
Science of Computer Programming 36 (2000) 5–25
www.elsevier.nl/locate/scico

ESTEREL: a formal method applied to avionic software
development

G�erard Berrya ; ∗, Amar Boualib, Xavier Fornaria, Emmanuel Ledinotc,
Eric Nassorc, Robert de Simoneb

aEcole des Mines de Paris/CMA, 2004, route des Lucioles, B.P 93 F-06902, Sophia-Antipolis
cedex, France

bINRIA Sophia-Antipolis, 2004, route des Lucioles, B.P 93 F-06902, Sophia-Antipolis cedex, France
cDassault Aviation, DGT/DPR/DESA, 78 Quai Marcel Dassault F-92214, Saint-Cloud cedex, France

Abstract

Dassault Aviation is a French aircraft manufacturer building civil business jets (the Falcon
family) and military jet �ghters (the Mirage and Rafale families). It has been concerned with
formal methods inside the development process of avionic software since 1989. In this paper,
we give a comprehensive account of three industrial-size studies carried out at Dassault Aviation
using the reactive synchronous language ESTEREL and its toolset, in collaboration with the public
research team that develops ESTEREL at Ecole des Mines de Paris and INRIA Sophia-Antipolis.
We deal with software engineering issues related to compilation, optimization and veri�cation
of safety-critical embedded software. The goal is to ensure production of e�cient and reliable
code. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Avionic software; Synchronous reactive systems; Safety-critical systems; ESTEREL;
Modularity; Automatic code generation; Optimization; Veri�cation

1. Formal methods for avionic software

1.1. The application domain

Avionic systems consist of three main classes of subsystems:

• Aircraft management computers: The fueling computer, the air conditioning com-
puter, the landing computer, etc.

• Mission management systems: Roughly half a dozen computers, communicating
through redundant real-time local networks. About 500 000 lines of Ada source code
are loaded in the Mission Computer (MCs), 50% up to 80% of which are reactive
software: event-driven computations, sequential logics, or �nite-state automata.

∗ Corresponding author.

0167-6423/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6423(99)00015 -5

6 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

• Flight control systems (FCS): Three computers, one of which takes responsibility
of the aircraft control laws (stability), and is therefore highly safety critical.

All embedded software is speci�ed at Dassault Aviation, where resulting equipments
and systems are also integrated and validated by ground tests and ight tests. Thus,
Dassault Aviation locally masters the initial and �nal phases of the development pro-
cess. Between these phases, everything is sub-contracted to equipment suppliers, except
for FCS’s equipments, whose hardware and software are built in-house.
Because of this organization, there is a twofold interest in formal methods:

(1) The high level, abstract, and precise style of expression enforced by formal meth-
ods should lead to better quality speci�cations than pure paper-pencil ones, or
even semi-formal notations. Furthermore, since formal semantics yields at least an
interpreter, formal avionic software speci�cations may be tested before they are
realized by the equipment supplier. This �rst motivation applies primarily to the
aircraft management computers and to the equipments of the mission management
systems.

(2) In the context of ight control systems, where Dassault Aviation is its own supplier,
the main goal is to generate, test, and possibly prove safety critical embedded
code. The focus is on formal veri�cation and automatic safe code generation
from the speci�cation formalism. The word automatic is crucial here: while high-
level formal speci�cations are bene�cial in the prototyping and speci�cation testing
phases, they contribute extra costs, and they should not be simply discarded in
later phases. Rewriting the actual embedded code by hand from scratch, using the
executable formal speci�cation only as a reference model, is interesting in theory
but too expensive in practice.

These industrial needs entail a set of requirements (see Section 2) that any formal
method candidate for use as everyday industrial practice have to comply with.
We now briey outline three real size experiments, drawn from di�erent classes of

avionic subsystems, successfully conducted by R&D engineers at Dassault Aviation. In
two cases, the results were hard to achieve: the di�culties prompted for evolution in
the design methods, as they pointed out particular locations where further theoretical
work was needed. Work was carried out by ESTEREL (Section 3) specialists at Das-
sault Aviation, who had little knowledge of the speci�c application domains, so that
“speci�cation analysis” included training to the domain.

