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Long Cycles through a Linear Forest1
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For a graph G and an integer k�1, let S(G)=[x # V(G) : dG (x)=0] and
_k (G)=min[�k

i=1 dG (vi) : [v1 , v2 , ..., vk] is an independent set of G]. The main
result of this paper is as follows. Let k�3, m�0, and 0�s�k&3. Let G be a
(m+k&1)-connected graph and let F be a subgraph of G with |E(F )|=m and
|S(F )|=s. If every component of F is a path, then G has a cycle of length
�min[ |V(G)|, 2

k_k (G)&m] passing through E(F ) _ V(F ). This generalizes three
related results known previously. � 2001 Academic Press
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1. INTRODUCTION

We use Bondy and Murty [3] for terminology and notation not defined
here and consider simple graphs only. For a graph G, let V(G) and E(G)
denote its vertex set and edge set, respectively. The cardinality of V(G)
is denoted by |G|. If A and B are subgraphs of G or subsets of V(G),
we define NG (A) = �x # A NG (x) and NB (A) = NG (A) & B. In particular,
when A=[x], we set NB (x)=NB ([x]) and dB (x)=|NB (x)|. For
<{D/V(G), let G[D] denote the subgraph of G induced by D and
define G&D=G[V(G)&D]. For x, y # V(G), G+xy denotes the graph
obtained from G by adding the edge xy. (G+xy=G if xy # E(G).) If C is
a cycle of G, we denote by C9 the cycle C with a given orientation. If
u # V(C), then u+ denotes the successor of u on C9 and u& its predecessor;
u+2=(u+)+, etc. If u, v # V(C), we denote by uC9 v the subpath uu+ } } } v&v
of C. If u=v, we define uC9 v=[u]. The same subpath, in reverse order, is
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denoted by vC0 u. If X is a cycle or a path of G, the length of X, denoted
by l(X), is defined as the number of edges of X. We consider that a single
vertex is a path of length 0. The circumference of G, denoted by c(G), is
defined as the length of the longest cycle in G. Let M�E(G) and S�V(G).
We say that a cycle C passes through M _ S if M�E(C) and S�V(C). M
is called an m-matching if M is a set of m independent edges of G. (If m=0,
we let M=< and call M a 0-matching.)

For a graph G, we denote by :(G) and |(G) the number of vertices in
a maximum independent set of G and the number of components of G,
respectively. Define

_k (G)=min { :
k

i=1

dG (vi) : [v1 , v2 , ..., vk] is an independent set of G=
if k�:(G); and _k (G)=� if k>:(G).

A graph F is called a linear forest if V(F )=E(F )=< or every com-
ponent of F is a path. Define

Fm, s=[F : F is a linear forest with |E(F )|=m and |S(F )|=s],

where

S(F )=[x # V(F ) : dF (x)=0].

There are many results about long cycles in a graph passing through some
specified vertices or edges. Among them are the following two theorems.

Theorem 1 (Enomoto [5]). Let m�1 and let G be an (m+2)-con-
nected graph. Then G has a cycle of length �min[ |V(G)|, _2(G)&m] passing
through any path of length m.

Theorem 2 (Hirohata [8]). Let k�3 and m�1 and let G be an (m+
k&1)-connected graph. Then G has a cycle of length �min[ |V (G)| ,
2
k_k (G)&m] passing through any path of length m.

The main purpose of this paper is to prove the following result.

Theorem 3. Let k�3, m�0, and 0�s�k&3. Let G be a (m+
k&1)-connected graph and let F # Fm, s be a subgraph of G. Then G has a
cycle of length �min[ |V(G)|, 2

k_k (G)&m] passing through E(F ) _ V(F ).

Since 2
k_k (G)�_2 (G) (k�3) and a path of length m is a special linear

forest with m edges, Theorem 3 generalizes both Theorem 1 and Theorem
2. Moreover, by taking m=s=0, we get
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Corollary 1. Let k�2 and let G be a k-connected graph. Then

c(G)�min { |V(G)|,
2

k+1
_k+1 (G)= .

Corollary 1 was conjectured by Bondy in [1] and proved by Fournier
and Fraisse in [6].

Let d be the minimum degree of G. Then, 1
k+1 _k+1 (G)�d. Using

Theorem 3 with m=0, we have

Corollary 2. Let G be a k-connected graph, k�2, with minimum
degree d, and with at least 2d vertices. Let X be a set of k&2 vertices of G.
Then, G has a cycle C of length at least 2d such that every vertex of X is
on C.

