Holomorphic extension from the sphere to the ball

Luca Baracco
Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy

ARTICLE INFO

Article history:

Received 29 June 2011
Available online 4 October 2011
Submitted by A.V. Isaev

Keywords:

Separate extension
Morera type theorem
Testing families of analytic discs

Abstract

Real analytic functions on the boundary of the sphere which have separate holomorphic extension along the complex lines through a boundary point have holomorphic extension to the ball. This was proved in Baracco (2009) [4] by an argument of CR geometry. We give here an elementary proof based on the expansion in holomorphic and antiholomorphic powers.

© 2011 Elsevier Inc. All rights reserved.

1. Main result - statement and proof

The characterization of boundary values of holomorphic functions by the extension along complex lines has a long history and many contributions in the context of harmonic analysis: as main references we quote Agranovsky and Semenov [2], Agranovsky and Valsky [3], Globevnik and Stout [6], Nagel and Rudin [8], and Stout [10]. More recently, the problem has been brought by Tumanov [11] in the framework of the CR geometry. From this point of view, we have obtained in [4] a principle of holomorphic extension from a convex boundary of \mathbb{C}^{n} for functions which have separate extension along generic $(2 n-2)$-parameter families of discs. In particular, the discs which pass through a fixed boundary point. It is well known that if we move the "center" of the system of discs to the interior, the conclusion fails; in this case, two interior points are needed according to Agranovsky [1]. The results of [4] apply to general convex sets but use stationary discs instead of straight lines (for the theory of stationary discs see [5] and [7]). What we wish to show here is that for the straight lines through a boundary point of the sphere the proof is much more direct and simple. In this specific problem, the theory of lifts of discs developed in [4] is not needed. Using Taylor expansions we can see that the moment condition forces the coefficients of the antiholomorphic powers to vanish.

Denote by C^{ω} the class of real analytic functions. Let \mathbb{B}^{n} be the unit ball of \mathbb{C}^{n} and let z_{0} be a boundary point.

Theorem 1.1. Let f be a function in $C^{\omega}\left(\partial \mathbb{B}^{n}\right)$ and suppose that f extends holomorphically from $\partial \mathbb{B}^{n}$ along each line passing through z_{0}. Then f extends holomorphically to \mathbb{B}^{n}.

Proof. (a) We first prove the result for \mathbb{B}^{2} in \mathbb{C}^{2}. It is not restrictive to assume that z_{0} is the pole $(0,1)$. The straight discs through $(0,1)$ can be parametrized over $a \in \mathbb{C}$ as the sets D_{a} described by

$$
D_{a}(\tau)=\left(\frac{\tau-1}{1+|a|^{2}} a, \frac{\tau-1}{1+|a|^{2}}+1\right) \quad \forall \tau \in \bar{\Delta} .
$$

Note that when $|a| \gg 1$ the disc D_{a} gets close to the complex tangent line to the sphere at the point z_{0}, and moreover D_{a} lies in a neighborhood of z_{0}.

[^0]Since $f \in C^{\omega}\left(\partial \mathbb{B}^{2}\right)$, and $\bar{\partial}_{z_{2}}$ is transverse to $\partial \mathbb{B}^{2}$ at z_{0}, f can be extended in a neighborhood of z_{0} holomorphically in z_{2}; this is an immediate consequence of Cauchy-Kovalewsky Theorem. We denote again by f this extension. We consider the power series expansion of f at z_{0}

$$
f\left(z_{1}, \bar{z}_{1}, z_{2}\right)=\sum_{l=0}^{+\infty} \sum_{h+k+2 m=l} b_{h, k, m} z_{1}^{h} \bar{z}_{1}^{k}\left(z_{2}-1\right)^{m}
$$

note that we reordered the terms in a weighted degree (giving weight 2 to z_{2}). Taking $|a|$ sufficiently big we consider the N-momentum on the disc D_{a} :

$$
\begin{align*}
G(a, N) & =\int_{\partial \Delta} \tau^{N} f\left(D_{a}(\tau)\right) d \tau \\
& =\int_{\partial \Delta} \tau^{N} \sum_{l=0}^{+\infty} \sum_{h+k+2 m=l} b_{h, k, m}\left(\frac{\tau-1}{1+|a|^{2}} a\right)^{h}\left(\overline{\frac{\tau-1}{1+|a|^{2}} a}\right)^{k}\left(\frac{\tau-1}{1+|a|^{2}}\right)^{m} d \tau \tag{1.1}
\end{align*}
$$