1.1.1. The maintenance and test computer
The �rst application is an executive-level software module of one of the three com-

puters in a jet �ghter ight control system: the maintenance and test computer (MTC).
This computation unit starts testing sequences when the aircraft is on the ground,
under orders from the pilot or the maintenance crew. In ight, the MTC monitors
all of the FCS’s critical parts (main computer’s digital rack, actuators motion, etc.),
and saves any detected failure in a stable memory space (black box) for post-ight
analysis.

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 7

The existing MTC software is a real-time multi-tasking code. Nine tasks driven by
both periodic and non-periodic events have to be scheduled. The shortest cycle dura-
tion is 10ms, and there is another scheduling cycle of 40ms. The target is a 68020
microprocessor programmed in C, with no real-time operating system. The actually
embedded software has been designed to be scheduled on-line, according to an High-
est Priority First (HPF) policy. The tasks handle the events: timer interrupts, pilot
commands, aircraft events, etc.
The main objective of this case study was to assess ESTEREL’s capability of generating

truly embeddable safe and e�cient code. ESTEREL was used to replace the HPF on-line
scheduler by an o�-line formally veri�ed scheduling automaton. All reactive aspects of
the original eleven tasks were then gathered into a single reactive kernel, programmed
and veri�ed with ESTEREL. We spent approximatively 12 man=months on this case study:

• 6 months by an ESTEREL expert to analyze the detailed software speci�cation and
to design a new software architecture better suited to the use of ESTEREL. An MTC
software engineer helped the ESTEREL specialist, accounting for one extra man=month
of work. The detailed speci�cation was a 500 pages document.

• 2 months by the ESTEREL expert to program the reactive part of the MTC software
with ESTEREL, to test it in interpreted mode on a workstation, and to compile the
global reactive application into a safe embeddable C code.

• 1 extra month to split the global ESTEREL program into two separately compiled and
optimized modules (Kernel and MP of Table 1), and to test them again.

• 2 months by an FCS software engineer to integrate the two generated C codes on
the target 68020 embedded microprocessor, to test them, and to measure their actual
performance.

1.1.2. The landing computer
The second application deals with one particular function of a landing computer: the

control of the opening and closing of the aircraft traps, in synchronization with the
up and down motions of the landing gears. This function also monitors the command
execution, to send alarms to the pilot whenever relative traps and gears’ position sensors
do not deliver the expected information in a certain amount of time after the pilot’s
command. Position sensors are replicated (double or triple contact sensors) so that a
single sensor failure may be unambiguously discovered and eliminated by software
fault-tolerance mechanisms.
The main objective of this experiment was extensive formal veri�cation. It took

place in 1995 and 1996, and assessed primarily the performances of the TIGER 1 BDD
package [18] for exhaustive state space search (see Section 2).

1 Commercial package developed at DEC PRL by O. Coudert, J.C. Madre, H. Touati, distributed by XORIX.

8 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

This case study required a 7 man=months e�ort:

• 2.5 months to analyze the various system and software speci�cation documents
(about 300 pages).

• 2.5 months to write and simulate the ESTEREL program in interpreted mode, including
the development of a dedicated graphical user prototyping interface.

• 2 months to formalize and verify the safety properties, including the time needed to
write a introductory document to veri�cation by model-checking, meant to be read
by non-expert software engineers.

1.1.3. The side displays management
Man-machine interfaces in military aircraft are very complex, as seen from peering

inside the cockpit of any modern airplane. In the latest combat aircraft at Dassault
Aviation, tactile screens are included in two side displays. This increases by far the
actual number of commands simultaneously available to the pilot. About 80 graphical
pages can be displayed on these two tactile side screens, each page including numerous
virtual command buttons.
The control logic which decides which two pages out of the 80 are displayed on

screens depends on 125 physical or virtual commands, as well as on the current activa-
tion state of operational functions (navigation, attack, etc.) and on devices availability.
The side-display management logic was speci�ed, programmed, and tested using the

ESTEREL environment, augmented with a Statecharts-like graphical editor and object-
oriented language extensions. The main objective was to experiment with ESTEREL pro-
gramming in the large.
The side-displays case study required 2 man=month for the Functions module (of

Table 1), 1.5 man=month for the side Displays (of Table 1) management module, and
an extra time of up to 5 days to manage to compile both together, because of resulting
cyclic circuits (see Section 4.2).