We note that a stronger version of Corollary 2 (the case |X|=k) was
proved by Egawa et al. in [4].

Before beginning the proof of Theorem 3, we will give examples that
demonstrate its sharpness.

Example. (a) Let 0�t�m<p and let

G=(Lt+1 _ Lm&t+1)+(2Kp _ [x]),

where the plus sign denotes the join operation and Li+1 (i=t, m&t)
denotes a path of length i. Then G is (m+2)-connected. It is easy to see
that 2

3_3 (G)&m=m+ 4p+8
3 . On the other hand, the length of a longest

cycle passing through E(Lt+1 _ Lm&t+1) _ [x] is (m+2)+( p+1)=
2
3_3 (G)&m& p&1

3 . Therefore, the condition 0�s�k&3 in Theorem 3 is
best possible.

(b) Let t�m+1 and G=Lm+1+2Kt . Then G is (m+1)-connected
and _2 (G)=2(t+m). The length of a longest cycle passing through
E(Lm+1) is m+t+1=(_2 (G)&m)&(t&1). Hence, the condition k�3
cannot be replaced by k�2.

(c) Let p�2m+t and k=m+t+1 and let G=K2m+t+K c
p , where

K c
p is the complement of Kp . Then, G is (m+k&1)-connected. Since

_k (G) = k(2m+t), 2
k _k (G) &m = 3m+2t. On the other hand, the length

of a longest cycle passing through any m-matching of K2m+t is
(2m+t)+(m+t)=3m+2t. Hence, the bound min[ |V(G)|, 2

k_k (G)&m]
is sharp.
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2. PRELIMINARIES

In this section, we prove four lemmas. In the proofs of the first two
lemmas, we use the following two theorems.

Theorem 4 (Bondy and Jackson [2]). Let G be a 2-connected graph on
at least four vertices and u, v, w be vertices of G. If each vertex of
V(G)&[u, v, w] has degree at least d, then G contains a (u, v)-path of length
at least d.

Theorem 5 (Ha� ggkvist and Thomassen [7]). Let k�2 and let G be
a k-connected graph. Then every set of k&1 independent edges of G is
contained in a cycle.

By Theorem 4, we have

Lemma 1. Let G be a 2-connected graph and w be a vertex of G. If each
vertex of V(G)&[w] has degree at least d, then, for every two distinct
vertices u, v of G, G contains a (u, v)-path of length at least d.

Lemma 2. Let m and k be integers with m�0, k�2, and m+k�3. Let
G be a (m+k&1)-connected graph and M an m-matching of G. If
S�V(G)&V(M) and |S|�k&1, then G contains a cycle passing through
M _ S.

Proof. By m+k&1�max[m+1, 2] and Theorem 5, G has a cycle
passing through M. Among all of these cycles, we choose one (say C) such
that |V(C) & S| is maximum. If S�V(C), then Lemma 2 holds. Assume
that S�3 V(C). We show that a contradiction arises. Let x # S&V(C) and
let t=min[m+k&1, |V(C)|]. Then G is t-connected and |V(C)|�t. By
Menger's Theorem, there are t distinct paths P1 , P2 , ..., Pt from x to V(C)
such that |V(Pi) & V(C)|=1 and V(Pi) & V(Pj)=[x], 1�i{ j�t. Sup-
pose V(P i) & V(C)=[vi], 1�i�t, and the vertices v1 , v2 , ..., vt appear in
this order along C9 . For 1�i�t, define I i=viC9 vi+1 and set vt+1=v1 and
Ci=vi+1C9 viPixPi+1vi+1 . We consider two cases.

Case 1: t=|V(C)|. In this case, V(C)=[v1 , v2 , ..., vt]. Since M is a
matching, E(C) &M { <. Let vi vi+1 # E(C)&M. Then, Ci is a cycle
passing through M and (V(C) & S) _ [x]�V(Ci), which contradicts the
choice of C.

Case 2: t=m+k&1<|V(C)|. Since m+k&1>|M|+|S & V(C)|, there
exists i # [1, 2, ..., t] such that E(Ii) & M=< and V(Ii) & S�[vi , vi+1].
Then M�E(Ci) and (V(C) & S) _ [x]�V(Ci), contrary to the choice
of C. Hence, Lemma 2 is proved. K
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The following lemma plays a crucial role in the proof of Theorem 3.

