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Abstract

Let Er andEb be two sets ofx-monotone and non-intersecting curve segments,E = Er ∪Eb and|E| = n. We
give a new sweep-line algorithm that reports thek intersecting pairs of segments ofE. Our algorithm uses only
three simple predicates that allow to decide if two segments intersect, if a point is left or right to another point,
and if a point is above, below or on a segment. These three predicates seem to be the simplest predicates that
lead to subquadratic algorithms. Our algorithm is almost optimal in this restricted model of computation. Its time
complexity is O(n logn+ k log logn) and it requires O(n) space. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The usual model to analyze geometric algorithms is the Real RAM which is assumed to compute
exactly with real numbers [15]. This model hides the fact that the arithmetic of real computers has a
limited precision and ignores numerical and robustness issues. As a consequence a direct implementation
of an algorithm that is correct under the Real RAM model does not necessarily translate into a robust
and/or efficient program, and catastrophic behaviors are commonly observed.

A first approach to remedy this problem is to use exact arithmetic. In the context of geometric algo-
rithms, much progress has been done in the recent past [14,16,18,19]. Another approach, to be followed
here, has emerged recently. Decisions in geometric algorithms depend on geometric predicates which are
usually algebraic expressions. For example, for a triple of points given by their Cartesian coordinates,
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deciding what is the orientation of the triangle reduces to evaluating (the sign of) a multivariate polyno-
mial of degree two. If an algorithm only uses predicates of degree 2 as a function of the input data, and
if the input data are coded as simple fixed precision numbers, computations can be done exactly using
the native double precision hardware of the computer. The degree of an algorithm is therefore related to
the precision required to run an algorithm using exact arithmetic. This motivates the design of efficient
algorithms of low degree. Reducing the degree of the algorithms will reduce the number and the com-
plexity of the degenerate configurations, make the algorithms more elementary and more general, reduce
the amount of numerical computations, which is usually quite a large fraction of the total execution time
especially if multi-precision computing is invoked, and possibly also refrain the use of complicated data
structures resulting in low space requirements. However, reducing the degree of an algorithm may in-
crease its time complexity in the Real RAM model. Following Liotta et al. [13], we consider the degree
of the predicates as an additional measure of the complexity of problems and algorithms, and intend to
elucidate the relationship between time-complexity and degree of the predicates. Related research can be
found in Knuth’s seminal work [12] and in some recent papers [3,4,10].

In this paper, we consider the problem of reporting thek intersecting pairs among a set ofn

x-monotone curve segments. We address the red/blue case, where this set is partitioned into two
subsets of non-intersecting segments. This problem can be solved in optimal O(n logn + k) time [1,
6,9]. However, these algorithms use predicates of high degree, e.g., to compare the abscissae of two
intersection points or to locate an intersection point with respect to a vertical slab. These predicates have
a degree and an algebraic complexity that are usually higher than the intersection predicate: this is, in
particular, the case for line segments and circle segments [4]. Our algorithm only uses the intersection
predicate and two other simple predicates: the predicate that sorts two points by abscissae, and the
predicate that says if a point is below, on, or above a segment. In particular, we do not compute the
arrangement nor the trapezoidal map of the segments. Moreover, the predicates we use do not say
anything about the number or the positions of the intersection points, and the time complexity of these
algorithms depends only on the number of intersecting pairs of segments, not the number of intersection
points (differently from the other non trivial algorithms [1,2,6,8,9]).

The time complexity of our algorithm is O(n logn + k log logn), which is close to optimal, and it
uses optimal space O(n). This result generalizes a similar result for the case of pseudo-segments, i.e.,
segments that intersect in at most one point [4].

Recently, T. Chan has independently obtained a different algorithm that uses a segment-tree [7]. Its
time-complexity is O(n logn+ k log2+k/n n) and it uses O(n+ k) space. We note that this time bound is
better than ours fork =	(n1+ε) but worse fork =O(npolylogn).

2. The problem

A curve segment isx-monotone if it is the graph of a partially defined univariate continuous function
(i.e., any vertical line intersects such a segment in at most one point). LetE = Er ∪ Eb be a set ofn
x-monotone curve segments such that no two segments ofEr (respectivelyEb) intersect. The problem is
to report thek pairs of segments ofE that intersect.