2. Requirements for industrial strength formal methods

Getting a formal method to become adopted by a reasonably large number of engi-
neers in a company is a long and painstaking process, even when the method is based
on high-quality academic research results and when its tools ensure high productivity.
In this section, we list speci�c requirements which Dassault Aviation feels a formal
method has to meet to be well accepted and successful in the development of actual
products under time-to-market constraints. We also briey discuss how far ESTEREL
meets these requirements.

• Expressive power: The formal method (FM) must add signi�cant value compared
to general-purpose programming languages (C; C++, Ada, etc.), while remaining
easy to use. This implies that the formalism should be small, high-level, and spe-
cialized, with primitive notions chosen for their adequacy to the application

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 9

domain and its existing design methods. Engineers used to paper-pencil speci�ca-
tions and unfamiliar with actual programming will require graphical formalisms.
Graphical representation support may also be useful when developing large appli-
cations, for instance to help browsing the hierarchical structure of the model at
a glance, and to make communication amongst designers easier. Graphical nota-
tions should retain sound semantics just as textual programs. Otherwise, they can
become misleading or fail to automatically generate simulation or implementation
code.

• Testing facilities: Formal should be compatible with exible. The “program a little,
simulate a little” paradigm of rapid application development (RAD) tools is also
appropriate to formal methods. A formal method should provide an interpretor or a
fast incremental compiler in order to be attractive and cost-e�ective in the industrial
production cycle.
Still, quick simulation is not enough. Source-level debugging, test-case recording

and automatic replay of tests should also be available. High-level dedicated program-
ming style on one-hand, veri�cation on the other hand do not supersede traditional
simulation, but they should rather complement it. In particular, veri�cation coun-
terexamples should produce test sequences.

• Automatic code generation: Development process seamlessness is at stake here. It is
now well established that formal methods signi�cantly improve speci�cation quality
and productivity. However, if there is no further link from the speci�cation phase
to the programming and �nal testing phases, the bene�ts are severely reduced or
impaired.
Automatic embedded-code generation from high-level dedicated formalisms is one

of the most e�ective way to ensure that the program is conform with its speci�ca-
tions. The conformity relies on the compiler correctness. Formally veri�ed re�ne-
ments [1] or realizability theory and program extraction from constructive proofs
[16] are other means to ensure process seamlessness.
For Dassault Aviation FCS activities, process seamlessness is certainly crucial due

to the importance of safety-critical aspects.
• Formal veri�cation: From an industrial point of view, the main requirement regard-
ing formal proof techniques is probably simplicity of use. At Dassault Aviation,
as certainly in many other companies, software engineers fear routinely that formal
methods are too complex and esoteric, that too long training or di�erent skilled
people are required. Automatic methods based on model-checking [15] or abstract
interpretation [10] are more easy to introduce in a company than partially automated
ones based on theorem proving.
The second requirement is scalability. In our context the starting point of veri�ca-

tion and analysis of programs consists quite often in the e�cient computation of the
(�nite but extra-large) space of reachable con�gurations. Enormous progress were
achieved in the past �ve years thanks to symbolic BDD-based algorithms [14, 17].
But even powerful BDD packages such as the TIGER library extensively used in
the current collaboration between Dassault Aviation and INRIA, sometimes fail to

10 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

complete on medium-size programs. Brute force global veri�cation is certainly
not su�cient, and compositional approaches must be derived to cut down on comple-
xity [15].

• Support: Industrial companies cannot rely con�dently on software products whose
maintenance support is not guaranteed, or taken up by a su�ciently large community
of industrial users. This applies as well to formal methods. This question was put
forth in 1995, when Dassault Aviation decided to use ESTEREL operationally.