Lemma 3. Let m�0 and k�3. Let G be a (m+k&1)-connected graph
and M an m-matching of G. Let S�V(G)&V(M) with |S|�k&3 and let
C be a longest cycle passing through M _ S. If l(C)<min[ |V(G)|, 2L&m],
where L is a constant, then every component of G&V(C) has a vertex x with
dG (x)<L.

Proof. Assume, to the contrary, that G&V(C) has a component H
such that dG (x)�L for any x # V(H). Let NC (H)=[v1 , v2 , ..., vt], and we
may assume that the vertices v1 , v2 , ..., vt appear in this order along C9 . For
1�i�t, define I i=viC9 vi+1 and set vt+1=v1 . We call I i a segment of C. By
an argument similar to that in the proof of Lemma 2, we can derive that
V(C){NC (H). Since G is (m+k&1)-connected, t�m+k&1. Since C is
the longest cycle passing through M _ S, l(Ii)�2 if E(Ii) & M=<, and
l(Ii)�1 otherwise. Hence, 2L&m>l(C)�2(t&m)+m, which implies
t<L. Therefore, we may assume that |H|>1.

Claim 2.1. There exists at most one vertex x # V(H) such that dH (x)=1.

Proof. Assume, to the contrary, that dH (x)=dH ( y)=1 for some
x{ y # V(H). Then, L>t�dC (x)=dG (x)&dH (x)�L&1. This implies
dC (x)=t�L&1. Therefore, NC (x)=NC (H). Similarly, NC ( y)=NC (H).
Since t�m+k&1�|M|+|S|+2, there exist 1�i< j�t such that, for
each r # [i, j], E(Ir) & M=< and V(Ir) & S�[vr , vr+1]. Let P be an
(x, y)-path in H. Since C is the longest cycle passing through M _ S,
l(Ir)�l(vrxPyvr+1)�3 for r # [i, j]. Therefore,

l(C)�3+3+2(t&m&2)+m=2t&m+2�2L&m.

This contradiction completes the proof of Claim 2.1. K

It follows from Claim 2.1 that |H|�3. We consider two cases.

Case 1: H is not 2-connected. In this case, H has at least two distinct
end-blocks B1 and B2 . For i=1, 2, let ci be the unique cut-vertex of H con-
tained in Bi . (Possibly c1=c2 .) Without loss of generality, we may assume
that |B1|�|B2 |. By Claim 2.1, we have |B1|�3. Define

X=[vi : dB1&[c1] (vi)�2].

Then,

:
u # V(B1)&[c1]

dV(C)&X (u)=|NV(C)&X (B1&[c1])|�t&|X|.
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Hence,

:
u # V(B1)&[c1]

dG (u)� :
u # V(B1)&[c1]

(dB1
(u)+dX (u))+(t&|X| )

<(|B1|&1)( |B1|&1+|X| )+(L&|X| ). (1)

On the other hand,

:
u # V(B1)&[c1]

dG (u)�( |B1|&1) L. (2)

By (1) and (2), we have ( |B1|&2) L<(|B1|&2)( |B1|+|X| )+1. Since
|B1|�3, |B1|+|X|>L&1>t&1�m+k&2. This implies |B1|+|X|�m
+k&1. Take X$�X such that |X$|=min[ |X|, m+k&2], and set r=m+
k&1&|X$|. Then, r�1 and G&X$ is r-connected. Note that |B1|�r and
|V(C)&X$| > t& |X$| � m+k&1& |X$| = r. It follows from Menger's
Theorem that G&X$ contains r pairwise disjoint paths P1 , P2 , ..., Pr from
V(B1) to V(C)&X$ such that |V(Pi) & V(B1)|=|V(Pi) & (V(C)&X$)|=1,
1�i�r. Suppose V(Pi) & (V(C)&X$)=[ yi] and ui yi # E(Pi), 1�i�r.
Noting that H is a component of G&V(C), we have V(Pi)�(V(C)&X$)
_ V(H). Hence, yi # NC (H) and ui # V(H). Since B1 is an end-block of H,
we have, for 1�i�r, that

V(Pi) & V(H)�3 V(B1)&[c1] O c1 # V(Pi).

