Bla g HSP)
Midge (Cul n HSP)
Fly (Sim vi 70 kDa)

Myophilin 21.2 AF164 tapeworm (Ech g myophilin)
Disulphide isomerase 55.6 AF023 Moth (Plo i 2)

Shrimp (Lit v TRX)
Tubulin �/� 55.6/51.3 AF025 Mite (Lep d alpha tubulin, Tyr p alpha tubulin)
Enolase 47.7 AF031 Cockroach (Bla g enolase)
Arginine kinase 41.8 AF049 Cockroach (Bla g 9, Per a 9)

Mite (Der p 20)
Moth (Plo i 1)
Shrimp (Lit v 2, Cra c 2, Met e 2, Pen m 2)
Crab (Chi o 2, Scy s 2)
Lobster (Hom g 2)

Endochitinase 40.0 AF077 Mite (Der f 15, Der f 18, Der p 15, Der p 18, Blo t 15)
Haemoglobin 39.5 AF009 Midge (Chi k 1, Pol n 1, Chi t 1-9)
Fructose-1,6-bisphosphate aldolase 1 39.5 – Cockroach (Bla g FPA)

Midge (For t FPA)
60S acidic ribosomal protein 34.9 AF070 Midge (Cul n 1)
Triosephosphate isomerase 26.3 AF032 Cockroach (Bla g TPI)

Midge (For t TPI)
Crayfish (Arc s 8)
Shrimp (Cra c 8)

Glutathione-S-transferase 23.6 AF010 Cockroach (Bla g 5, Per a 5)
Mite (Aca s 8, Ale o 8 Blo t 8, Der f 8, Der p 8, Gly d
8, Lep d 8, Sui m 8, Tyr p 8, Sar s GST)
Nematode (Asc s GST, Bru m GST, Loa lo GST, Onc
v GST, Sch j GST, Wuc ba GST)

a Molecular weight according to peptide sequence (UniProt database).
b AllFam [28].
c Homologous allergens in other ecdysozoan species: Aedes aeqypti (Aed a), Aleuroglyphus ovatus (Ale o), Archaeopotamobius sibiriensis (Arc s),

Ascaris suum (Asc s), Blatella germanica (Bla g), Blomia tropicalis (Blo t), Brugia malayi (Bru m), Chironomus kiiensis (Chi k), Chionoecetes opillo (Chi
o), Chironomus thummi thummi (Chi t), Crangon crangon (Cra c), Culicoides nubeculosus (Cul n), Dermatophagoides farinae (Der f), Dermatophagoides
pteronyssinus (Der p), Echinococcus granulosus (Ech g), Euroglyphus maynei (Eur m), Forcipomyia taiwana (For t), Glycyphagus domesticus (Gly d),
Homarus gammarus (Hom g), Lepidoglyphus destructor (Lep d), Litopenaeus vannamei (Lit v), Loa loa (Lol lo), Metapenaeus ensis (Met e), Onchocerca
volvulus (Onc v), Pediculus humanus corporis (Ped h), Penaeus mondon (Pen m), Periplaneta americana (Per a), Plodia interpunctella (Plo i), Polypedilum
nubiferum (Pol n), Sarcoptes scabiei (Sar s), Schistosoma japonicum (Sch j), Scylla serrata (Scy s), Simulia vittata (Sim vi), Suidasia medanensis (Sui m),

Tyrophagus putrescentiae (Tyr p), Wuchereria bancrofti (Wuc ba).

is a known allergen in midges. Fructose-bisphosphate aldolase
I (FPA) has not been assigned an AllFam-number yet, although
it has shown allergenicity in cockroach and biting midge [30].
The 60S ribosomal protein (AF070) is allergenic in horses
by sting or bite from midge [38]. Moreover, the protein is
an inhalant or ingestion allergen in many fungi and some
plants. Triosephosphate isomerase (TPI) has been charac-

terised as an allergen in several invertebrates and plants. The
enzyme can elicit allergic reactions in humans by inhala-
tion of dust containing cockroach debris [29], by midge
bite or sting [30], or by ingestion of crayfish and shrimp.
Glutathione-S-transferase (GST) has been identified as an
important allergen in German and American cockroaches
[39,40]. The enzyme is also termed Group 8 mite allergen [33].
Furthermore, GST has shown allergenic potential in several
parasitic nematodes.