3. Synchronous reactive programming

3.1. Concepts

Reactive systems are mostly meant to communicate and react in collaboration with
their environment. They usually possess both a reactive interaction aspect and a trans-
formational aspect for data computation that update internal memory states. Here, we
are concerned by control-dominated systems for which data-handling is fairly simple.
Synchronous reactive systems (SRS) [19] behave according to discrete instants where
inputs are provided. The system reacts to inputs in function of its current state by
computing the outputs and the new state. The synchrony hypothesis simply states that
instants are shared throughout the system and that reaction takes no time; in practice,
it means that reaction time can be safely neglected.
SRS are constructed as networks of parallel subcomponents that react simultaneously

and communicate by broadcasting signals, which can be explicitly scoped to range only
on subsystems. Preemption structures control the life and death of a process; they are
essential construct for control-dominated systems.
See [6, 7, 12, 19] for a general presentation of SRS, including motivation, discussion

and justi�cation of concepts.

3.2. Structured programming of reactive systems

3.2.1. ESTEREL
ESTEREL [6, 7, 31] is an imperative language dedicated to structured programming

of control-dominated SRS. The core set of primitives contains powerful orthogonal
constructs for concurrency, communication, and preemption. The full language adds
a number of user-friendly derived statements. Data handling is imported from clas-
sical procedural languages such as C. An ESTEREL program starts by an interface
header, where data-handling objects and input=output signals are declared. The program
body then de�nes the behavior. An example ESTEREL program drawn from one of the
Dassault Aviation applications is given in Fig. 1. The programming constructs are as
follows:

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 11

Fig. 1. Examples of ESTEREL modules.

• Control ow statements: classical assignment, sequential composition ‘;’, if-then-
else test , the looping construct “loop-end”, and parallel composition ‘||’.

• Communication statements: signal emission “emit S”, signal presence test “present
S then body1 else body2 end”, and local signal scoping “signal S in body end”.

12 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

• Division of discrete instants: “pause” explicitly closes the current behavior until
next reaction; “halt” is a short-hand for “loop pause end”, which idles forever
(unless preempted).

• Preemption operators: “suspend body when S” inhibits (freezes) the body for the
current reaction if S is present; “abort body when S” kills the body and instanta-
neously terminates upon S. A “trap T in body end” construct makes it possible
to self-preempt body by executing “exit T”. The trap-exit pair constitutes an
exception mechanism fully compatible with concurrency.

Practice has shown that the above statements are very handy for writing control
applications where the di�culty is in launching, killing, and coordinating tasks.
An essential feature of Esterel is determinism: a program generates the same output

sequences from the same input sequences, which is desirable in most applications. This
contrasts with the classical use of non-deterministic operating systems, which make
debugging and analysis much harder. Furthermore, in many cases, no heavy dynamic
task creation is required, so that using an operating system would be overkill.
Synchronous reactive programs are better viewed as (big) �nite-state machines. The

case study of the visualization interface is an excellent example: not all possible dis-
plays are active at the same time, but they must all be present and have state; the
protocol for their activation is a sophisticated �nite state machine.

3.2.2. Graphical representation
Statecharts [21] is a popular graphical description language in the domain of em-

bedded systems. However, this formalism sometimes lacks accuracy to represent the
subtle semantic preemption mechanisms o�ered by ESTEREL, and this reects in the
lower ability to produce e�cient code. The graphical language SYNCCHARTS [2] is
based on the same hierarchical automata view but provides graphical counterparts to
the Esterel preemption constructs, see Fig. 5 Graphical SyncCharts are compiled into
textual ESTEREL.

4. From Esterel to Boolean equation systems

The ESTEREL compiler translates the control core of programs into Boolean Equation
Systems (BES) with Boolean memory registers, also called latches here. Such systems
are widely used for the logical description of synchronous hardware circuits. As far as
data handling is concerned, ESTEREL data actions are viewed as additional side-e�ects
triggered by appropriate Boolean values.
The translation into BES makes it possible to apply existing hardware CAD tech-

niques to embedded software. Conversely, one can view synchronous languages as
high-level hardware description formalisms and transport their techniques there. Sev-
eral steps of the ESTEREL compilation process bene�t from the relation with circuit
design: causality analysis, combinational and sequential optimization, and symbolic

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 13

model-checking for analysis and debugging. All these steps involve crafted dedicated
algorithms, mostly using BDDs (Binary Decision Diagrams) [13]. Some of them are
original and have been developed in the context of the collaboration with Dassault
Aviation, which provided larger and larger examples. For the time being, program
compiling and analysis is done in a global way, which is a strong limitation. Larger
programs will require a compositional approach, see Section 4.5.
In the sequel, we briey present the semantics of BES, the constructive causality

analysis, BES optimization, and BES veri�cation.