Therefore, there exists at most one path Pi with V(Pi) & V(H)
�3 V(B1)&[c1]. Since ui # V(Pi) & V(H), 1�i�r, we have

|[u1 , u2 , ..., ur] & (V(B1)&[c1])|�r&1. (3)

Define X*=X$ _ Y, where Y=[ y1 , y2 , ..., yr]. Suppose X*=[vi1
,

vi2
, ..., vi:

]. Then, :=|X*|=|X$|+|Y|=m+k&1 and we may assume that
i1<i2< } } } <i: . Define i:+1=i1 .

Claim 2.2. There exists a triple (i, x, y) such that

(a) i1�i<i2 ;

(b) x # NH (vi), y # NH (vi+1), and x{ y;

(c) [x, y] & (V(B1)&[c1]){<.

Proof. We first assume that [vi1
, vi2

] & X{<. Say vi1
# X. Then

dB1&[c1] (v i1
)�2. Let w1 , w2 be two distinct neighbors of vi1

in B1&[c1]
and let w # NH (vi1+1). Choose u # [w1 , w2]&[w]. Then, (i, x, y)=
(i1 , u, w) is as required.
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Assume now [vi1
, vi2

] & X=<. Then, r�2 and [vi1
, vi2

]�Y. Without
loss of generality, we may assume that vi1

= y1 , and vi2
= y2 . By (3), we

may assume that u1 # V(B1)&[c1]. If u1 # NH (vi2&1), then (i, x, y)=
(i2&1, u1 , u2) is as required. Thus, we may assume that u1 � NH (vi2&1). Let
j0=min[ j : i1� j<i2 , u1 � NH (vj)]. Then, since vi1

= y1 # NC (u1), j0>i1 .
By the choice of j0 , we have u1 # NH (vj0&1). Let u # NH (vj0

). Then, u{u1

and (i, x, y)=( j0&1, u1 , u) is as required. Hence, Claim 2.2 is true. K

Claim 2.3. Suppose E(vi1
C9 vi2

) & M=< and V(vi1
C9 vi2

) & S�[vi1
, vi2

].
Then, there exists a segment Ii in vi1

C9 vi2
such that l(Ii)�L&t+2.

Proof. Let (i, x, y) be a triple that satisfies Claim 2.2. Then, V(Ii)�
V(vi1

C9 vi2
), and so E(Ii) & M=< and V(I i) & S�[vi , vi+1]. Let P be a

longest (x, y)-path in H. Since C is the longest cycle passing through M _ S,

l(Ii)�l(vixPyvi+1)=l(P)+2. (4)

We first assume that [x, y]�V(B1). Then since B1 is an end-block of H,
we have

dB1
(u)=dH (u)=dG (u)&dC (u)�L&t

for each u # V(B1)&[c1]. By Lemma 1, B1 has an (x, y)-path Q of length
at least L&t. By (4), l(Ii)�l(P)+2�l(Q)+2�L&t+2.

Assume now [x, y] �3 V(B1). Without loss of generality, assume that
y � V(B1). Then, since (i, x, y) satisfies Claim 2.2, we have x # V(B1)&[c1]
and y # V(H)&V(B1). By Lemma 1, B1 has an (x, c1)-path P1 of length at
least L&t. Since B1 is an end-block of H, H$=H&(V(B1)&[c1]) is con-
nected. Let P2 be a (c1 , y)-path in H$, then xP1c1 P2y is an (x, y)-path in
H. By (4), we have l(I i)�l(P)+2�l(xP1c1P2y)+2�L&t+3. Hence,
Claim 2.3 is true. K

Note that :=m+k&1�|M |+|S |+2. There exist p and q with
1�p<q�: such that, for each j # [ p, q], E(vij

C9 vij+1
) & M=< and

V(vij
C9 vij+1

) & S�[vij
, vij+1

]. By an argument similar to that in the proofs of
Claims 2.2 and 2.3, we can deduce that each of vip

C9 vip+1
and viq

C9 viq+1
con-

tains a segment of length at least L&t+2. Then

l(C)�2(L&t+2)+2(t&m&2)+m=2L&m.

This contradiction completes the proof of Case 1 of Lemma 3.