We want to prove that $b_{h, k, m}=0$ whenever $k>0$. To this end, let l_{o} be the lowest weighted degree such that $b_{h, k, m} \neq 0$ for some $k>0$ and let k_{0} be the highest degree in \bar{z}_{1} for which this happens. We get $G(a, N)=0$ for any N and any a, in particular, for $t a$ with $|a|=1$ and $t \rightarrow+\infty$. Consider the limit

$$
\begin{align*}
\lim _{t \rightarrow+\infty} G(t a, N) t^{l_{o}}= & \lim _{t \rightarrow+\infty} \sum_{l=l_{0}}^{+\infty} \sum_{h+k+2 m=l} 2 \pi i(-1)^{k+h+m+N+1} \\
& \times\binom{ h+k+m}{k-N-1} a^{h} \bar{a}^{k}\left(\left(\frac{1}{t^{2}}+|a|^{2}\right)^{m}\right) t^{l_{0}-l} \frac{1}{\left(\frac{1}{t^{2}}+|a|^{2}\right)^{l}} b_{h, k, m} \\
= & \sum_{h+k+2 m=l_{0}}(2 \pi i)(-1)^{h+k+m+N+1}\binom{h+k+m}{k-N-1} b_{h, k, m} \frac{a^{h} \bar{a}^{k}|a|^{2 m}}{|a|^{2 l_{o}}}=0 \tag{1.2}
\end{align*}
$$

where we have used the fact that $\int_{\partial \Delta} \tau^{N}(\tau-1)^{h}(\bar{\tau}-1)^{k}(\tau-1)^{m} d \tau=(-1)^{k} \int_{\partial \Delta} \frac{(\tau-1)^{h+k+m}}{\tau^{(k-N)}} d \tau=(-1)^{h+m+k+N+1}\binom{h+k+m}{k-1-N}$. We first notice that in the above summations, we can take $k>N$; in fact, since $\bar{\tau} \tau=1$, then $\overline{(\tau-1)^{k}}=\tau^{-k}(1-\tau)^{k}$ and the factor τ^{N-k} and Cauchy Theorem imply the vanishing of the terms with $N-k \geqslant 0$. Next, choosing $N=k_{0}-1$, we get the following relation on the coefficients b 's:

$$
\sum_{h+k_{o}+2 m=l_{0}}(-1)^{h+m}\binom{h+k_{0}+m}{0} b_{h, k_{0}, m} a^{h+m} \bar{a}^{k_{0}+m}=0
$$

Writing $a=e^{i \theta}$, we get

$$
\sum_{h+k_{o}+2 m=l_{o}}(-1)^{h+m+k_{o}} b_{h, k_{o}, m} e^{i \theta\left(h-k_{o}\right)}=0
$$

which implies $b_{h, k_{0}, m}=0$ for $h+k_{0}+2 m=l_{0}$. Therefore, when $k \geqslant 1$, we have $b_{h, k, m}=0$ for any weighted degree l. This concludes the proof in dimension 2.
(b) We pass from \mathbb{B}^{2} to \mathbb{B}^{n}. We still suppose that z_{0} is the point $(0, \ldots, 1)$. By (a) we know that f extends holomorphically along the slices of \mathbb{B}^{n} with the 2 -dimensional planes through z_{0}. All these extensions to different slices glue together to a single well-defined function. In fact, two slices have intersection which is a line through z_{0} unless it is empty; we still call f this extension. It is clear that $f \in C^{\omega}\left(\mathbb{B}^{n}\right)$ because f is given by the integral Cauchy formula for a real analytic function on a real analytic family of circles. We note that f is holomorphic on any straight line through 0 (since either this pass through z_{0} or it is contained in a single 2-dimensional slice through z_{0}). Application of Forelli's Theorem (see [9]) yields the conclusion.

References

[1] M. Agranovsky, Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of \mathbb{C}^{n}, J. Anal. Math. 113 (2011) $293-304$.
[2] M.L. Agranovsky, A.M. Semenov, Boundary analogues of the Hartogs theorem, Sib. Math. J. 32 (1) (1991) 137-139.
[3] M.L. Agranovsky, R.E. Valsky, Maximality of invariant algebras of functions, Mat. Zh. 12 (1971) 3-12.
[4] L. Baracco, Holomorphic extension from a convex hypersurface, arXiv:0911.1521 [math], 2009.
[5] C.H. Chang, M.C. Hu, H.P. Lee, Extremal analytic discs with prescribed boundary data, Trans. Amer. Math. Soc. 310 (1) (1988) 355-369.
[6] J. Globevnik, E.L. Stout, Boundary Morera theorems for holomorphic functions of several complex variables, Duke Math. J. 64 (3) (1991) $571-615$.
[7] L. Lempert, La métrique de Kobayashi et la reprsentation des domaines sur la boule (The Kobayashi metric and the representation of domains on the ball), Bull. Soc. Math. France 109 (1981) 427-474 (in French).
[8] A. Nagel, W. Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (4) (1976) 841-865.
[9] W. Rudin, Function Theory on the Unit Ball of \mathbb{C}^{n}, Grundlehren Math. Wiss., Springer-Verlag, New York, Berlin, 1980
[10] E.L. Stout, The boundary values of holomorphic functions of several complex variables, Duke Math. J. 44 (1) (1977) 105-108.
[11] A. Tumanov, A Morera type theorem in the strip, Math. Res. Lett. 11 (1) (2004) 23-29.

[^0]: E-mail address: baracco@math.unipd.it.