4.1. Formal semantic interpretation

4.1.1. Boolean equation systems and the ESTEREL translation
Formally, a BES is a structure: (In, Out, Reg, Loc, Eqs), where In, Out, Reg,

Loc are disjoint �nite sets of input, output, register, and local Boolean variables, and
where xi=F(x)∈Eqs is an equation de�ning the variable xi ∈Out ∪Reg∪Loc as a
Boolean formula on variables x∈ In∪Reg∪Loc. (In hardware vocabulary, the variables
are called wires or nets, and BES are often called netlists. They also correspond to
Mealy machines.) Execution is done in cycles, starting from the initial state where all
registers have value 0. In each cycle, the outputs, next state, and locals are computed
from the inputs and Boolean memory registers. The number of states a BES can take
is obviously �nite and of cardinality less than 2n if there are n registers. An essential
characteristic of a BES is its reachable state space or RSS, which is the set of states
that can be reached by a computation from the initial state.
The main advantage of BES is to be both practical and formal. Practically speaking,

one can directly generate hardware or C code from a BES. Theoretically speaking,
one can use the power of modern symbolic Boolean manipulation techniques such as
BDDs to e�ciently analyze and optimize BES.
The idea of the translation from ESTEREL to BES is to encode the control ow by

additional wires explicitly propagating activity, encoding sequencing as transmission of
activity, concurrency as forking of activity, and preemption as deprivation of activity.
For example, the sequence P;Q is turned into a parallel product P|Q where P signals
completion through an additional signal on which Q is busy waiting for immediate
start. The full translation is provided in [4, 5].

4.2. Constructive causality

For the semantics of a BES to be truly founded, one must require that outputs and
registers get a unique Boolean value for each input and state. A classical su�cient
condition is acyclicity of the combinational logic (excluding registers). However, the
ESTEREL experience at Dassault Aviation has shown that this condition is too strong for
large controller programming, especially when integrating code from several program-
mers. Cyclic circuits must also be considered.

14 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

Our analysis of cyclic circuits relies on constructive causality [5, 30], a re�ned
notion which ensures that values of local, output, and next-state wires are computed
entirely by pure propagation of facts from inputs and current state (as opposed to
“guessing” solutions, later validated). A full description of constructive causality and
its algorithmic computation is outside the scope of this paper, but we can sketch the
main ideas. First, given inputs and a state, there exists a linear-time algorithm to decide
constructiveness (i.e. correctness of the BES) and to compute the outputs and next state.
This algorithm is implemented in the ESTEREL interpreter. Second, we have developed
BDD-based algorithms to symbolically check for constructiveness for all inputs and
all reachable states. The algorithm is presented in [30], improving upon original ideas
by Malik [26]. It is based on ternary Boolean encodings where the unde�ned Boolean
{⊥} encodes absence or non-stabilization of value, as in Scott’s denotational semantics.
The algorithm perform a �xpoint computation in the three-valued Boolean domain,
symbolically propagating facts (de�ned wire values). The acyclic version of the circuit
is built from the original cyclic circuits and the computed BDDs. The SCCAUSAL [32]
component of the ESTEREL compiler implements this algorithm using the TIGER BDD
library [18].
Three major technical improvements of the constructiveness checking algorithm were

required to handle the large Dassault examples. We cite them for specialists. First, we
use �xpoint acceleration techniques originally developed for abstract interpretation of
programs [11] to reduce the number of steps in the �xpoint computation. Second, we
interleave the forward computation of the reachable state space (RSS) of the circuit
with the computation of its output and next-state BDDs. These BDDs explode when
directly computed from the combinational logic. Using the approximation of the RSS
computed so far as a simpli�er makes the computation possible. Third, to avoid gener-
ating too big an acyclic BES from a cyclic one, we had to carefully keep the structure
of connected components, replacing only a few backwards nets by BDDs (notice how-
ever that the worst case is truly exponential).