Case 2: H is 2-connected. Let w # V(H). By replacing B1&[c1] with
H&[w] in the proof of Case 1, we get a similar contradiction. This
contradiction completes the proof of Lemma 3. K
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Lemma 4. Let G be a 2-connected graph and C the longest cycle passing
through M _ S, where M�E(G) and S�V(G)&V(M). Suppose that C is
not a hamiltonian cycle and let H be a component of G&V(C). Suppose
[u, v]�NC (H) and G[V(H) _ [u, v]] contains a (u, v)-path P of length at
least r+1, where r is a positive integer. If ([uu+] _ E(vC9 v+r)) & M=<
and V(vC9 v+r) & S�[v, v+r], then

(a) Nv+C9 v+r (u+)=<, and
(b) dC (u+)+dC (v+r)�l(C)+|M|.

Proof. (a) Assume, to the contrary, that there exists some i with
1�i�r such that u+v+i # E(G). Then

u+v+iC9 uPvC0 u+

is a cycle longer than C and passing through M _ S, a contradiction.

(b) Let

X=[x : x+ # Nu+C9 v (u+)],

Y=[x : x& # Nv+rC9 u (u+)],

Z=NC (v+r).

Clearly, X & Y=[u+]. Suppose x # X & Z. Then [xv+r, x+u+]�E(G). If
xx+ � M, then

v+rC9 uPvC0 x+u+C9 xv+r

is a cycle longer than C and passing through M _ S. This contradiction
shows

|X & Z|�|E(u+C9 v) & M|. (5)

Suppose x # Y & Z. Then, [x&u+, xv+r]�E(G). If x&x � M, then

v+rxC9 uPvC0 u+x&C0 v+r

is a cycle longer than C and passing through M _ S. This contradiction
shows

|Y & Z|�|E(v+rC9 u) & M|. (6)

By (5) and (6), we get

|(X _ Y) & Z|� |X & Z|+|Y & Z|�|M|. (7)
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Noting that Nv+C9 v+r (u+)=<, we have |X|+|Y|=dC (u+). This together
with |Z|=dC (v+r) and (7) implies

|X _ Y _ Z|=|X _ Y|+|Z&((X _ Y) & Z)|

=|X|+|Y|&|X & Y|+ |Z|& |(X _ Y) & Z|

�dC (u+)&1+dC (v+r)&|M|

=dC (u+)+dC (v+r)&|M|&1. (8)

Since v+r � X _ Y _ Z,

|X _ Y _ Z|�l(C)&1. (9)

By (8) and (9),

dC (u+)+dC (v+r)�l(C)+|M|.

Hence, Lemma 4 is true. K

3. PROOF OF THEOREM 3

First, we prove a special case of Theorem 3.

Theorem 6. Let m�0 and k�3. Let G be a (m+k&1)-connected
graph and M an m-matching of G. If S�V(G)&V(M) with |S|�k&3, then
G contains a cycle of length �min[ |V(G)|, 2

k_k (G)&m] passing through
M _ S.

Proof. By Lemma 2, G has a cycle passing through M _ S. Among
all of these cycles, choose one, say C, with maximum length. By way of
contradiction, assume that l(C)<min[ |V(G)|, 2

k_k (G)&m].

Claim 3.1. |(G&V(C))�k&1.

Proof. Assume, to the contrary, that G&V(C) has k components
H1 , H2 , ..., Hk . Using Lemma 3 with L= 1

k _k (G), we see that H i (1�i�k)
has a vertex x i with dG (xi)< 1

k _k (G). Since [x1 , x2 , ..., xk] is an inde-
pendent set of order k, we have _k (G)��k

i=1 dG (x i)<_k (G), a contradic-
tion. K

Let H1 be any component of G&V(C). Set NC (H1)=[v1 , v2 , ..., vt].
We may assume that the vertices v1 , v2 , ..., vt appear in this order along C9 .
For 1�i�t, define I i=viC9 vi+1 and set vt+1=v1 . We call I i a segment
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of C. By an argument similar to that in the proof of Lemma 2, we have
V(C){NC (H1). Since G is (m+k&1)-connected,

|MC (H1)|=t�m+k&1. (10)

Define

X=[v+
i : 1�i�t, E(I i) & M=<],

Y=[ y # X : NG&V(C) ( y){<],

Z=X&Y.

For any y # Y, there exists a component Hy of G&V(C) with NHy
( y){<.

Note that y& # NC (H1) and y&y � M. Then, since C is the longest cycle
passing through M _ S, Hy {H1 and Hy {Hy$ if y{ y$ # Y. Therefore,
|Y|�|(G&V(C))&1�k&2 by Claim 3.1. By (10), we have

k&1&|Z|� |NC (H1)|&m&|Z|�|X|&|Z|=|Y|�k&2. (11)

Claim 3.2. |Z|�1.