3.7. Combination of immunoblot and proteomics data
Several A. simplex proteins of particular interest emerged
when the immunoblot analysis and the proteomics data were
considered together. The alignment of blot and gel gave an

dx.doi.org/10.1016/j.euprot.2014.06.006
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Fig. 2 – Coomassie-stained SDS-PAGE of total A. simplex
protein extract. Gel bands (No. 1–16) were excised, digested
with trypsin, and subjected to mass spectrometric analysis.
SeeBlue Plus2 molecular weight marker; relative protein
s
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regarding the allergenic potential of anisakid proteins. The A.
izes (kDa) are given on the left side of the gel.

ndication of which proteins could be responsible for IgE-
inding. Several strong signals (Fig. 1a and b) coincided with
nown A. simplex allergens (Table 1) or proteins that are known
llergens in other invertebrate species (Table 5). Due to this
pproximation, the high-molecular weight proteins myosin-
, apolipoprotein, and carbonic anhydrase might have caused
inding at about 200 kDa. In the range from 82 to 185 kDa,
he combined total IgE-binding was rather low, although indi-
idual patients reacted strongly to some proteins (Fig. 1b).
he proteomics data suggested the presence of calponin-like
rotein and paramyosin (Ani s 2) at this molecular weight.
omparably, it could be assumed that the immunoblot sig-
al at 85 kDa might be associated with the presence of heat
hock protein 90 or aconitate hydratase (Table 4) and that
he signal triplet at 73, 68, and 64 kDa was associated with

-amylase, heat shock protein 60, and endochitinase (Table 5).
he strongest observed IgE-binding signal for all patients
t 56 kDa might be correlated to disulphide isomerase and
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myophilin (Table 5). The tubulins � and � could be associ-
ated to the signal duplet at 59 and 50 kDa and enolase could
have produced the signal at 48 kDa. The four signals from 43
to 38 kDa are potentially related to the presence of arginine
kinase, haemoglobin, fructose-1,6-bisphosphate aldolase 1,
and 60S acidic ribosomal protein in the same molecular range
on the gel. The IgE-binding at about 35 kDa could result from
tropomyosin (Ani s 3) (Table 1). Triosephosphate isomerase or
gluthatione-S-transferase was candidates to have caused the
relatively strong signal at 25 kDa. Troponin C (Ani s troponin)
and the SXP/RAL-2 proteins (Ani s 5, Ani s 8, Ani s 9) were
potentially responsible for some of the scattered immunoblot
signals at lower molecular weights (Fig. 1a).

3.8. Marker peptides of potential novel A. simplex
allergens

Unique allergen peptides could be suitable for the screening of
potentially contaminated food products. Several of the newly
discovered allergen candidates from A. simplex were therefore
studied in more detail using high-resolution MS/MS for the
identification of possible biomarkers. Considering the qual-
ities of the individual data, peptides from eleven A. simplex
proteins were selected (Table S2).

Enolase (Fig. S1a) showed the best results under the cho-
sen measurement conditions. Comparison to the A. simplex
enolase protein sequence in the UniProt database revealed
no mismatches in the 30 peptides that had been deter-
mined by MS/MS-analysis. Enolase was the only of the
potential novel allergens, for which A. simplex sequence
information was available in the NCBI and UniProt protein
databases. One in many species highly conserved enolase
peptide and two A. simplex-specific peptides were identified
as good marker peptide candidates (Table S1, Fig. S1b and
c). Additionally, an A. simplex-specific peptide was found in
myosin-4 (Fig. S2), with identity in 13 or 14 of the 15 amino
acids, respectively, to homologous myosin-4 in the nema-
todes A. suum and Caenorhabditis elegans. The marker peptides
detected in �-amylase, HSP70, disulphide isomerase, tubulin
�, arginine kinase, 60S acidic ribosomal protein, triosephos-
phate isomerase, and glutathione-S-transferase are all highly
conserved in nematodes (Table S2, Fig. S2). In contrast, nema-
tode haemoglobins are less homologous. The proteins from
cod worm (Pseudoterranova decipiens), pig roundworm (Ascaris
suum), and canine roundworm (Toxocara canis) share only 60
to 65% homology. However, a C-terminal peptide of A. simplex
haemoglobin had 100% sequence identity to the homologous
peptide in the closely related Anisakis peregreffi (Table S2, Fig.
S2).

4. Discussion

Allergy to A. simplex and gastro-allergic anisakiasis caused by
contaminated fishery products have been recognised as a food
safety concern [6]. At the same time, there is a lack of data
simplex genome is not completely identified and only a rela-
tively small number of A. simplex proteins have been entered
into protein databases to date. However, the observed complex
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patterns in immunoblots using patient sera have led to the
entry of 21 A. simplex proteins into the Allergome database [25]
reflecting the ambiguous situation. The respective importance
of the listed allergens is under discussion because a high fre-
quency of false-positive results in immunoblots with sera from
sensitised patients without clinical manifestations and even
in healthy control individuals has been observed [1,14,16,41].
Additionally, the allergenic potentials of several of the listed
A. simplex proteins designated as allergens, including Ani s 5,
Ani s 6, Ani s 7, Ani s 10, Ani s 11, and Ani s 12, have been
determined only by immunoscreening of an expression cDNA
or phage display library with serum from a single patient [26].