4.3. Optimization

Due to the structural aspects of the translation, BES produced from ESTEREL (and
even more from SYNCCHARTS) are far from optimal. As usual, high-level programming
provides comfort and easier software engineering but sacri�ces low-level wizard tricks
for e�ciency. Optimization procedures are meant to correct this situation.
BES optimization divides into combinational and sequential techniques. Combina-

tional optimization deals with the pure Boolean logic part, while sequential optimization
deals with optimizing the state encoding by registers. Combinational optimization for
ESTEREL is currently performed using standard algorithms of the SIS environment devel-
oped at UC Berkeley [27]. We have developed new sequential optimization techniques
implemented in a tool called REMLATCH [28]. Most of them are based on e�cient calcu-
lation and usage of the RSS. We also use direct information provided by the structured
programming style of ESTEREL, before computing the RSS, which can be expensive. For

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 15

instance, in a sequence P;Q or in a test if c then P else Q, the registers generated
by P and Q are mutually exclusive. This information can be exploited both to simplify
the logic and to remove redundant registers [29].
The collaboration with Dassault Aviation was a major testbench for the development

of our optimization techniques. As a matter of fact, some of the Dassault programs
now serve as large-size benchmarks in the CAD community.

4.4. Veri�cation, analysis, debugging

BES form an ideal support for formal veri�cation of program properties, a crucial
need in our application range. Veri�cation is directly based on the RSS symbolic
computation. The RSS can actually be thought of as the largest useful invariant of the
system. Veri�cation queries can be put either in terms of temporal logic formulae [23]
or of synchronous observers [20]. While less powerful, we choose the second approach
because of its homogeneity [3, 9]: observers are additional ESTEREL programs put in
parallel with the main program under analysis; an observer is in charge of emitting
a speci�c signal (e.g. BUG) in case of program malfunction. Veri�cation of safety
properties then consists in symbolically checking that observer outputs can never be
emitted. Our XEVE model-checker [8] veri�es observer-based properties and generates
counter- examples for false properties. Veri�cation is currently extended towards some
forms of liveness properties.
Exhaustive veri�cation of programs with data is more di�cult (sometimes undecid-

able) due to the possible complexity of in�nite data types and related transformations.
We are currently attacking this area, either by developing speci�c algorithms or by
using other existing veri�ers.

4.5. Modularity, compositionality

Many of the processing phases presented above can be computationally costly. This
is especially the case for the constructiveness and RSS computations. The only way to
reduce the complexity is to apply the algorithms in a compositional fashion. This can
be done either by automatically detecting speci�c substructures in the BES, such as
strongly connected components, or by exploiting the modular syntax of the programs.
For instance, in a large program, the same module is often instantiated many times.
Optimizing this module once for all is a big plus, provided that optimization preserves
the constructive semantics.
The current implementation is not compositional. The bigger Dassault examples have

shown that the brute-force approach has found its limits. The Dassault engineers have
successfully performed compositional analysis on large examples, chaining steps by
hand. We are now developing compositional compiling techniques that will make this
kind of analysis automatic.
The compositionality issue is connected to the “assume=guarantee” style of assertional

veri�cation [25]. The goal is to replace a parallel component by a simpler speci�cation,

16 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

Fig. 2. ESTEREL compiler architecture.

with a division of the proof in two: prove that the component can indeed be abstracted
by this speci�cation regarding the rest of the system; prove that the simpler global sys-
tem indeed satis�es a given property of interest. Further research is needed to develop
good algorithms to extract the speci�cation automatically when feasible, and to help
performing the right abstractions, for example in the style of [24].