Proof. Assume, to the contrary, that |Z|�2. Let Z=[u+
1 , u+

2 , ..., u+
p ]

( p�2). Then, ui # NC (H1), ui u+
i � M, and dG (u+

i )=dC (u+
i ) for each i,

1�i�p. By l(C)< 2
k _k (G)&m and using Lemma 4 with r=1, we have Z

is an independent set of G, and

dG (u+
1 )+dG (u+

2 )<
2
k

_k (G),

dG (u+
2 )+dG (u+

3 )<
2
k

_k (G),

b

dG (u+
p )+dG (u+

1 )<
2
k

_k (G).

Hence,

:
p

i=1

dG (u+
i )<

p
k

_k (G). (12)

Using Lemma 3 with L= 1
k_k (G), we see that H1 has a vertex x with

dG (x)< 1
k_k (G). If p�k&1, then, since [x, u+

1 , u+
2 , ..., u+

k&1] is an
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independent set of G of order k, by an argument similar to that in the proof
of (12) we have

_k (G)�dG (x)+ :
k&1

i=1

dG (u+
i )<

1
k

_k (G)+
k&1

k
_k (G).

This contradiction shows p�k&2. By (11), |Y |�k&1&|Z|=k& p&1
�1. Let Y$ be a subset of Y of order k& p&1. By the arguments stated
before Claim 3.2, for each y # Y$ we can get a component Hy of G&V(C)
with NHy

( y){<, which satisfies Hy {H1 and Hy {Hy$ if y{ y$ # Y$.
Using Lemma 3 with L= 1

k _k (G), we derive that Hy has a vertex wy with
dG (wy)< 1

k_k (G). Let W=[wy : y # Y$]. Then, |W|=k& p&1 and

:
wy # W

dG (wy)<
k& p&1

k
_k (G). (13)

Noting that Z _ W _ [x] is an independent set of order k, by (12) and
(13), we have

_k (G)� :
p

i=1

dG (u+
i )+ :

wy # W

dG (wy)+dG (x)<_k (G).

This contradiction completes the proof of Claim 3.2. K

By Claim 3.2 and (11), we see that equality holds in Claim 3.2 and (11),
and hence also in (10). In particular, we have |Z|=1 and |Y |=k&2.

Claim 3.3. For any i, j (1�i< j�t),

|NH1
(vi) _ NH1

(vj)|�min[ |H1|, 2].

Proof. Assume, to the contrary, that there are some i, j with
1�i< j�t such that |NH1

(vi) _ NH1
(vj)|<min[ |H1|, 2]. Then, since

vi # NC (H1), |NH1
(vi) _ NH1

(vj)|=1 and |H1|�2. Let NH1
(vi) _ NH1

(vj)=
[u]. Then G&((NC (H1)&[v i , vj]) _ [u]) contains at least two compo-
nents. Since G is (m+k&1)-connected, we have |NC (H1)|&1�m+k&1.
This contradicts the earlier assertion that equality holds in (10). K

Recall that |Z|=1 and |Y |=k&2. Let Z=[u+
1 ] and Y=[u+

2 , ...,
u+

k&1]. Then, [u1 , u2 , ..., uk&1]�NC (H1) and NG&V(C) (u+
1 ){<. For

2�i�k&1, let Hi be a component of G&V(C) with NHi
(u+

i ){<. By the
arguments stated before Claim 3.2, we have Hi {Hj , 1�i< j�k&1. It
follows from Claim 3.1 that H1 , H2 , ..., Hk&1 are the only components of
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G&V(C). For 1�i�k&1, let xi be a vertex of Hi with dG (xi)< 1
k _k (G)

and define Iui
=I j if ui=v j . Since u+

i # X, E(Iui
) & M=<. Since C is the

longest cycle passing through M _ S, l(Iui
)�2. We consider two cases.