Let s and s′ be two segments ofE and letp andq be two endpoints of some segments ofE, not
necessarily ofs or s′. x(p) andy(p) denote the coordinates ofp, ands(x) denotes the point ofs whose
abscissae isx (if such a point exists). We consider the following predicates:
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Table 1

Predicate Degree

line half circle segment pol. of
segment circle 3 points degreed

1 2 2 12 d

2 1 1 1 1

3 2 2 4 d

4, 5 3 4 12 d

Predicate 1. s ∩ s′ �= ∅.
Predicate 2. x(p) � x(q).
Predicate 3. y(p) � y(s(x(p))).
Predicate 4. y(s(x(p))) � y(s′(x(p))).
Predicate 5. ∃x ∈ [x(p), x(q)] such thats(x)= s′(x).

Predicate 1 is mandatory. Predicate 2 allows to sort the endpoints. Predicate 3 tells whether an endpoint
lies above or below a segment. Predicate 4 provides the order of two segments along a vertical line passing
through an endpoint. Predicate 5 checks whether two segments intersect within a vertical slab defined by
two endpoints.

We do not specify a precise representation for the segments, which may depend on the application. For
example, the function associated with a segment may be given explicitly together with the interval where
it is defined, or the function may be given implicitly as the algebraic function of degreed that interpolates
d + 1 given points (including the endpoints of the segment). Other representations are also possible. The
degrees of the predicates clearly depend on the chosen representation. In Table 1 (see also [4,11]), the
degrees of Predicates 2–5 are given for line segments represented by the coordinates of their endpoints,
for half-circles defined by centers, radii plus a Boolean (to distinguish between the upper and the lower
arc), for circle segments defined by three points (including the two endpoints of the segment), and for
curves defined by a polynomial equationy = f (x). Observe that the predicates are ordered by increasing
degrees in all those cases. However, this order may be different for some other types of segments. For
instance, for half-circles defined by three nonx-extreme points, the degree of Predicate 2 is 20 while the
degree of Predicate 3 is only 4.

Our algorithm only requires Predicates 1, 2 and 3 while other non-trivial algorithms [1,2,6,8,9] make
use of our five predicates. Thus they have higher algebraic degree when we consider line segments, half
circles or circles defined by three points.

3. Algorithm

In this section,eb (respectivelyer) denotes a blue (respectively red) segment, i.e.,eb ∈ Eb ander ∈Er.
We will prove the following result:

Theorem 1. The red–blue curve segment intersection problem can be solved in O(n logn+ k log logn)

time and O(n) space using predicates 1, 2 and 3.
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Fig. 1.U(er) and a good pair.

We present a new plane sweep algorithm for this problem. A vertical sweep line moves across the
plane from left to right. When it reaches an endpoint—a sweepevent, some data structures are updated
and intersections can be reported. At any time, we only consideractive segments, which are the segments
that cross the sweep line.

Definition 1. A good pair (see Fig. 1) consists of a blue and a red intersecting segments, denoted,
respectively,eb ander, such that the left endpoint ofeb is aboveer and on the right of the left endpoint
of er. A bad pair is an intersecting pair that is not a good pair.

In the following subsections, we describe an algorithm that reports thegood pairs. The other
intersections are reported by the same algorithm after exchanging the orientation of they-axis or the
colors of the segments. The algorithm to be described is therefore applied four times.

3.1. Data structures

The idea is to report the good pairs while pushing the blue segments downwards. Each blue segment
is stored in a setU(er) for some active red segmenter. The set of segments inU(er) will be maintained
during the sweep. It consists of the blue segments that cannot be pushed down because they are blocked
either byer or by the lowest segment ofU(er).

The above/below relationship withinEb (respectivelyEr) is a partial order, which is a total order when
restricted to active segments. This relation can be extended to all the pairs(e, e′) of non-intersecting
segments, in which casee is below e′ is denoted bye < e′, ande � e′ denotese < e′ or e = e′. We
will maintain the ordered list of the active red segments in a balanced search tree just like in Chan’s
algorithm [6] for red–blue segments. In order to deal with boundary cases, we will introduce an additional
red segmente∞ that is minimum with respect to our order and will always be considered active.