In order to characterise the allergenic potential of A. sim-
plex proteins further we have performed immunostaining with
sera from sensitised Spanish and Norwegian patients and pro-
teomic analysis.

4.1. Sensitisation to A. simplex proteins in the patient
groups

Compared to the high incidence of infestation of wild-caught
marine edible fish by A. simplex larvae, cases of anisakiasis
and clinically manifested allergy to anisakid proteins are sur-
prisingly uncommon. The occurrence of anisakiasis is directly
connected to special dietary habits such as the consumption
of raw and undercooked fish in certain geographical regions.
In contrast the ratio of anti-A. simplex IgE seropositive persons
in a population is considerably higher, but again, sensitisation
appears to be geographically dependent [1].

There is apparently a connection between the frequency
of anisakid infections and the rate of sensitisation in spe-
cific populations. It has been suggested that infection with
parasitic worms may modulate the immune reactivity of the
host [42]. The nematode presumably blocks the mechanisms
that trigger allergic incidents resulting in an overall systemic
anti-allergic effect although the nematode allergens stimu-
late the generation of specific IgE. In this context, invertebrate
tropomyosin, a conserved muscle protein present in high
amounts in all nematodes, is regarded as a promising can-
didate for a vaccine against allergy to nematodes [42]. On the
other hand it has been argued that acute or sporadic forms of
parasitism, such as gastro-allergic anisakiasis, are associated
with an elevated risk of allergy [43,44].

The IgE-immunoblots performed in our study showed little
variability between Norwegian and Spanish patients. Reac-
tivity in SPT and specific IgE serum levels did not appear
to be directly correlated, and IgE classes were not recog-
nisably connected to binding patterns and intensities. The
observed binding patterns showed more inter-individual than
inter-group differences, as previously noted [45]. Three regions
on the immunoblots, depicting IgE-binding to proteins with
molecular weights of 80–150 kDa, 30–40 kDa, and <20 kDa,
demonstrated the most diversity between patients.

The greatest difference with regard to the two patient
groups was the consistent co-sensitisation to mite in the
Norwegian patients. More than 90% of the study subjects

had anti-mite IgE of class 2 or more, whereas the Spanish
patients were not, or to a lesser degree, sensitised to mite.
This difference might explain the observed small variations
in immunoblot binding intensities to five protein bands when
4 ( 2 0 1 4 ) 140–155

comparing the combined results of each group. Although the
results could only be considered as indicative due to the
uncertainties connected to some variances in the background
noise of the blots and the image processing performed, they
allowed the observation of some trends: The Norwegian sera
appeared to bind notably stronger to a protein band at 68 kDa,
which according to the proteomic analysis could contain A.
simplex heat shock protein 70, a known mite allergen [36].
Furthermore, �-amylase, another insect allergen, was pre-
sumably recognised at 73 kDa. The potential importance of
cross-reactivity of anti-insect IgE with anisakid proteins was
further confirmed by the results for the four patients who were
sensitised to mite but not to A. simplex. Cross-sensitisation and
allergenic cross-reactivity to mite had also been observed in
Norwegians with anti-A. simplex IgE in previous studies [14,46].

The Spanish sera bound rather intensely to a protein band
at 14 kDa, tentatively characterised as an SXP/RAL2-protein
(Ani s 8). Excretory/secretory (ES) proteins such as Ani s 8
are up-regulated following host infection. Not surprisingly, the
sera of the anisakiasis patients S10–S13 showed the strongest
binding to this allergen. In total somatic extracts from A.
simplex larvae, as used in the present study, the secretory
proteins originate from the excretory glands and are gen-
erally underrepresented [23]. Consequently, we found only
a few ES proteins by proteomic analysis. Three other sig-
nals that appeared to be preferentially represented in the
immunoblot from the Spanish sera were provisionally aligned
with triosephosphate isomerase (25 kDa), enolase (48 kDa),
and endochitinase (64 kDa). A 48 kDa protein, presumably eno-
lase, was also well recognised in another study involving
Spanish patients [16,45].