Case 1: |H1|�2. Consider Y=[u+
2 , ..., u+

k&1]. Since |S|�k&3, Y&S
{<. We may assume that u+

k&1 � S. By Claim 3.3, |NH1
(u1) _ NH1

(uk&1)|
�2. There exists a (u1 , uk&1)-path of length at least 3 in G[V(H1) _
[u1 , uk&1]]. Since ([u1u+

1 ] _ E(uk&1C9 u+2
k&1)) & M=< and u+

k&1 � S, by
Lemma 4, we have that u+

1 u+2
k&1 � E(G) and

dC (u+
1 )+dC (u+2

k&1)�l(C)+m<
2
k

_k (G). (14)

Subcase 1.1: NG&V(C) (u+2
k&1)=<. By u+

1 # Z and (14), we have

dG (u+
1 )+dG (u+2

k&1)<
2
k

_k (G). (15)

Since dG (xi)< 1
k _k (G) (i=1, ..., k&2), we get

:
k&2

i=1

dG (xi)<
k&2

k
_k (G). (16)

Since [x1 , ..., xk&2 , u+2
k&1 , u+

1 ] is an independent set of order k, by (15)
and (16),

_k (G)� :
k&2

i=1

dG (xi)+dG (u+
1 )+dG (u+2

k&1)<_k (G),

a contradiction.

Subcase 1.2: NG&V(C) (u+2
k&1){<. Then, there exists some j with

1� j�k&1 such that NHj
(u+2

k&1){<. Since C is the longest cycle passing
though M _ S, by NHk&1

(u+
k&1){< and u+

k&1u+2
k&1 � M we have j{k&1.

Assume first that j=1. Then u+2
k&1 # NC (H1). Noting that uk&1 # NC (H1),

we have by Claim 3.3 that |NH1
(uk&1) _ NH1

(u+2
k&1)|�2. Therefore,

G[V(H1) _ [uk&1 , u+2
k&1]] contains a (uk&1 , u+2

k&1)-path Q of length at
least 3. Since E(uk&1C9 u+2

k&1) & M=< and u+
k&1 � S, we get a cycle

u+2
k&1C9 uk&1Qu+2

k&1 ,
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which is longer than C and passes through M _ S. This contradiction
shows j{1. Therefore, 1< j<k&1. Let w1 # NH1

(u j), w$1 # NH1
(uk&1),

wj # NHj
(u+

j ), and w$j # NHj
(u+2

k&1). For i=1, j, let Pi be a (wi , w$i)-path in
Hi . Then, we get a cycle

u+2
k&1C9 uj w1P1w$1uk&1C0 u+

j wjPjw$ju+2
k&1 ,

which is longer than C and passes through M _ S. This contradiction
completes the proof of Case 1 of Theorem 6.

Case 2: |H1|=1. In this case, we have V(H1)=[x1]. Since equality
holds in (10), this implies

dG (x1)=dC (x1)=|NC (H1)|=m+k&1. (17)

Noting that [u1 , u2 , ..., uk&1]�NC (H1) and E(Iui
) & M=< (i=1, 2, ...,

k&1), we have from Lemma 4(a) that [u+
1 , u+

2 , ..., u+
k&1] is an independent

set of G. Hence,

dC (u+
1 )�l(C)&(k&1). (18)

Since u+
1 # Z, by (17) and (18),

dG (u+
1 )+dG (x1)�l(C)+m<

2
k

_k (G). (19)

Since [u+
1 , x1 , x2 , ..., xk&1] is an independent set of order k, by dG (xi)<

1
k_k (G) (i=2, ..., k&1) and (19),

_k (G)�dG (u+
1 )+dG (x1)+ :

k&1

i=2

dG (xi)<_k (G).

This contradiction completes the proof of Theorem 6. K

Finally, we turn to proving Theorem 3.

Proof of Theorem 3. Otherwise, let m be as small as possible such that
there exists a graph G satisfying the condition of Theorem 3, but for G
and its subgraph F # Fm, s Theorem 3 does not hold. Then by Theorem 6,
we may assume that m�2 and E(F) is not independent. Suppose
xy, yz # E(F ). Let G$=G&[ y]+xz and F $=F&[ y]+xz. Then, G$ is
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(m&1+k&1)-connected and F $ # Fm&1, s is a subgraph of G$. By the
choice of m, there is a cycle C$ of length at least

min { |V(G$)|,
2
k

_k (G$)&(m&1)=
�min { |V(G)|&1,

2
k

(_k (G)&k)&(m&1)=
=min { |V(G)|&1,

2
k

_k (G)&m&1= ,

which passes through E(F $) _ V(F $) in G$. By replacing the edge xz of C$
with xyz, we obtain a cycle of length �min[ |V(G)|, 2

k_k (G)&m] passing
through E(F ) _ V(F ) in G. This contradiction completes the proof of
Theorem 3. K
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