For each blue segmenteb, we associate a red segmentl(eb). We will require that the three following
properties remain satisfied during the course of the algorithm:

Property 1. As the plane is swept, l(eb) can only decrease with respect to the vertical order of red
segments.

Property 2. The good pairs consisting of a blue segment eb and the red segments lying above l(eb) have
been reported previously (see Fig. 3).
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Property 3. A blue segment eb can only intersect er � l(eb) to the right of the sweep line (see Fig. 1).

Property 1 will be used in the analysis of our algorithm to show that an intersecting pair is reported at
most once. It formalizes the idea that we “push” the blue segments downwards as the plane is swept. The
next two properties will help to prove the correctness of the algorithm since they imply that, when the
sweep line reaches the right endpoint of a segment, all the good pairs involving that segment have been
reported.

For each active red segmenter, we denote byU(er) the set of all active blue segmentseb such that
l(eb)= er. U(er) is stored in a mergeable heap data structure, that is a data structure that allows union,
minimum extraction and deletion (e.g., a binomial heap). The underlying order is the vertical order of
active red segments along the sweep line. Note that we shall not maintainl(eb) explicitly, as it is not clear
whether we can do it within the same time bounds. Its value can be retrieved from the heapsU(er). For
any red segmenter, the setU(er) satisfies the following property:

Property 4. If U(er) �= ∅, then its minimum does not intersect er and is above er (see Fig. 1).

However, the setsU(er) do not have any simple monotonicity property. For example, ifer is belowe′r,
thenU(er) may be entirely aboveU(e′r) or they may be interlaced (see Fig. 2).

Properties 1–4 will be the invariants of our algorithm. First we note that they are maintained between
two events of the sweep. Indeed, no change in our data structure is performed between two events of the
sweep, so Properties 1, 2 and 4 are not affected. For alleb ∈U(er), Property 4 ensures that the intersection
of eb with the sweep line remains aboveer until the next event is reached, so Property 3 is preserved as
well.

3.2. Handling the events

We distinguish four kinds of events depending whether the sweep line reaches a left or a right endpoint
of a segment, and whether the segment is red or blue. Each event corresponds to the insertion, the deletion
of a blue or a red segment. We will now explain in detail how these events are handled while maintaining
our invariants.

3.2.1. Inserting a red segment
When the sweep line reaches a left endpoint of a red segmenter, er is just inserted in the list of active

red segments and the heapU(er) is initialized as an empty set. Our invariants are obviously maintained.
Note that Property 2 holds because it only deals withgood pairs. This is where this notion is crucial.

Fig. 2.U(er) is aboveU(e′r).
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Fig. 3. Insertion ofeb.

3.2.2. Inserting a blue segment
When the sweep line reaches the left endpoint of a blue segmenteb, we first determine the red

segmenter that lies just below the endpoint. Ifeb does not intersecter, then it is inserted inU(er).
Otherwise, we report this intersecting pair and repeat the same process with the active red segment that
is belower until we reach a red segment that does not intersecteb, which will eventually happen since
e∞ < eb.

This procedure can be written in the following way, whereer − 1 denotes the active red segment that
lies immediately belower (see Fig. 3).

Insert(eb, er)

while eb intersectser

report the intersection
er← er − 1

Inserteb in U(er)

The intersections betweeneb and the red segments that are below the left endpoint ofeb and above
l(eb) have been reported, therefore Property 2 holds foreb. We note that hereeb is abovel(eb) which
shows that Properties 3 and 4 are maintained.

3.2.3. Removing a red segment
Now suppose the sweep line reaches the right endpoint of a red segmenter. We denote bym the

minimum ofU(er). If m intersectser − 1, then report the intersection, try again wither − 2, . . . , until a
segmenter− j is found that does not intersectm. Thenm is moved fromU(er) to U(er− j), and we start
again with the new minimum ofU(er). Otherwise, ifm does not intersecter, we simply mergeU(er) and
U(er − 1) thus maintaining Property 4.

The procedure is as follows (Insert is the procedure we described in the previous section).

while m=min(U(er)) intersectser − 1
report the intersection
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extractm from U(er)

Insert(m, er − 2)

U(er − 1)=U(er − 1)∪U(er)

Bad pairs may be reported during this operation: we just discard them by comparing the coordinates
of the left endpoints.