In general, the IgE-binding patterns to A. simplex pro-
teins found in the present experiment were comparable to
those in previous published studies describing complex pat-
terns with multiple bands in the range from 14 to 190 kDa
[15,16,20,23,47,48]. Sera of anisakiasis patients bound prefer-
entially to ES allergens and their carbohydrated forms [17,47],
with dominant bands at 14, 56, and 72 kDa [41]. In somatic
extracts, the strongest binding occurred at 43, 48, and 56 kDa
[23,45], which could be related to the allergen candidates
arginine kinase, enolase, disulfide isomerase, and myophilin
determined in the present study. Based on our results, the des-
ignated pan-allergens paramyosin (Ani s 2) and tropomyosin
(Ani s 3) were of lesser importance confirming previous find-
ings that have questioned the clinical relevance of these
anisakid proteins [43].

4.2. Analysis of the A. simplex proteome

The proteomic analysis of the somatic A. simplex extract
resulted in the identification of numerous proteins by compar-
ison to homologous peptides from database-listed nematode
proteins. Since entries for nematodes of the Anisakidae family
(including A. simplex and Pseudoterranova decipiens) are scarce,
we used data of the phylogenetically closely related Ascaris
suum of the Ascaridae family as the best fit. Both families

belong to the same Ascaridoidea superfamily and Ascaridida
order [49], whereas the “model” nematode Caenorhabditis
elegans, the genome of which has been totally sequenced,
belongs to the Rhabditida order and is more distantly related.
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Many of the characterised A. simplex proteins were
nzymes involved in carbohydrate metabolism. Parasitic
ematodes use glucose from the host environment at a high
ate, and glycogen has been shown to be their main endoge-
ous carbohydrate [50]. Structural and muscle proteins were

ikewise present in considerable abundance in the somatic
xtract. They account for an essential part of the nematode’s
otal body weight and are easily detected. Generally, when
sing a mass spectrometry-based proteomics approach with-
ut targeted enrichment, the more abundant proteins in an
rganism achieve the highest sequence coverage and best pep-
ide Mascot scores, as observed here.

.3. Novel A. simplex allergen candidates

ecently, the determination of new allergens has preferably
een based on methods of molecular allergology such as the

mmunoscreening of cDNA libraries rather than the previ-
usly applied immunoblots [26]. However, this approach is
omewhat limited in that allergen detection is based on a
ingle patient serum, and protein expression in culture is
ot necessarily the same as in a live organism. In contrast,

mmunoblot analysis uses representative protein extracts and
ften multiple patient sera, but allergen detection is restricted
o molecular weight comparisons or confirmation by mono-
lonal antibodies.

In the present study we combined the advantages of
gE-based immunoscreening with mass spectrometry-based
roteomics, allowing for the direct identification of protein
ands of interest and description of a number of new aller-
en candidates extracted from A. simplex. Somatic protein
xtracts contain a large variety of proteins and the sensitiv-
ty and reactivity of patients are highly variable as multi-band
mmunoblot patterns confirm [16,48]. Nevertheless, proteins
ave to be fairly abundant to elicit IgE-sensitisation and are
herefore well-suited for MS-based strategies, so that both
echniques are mutually supportive.

Considering the observed cross-reactivity among ecdyso-
oan species [46] we were particularly interested in potentially
llergenic A. simplex proteins that were homologous to known
llergens in related phyla such as other nematodes, insects,
r shellfish. According to our findings, myosin, heat shock
rotein 70, �-amylase, disulphide isomerase, myophilin, eno-

ase, arginine kinase, haemoglobin, fructose-1,6-biphosphate
ldolase 1, 60S acidic ribosomal protein, triosephosphate iso-
erise, and glutathione-S-transferase are all candidates for

ausing insect-nematode cross-allergies.

.4. Marker peptides for A. simplex

eptide sequence analyses of selected A. simplex proteins
esulted in the determination of a number of marker pep-
ides for the specific detection of this nematode, underlining
he great potential of MS-based proteomic analysis. This tech-
ique may allow the differentiation between homologous
roteins from related nematode species and could therefore

e used for the classification of food and feed contaminants.
n a next step, it will be advantageous to verify our find-
ngs by using fractionated or recombinant proteins for the
mmunoblotting experiments or to perform two-dimensional
( 2 0 1 4 ) 140–155 153

electrophoresis, and to study the allergenicity of selected aller-
gen candidates in more detail.

In conclusion, A. simplex is known for its diversity of anti-
gens that are responsible for the development of differential
clinical responses [1]. By comparing serum analyses and pro-
teome data we have characterised a number of potential novel
allergens of this fish parasite. They will facilitate further stud-
ies on the mechanisms leading to A. simplex sensitisation and
on the risk characterisation with regard to its allergic potential.
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