4.6. Compiler architecture and environment

Fig. 2 shows an overview of the ESTEREL environment. The main stream of compi-
lation is framed in the central box. The left part concerns simulation and veri�cation.
The XES simulator and symbolic debugger displays simulation information by animating
the source code. It also displays information generated by the constructiveness analyzer
and the veri�er, such as counter-example traces.
The ESTEREL environment is available on the web at
http://www.inria.fr/meije/esterel

5. The results of the experiments

5.1. Quantitative analysis

We report in Table 1 on complexity benchmarks for the three case studies. The
meaning of columns and rows is explained below. In the sequel, we provide more

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 17

Table 1
Applications statistics

MTC Landing system Side displays

Kern. MP G&T Contacts Glob. Funct. Displ. Glob.

Inputs 35 20 20 60 160 55 90 110
Outputs 65 30 40 160 300 180 125 190
Modules 35 30 30 45 65 15 70 105
Instances 80 40 100 180 280 50 300 425
Lines 3200 2000 1800 3000 6500 3500 6700 15000
Reg 180 110 150 540 950 620 370 1360
Loc 3650 2500 3700 17000 25000 15000 15000 45000

Reachable 2× 106 8× 105 3× 105 108 1014 2×106 2×108
Opt Reg 40 65 44 45 110 280
Opt Loc 980 1500 1600 2500 3500 20000

Properties 3 17 5

Transition 0.9 ms 0.8 ms

qualitative results and comments on the adequacy of ESTEREL for the treatment of
these case studies, as found from experience.
The MTC �nal version of the ESTEREL code was split in two main modules: the

scheduling Kernel and the Maintenance Panel (MP) management module.
For the Landing System case study we have three columns. The G&T column gives

statistics about the smallest code: only the controller part of the application with consol-
idated sensor information as input. The Contacts code still contains the controller part
only, but all the input signals from replicated contact sensors and the corresponding
voter modules are present in the code. The Global code contains the controller and the
controlled parts for closed-loop simulation and veri�cation. A discrete event model of
the mechanical devices (traps and landing gears) was also programmed with ESTEREL
and linked to the controller part. This model of the environment is a faulty model,
containing about a hundred input signals for simulation of faults (contact lock=unlock
and motion freeze=unfreeze events). This modeling of the environment was mandatory
to exercise the logic of alarms in the controller part.
The Side Displays case study consists of the integration (Global code) of two inter-

acting modules: the Functions module and the side Displays management module. The
Inputs and Outputs lines show that the interfaces contain respectively 150, 460 and
300 signals. For mission management systems, Dassault Aviation intends to develop
ESTEREL programs with up to 2000 input=output signals. For instance, the man-machine
interface of Dassault Aviation latest combat aircraft involves 700 commands available
to the pilot.
The line named Modules gives the number of library generic modules de�ned in

the application, whereas the line Instances gives the number of statically instantiated
calls to these modules. Some generic modules such as voters are instantiated many
times. Lines gives the number of ESTEREL source code lines. In the Side Displays

18 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

management experiment, the 15 000 lines were generated using various preprocessors,
including a prototype SYNCCHART editor [22] (see Fig. 5). Automatic code generation
of ESTEREL programs inates the number of source lines with respect to hand written
applications.
The Reg line gives the number of registers (or latches) before any optimization

was performed. This information is available after compilation into BES. Loc denotes
the number of local signals used for instantaneous broadcast communication between
modules at the circuit level. These numbers are large because the programs exclusively
use pure signals. No data types or data handling functions were used in these programs
because formal veri�cation is presently limited to control parts of Boolean variables.
A more concise style of ESTEREL programming could have been adopted, but at some
expense regarding veri�cation.
The Reachable line gives the number of reachable states computed for safety prop-

erties veri�cation or cycles removal in the case of cyclic circuits. The state space
depends on whether timer values are taken into account or not. For the landing sys-
tem global model, the TIGER system failed to compute the reachable states when the
states included timer values. The computation were performed on a SUN Sparc 20
workstation with 128 MB of RAM and on a DEC Alpha with 500 MB. The 1014

value is the order of magnitude of the highest number of analyzed states, when every
timer value is abstracted by one Boolean value. This kind of computation needed
about 20 h.
The Opt Reg line gives the number of remaining latches after optimization. One

notices drastic reductions, such as 575 removed registers out of 620, or 1080 out of
1360. Then the size shrinks down to (and often far lower than) this of hand-written
low-level code.
The Opt Loc line gives the number of remaining local signals or wires of the circuit.