Two kinds of blue segments are dealt with at this step, the ones that will be merged intoU(er− 1) and
the others. As already mentioned, Property 4 is maintained for the segments of the first category. It is easy
to see that the other invariants are maintained as well. A blue segment of the second category is handled
by a call toInsert(m, er − 2), which implies that Properties 1 and 2 are maintained. By Property 4, the
intersection of the blue segmentm with the sweep line is aboveer. Segmentm will, therefore, be above
the new segmentl(m), and, sincem andl(m) do not intersect, Property 3 and Property 4 hold.

3.2.4. Removing a blue segment
Suppose now that the sweep line reaches the right endpoint of a blue segmenteb and leter = l(eb). As

we said before,l(eb) can be obtained from the mergeable heap data structure that stores the setsU(·).
If eb is not the minimum ofU(er), we just remove it. Otherwise, we still removeeb from U(er), but then

we need to check whether the new minimumm of U(er) intersectser. If it does, we push it downwards
by running the procedureInsert(m, er − 1), then repeat the whole process with the new minimum until
it does not intersecter, so that Property 4 remains true. It follows that the other invariants are maintained
as well.

extracteb from U(er)

while m=min(U(er)) intersectser

report this intersection
extractm from U(er)

Insert(m, er − 1)

Once again, this procedure may report bad pairs but this can be fixed by a simple test.

3.3. Proof of correctness

Let us consider a good pair(er, eb) ∈ Er × Eb. We assume that the sweep line has just reached the
right endpoint ofer or eb, whichever comes first. By Property 3 we know thatl(eb) < er. Then Property 2
shows that our intersection has been reported previously.

3.4. Analysis

Maintaining the ordered red segments list takes O(n logn) time. Localizing or removing an endpoint
takes O(logn) time. The other parts of the algorithm take one mergeable heap operation for each event
or reported intersection.

We first observe that an intersection cannot be reported twice. Leter and eb be two intersecting
segments. After reporting their intersection once,l(eb) < er. Moreover, Property 1 states thatl(eb) can
only go down the list of red active segments, and we never test the intersection betweeneb and a segment
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that lies abovel(eb). Altogether, that means that our algorithm runs in O(n logn+ kh) time if h is the
time required to perform a heap operation.

Plainly, we can implement the setsU(er) with binomial heaps [17] so thath = O(logn). We can do
better if we first pre-sort the blue segments, and then implement our algorithm using range-restricted
mergeable heaps [5]. This leads toh=O(log logn) and an overall running time O(n logn+ k log logn).

3.5. Degenerate cases

Since this algorithm is elementary, we only need to consider a few degenerate cases which turn out to
be very easy to handle. Two kinds of degeneracy may occur: either two endpoints have the same abscissae
or an endpoint lies on a curve.

The first case can be solved by extending the partial order on endpoints abscissae to any total order.
The order should be the same for each one of the four plane sweeps we perform, for otherwise some
intersecting pairs of segments would never be good.

If a point lies on a segment, we just consider that it is above the segment during two sweeps and below
the segment during the two sweeps with they-axis reversed.

Our algorithm can be easily generalized to the case where segments of the same color are allowed to
share endpoints, whose main application is map overlay. We only need to consider the segments without
their endpoints when we define their vertical order.

4. Conclusion

Given a set of generalx-monotone segments, we have presented an algorithm to report the pairs of
red–blue segments that intersect. Our algorithm uses only three simple predicates that allow to decide if
two segments intersect, if a point is left or right to another point, and if a point is above, below or on a
segment. These three predicates seem to be the simplest predicates that lead to subquadratic algorithms.
Our algorithm is almost optimal in this restricted model of computation.

Interestingly, the time complexity of our algorithm depends on the number of pairs of intersecting
segments, not on the number of intersection points. In particular, our algorithm works even if the
segments intersect infinitely many times.

We conclude with some open problems. First, can we remove the log logn factor in our time
complexity results?

The	(n
√

k+ n logn) lower bound holds for general curve segments. It has been possible to do better
for line segments [4]. Can we also do better for other special curve segments such as circle segments?

In this paper, we have restricted our attention tox-monotone segments. This may be a restriction when
the points with a vertical tangent are difficult to compute. This is in particular the case for circles defined
by three points where the predicate that comparesx-extreme points has degree 20 while the intersection
predicate has degree 12 only.
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