One also notices spectacular decreases for the programs of the experiment based on
the side displays.
We then give the number of formally veri�ed properties. Dassault Aviation used

the Path Linear Time temporal logic of TIGER and ESTEREL synchronous observers to
verify the properties.
The Transition line gives the average transition time of the generated C code. It

was carefully measured only on the 68020 microprocessor during the MTC experiment.
Before optimization the average transition time was 3.25 ms. The 0.8 ms value for the
global side displays model was measured on an Ada generated code running on an
Ultra Sparc 2 workstation. These two values are not directly comparable.
The size of the most optimized version (circuit level and C level optimizations) of

the Kernel C code was 16.5 kB. Before optimization, the size was 49.2 kB. In the case
of the landing system experiment, the size before optimization was 213 and 71 kB after.
The optimization was performed by Cadence Research Lab as an informal collaboration.
So these experiments demonstrate that optimization plays a crucial role. A factor

of 2–3 in time and space may be gained by various kinds of optimizers from crude
ESTEREL generated code.

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 19

5.2. The MTC case study

The use of ESTEREL was initially to design a prototype speci�cation, using the inter-
preter and the graphical user interface for early simulation. Fig. 3 shows the simulation
panel of the scheduler module (Kernel) once the partitioning of the �rst global model
was completed. This reactive program schedules nine tasks, represented by nine rect-
angles in the middle of the �gure. Each line of these rectangles denotes an activation
state of the task. EN COURS means running, BLOQUEE means suspended, PRETE means
ready, and so on. The grayed lines show the current state of the program. Several
functional problems were uncovered during the prototyping phase of the speci�cation.
They were corrected on the real embedded software that was developed in parallel with
the ESTEREL experiment. This early simulation of the scheduling policy and of all event
handling aspects was impossible on the embedded software before �nal integration was
reached. This was because the task activation logic was scattered in the nine tasks, and
thus could not be activated until the �nal linking phase with the HPF on-line scheduler
was completed. Separating control and data-handling aspects and early simulation of
the control part were considered by the FTC software engineers as one of the main
bene�ts of the synchronous programming methodology.
Once the speci�cation was frozen, automatic embeddable code generation was at-

tempted. The old compiler based on symbolic execution and explicit automata produc-
tion ran out of memory. The new compiler based on BES production �rst rejected
the program because of cycles in the combinational part of the circuit. Guided by

Fig. 3. Simulation panel of the Kernel module.

20 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

symbolic debugging informations on the cycles, the program was modi�ed to remove
them without changing its functionalities. Then, a safe sequential code was produced
in a few seconds.
This code was analyzed by a commercial development tool for real-time program-

ming (an emulator of the 68020). The average transition time estimation was 5.5
ms before optimization. This was far too much. The uncertainty on this estimation
was 10%. The objective was less than 1 ms since the scheduler was designed to
switch the running task about 10 times per 20 ms cycle. To meet this requirement,
the code was split into a pure scheduling automaton Kernel and the rest of the reac-
tive part of the MTC software (the MP module which is one of the nine scheduled
tasks, named GESTION BM in Fig. 3). The other eight tasks are pure data-handling
(or “transformational”) tasks. As was explained above, optimization succeeded in de-
creasing the automaton transition time until a value below the 1 ms objective was
reached.
The two modules generated by the ESTEREL compiler were then integrated with the

code of the tasks on the target embedded computer and the whole software was vali-
dated on a ground-based real-time testbench. The FCS software engineer involved with
this experiment found the integration process straightforward. The behavior of the two
modules observed in interpreted mode (prototyping phase of the speci�cation) were
identical to the behavior of the respective compiled and optimized versions of these
modules. This behavioral invariance along the compilation and optimization process
is absolutely crucial and was regarded as such by the FCS engineers and the techni-
cal managers at Dassault Aviation. What is at stake here is the seamlessness of the
development process, from speci�cation to coding and unit testing. This continuous
process supported by automatic generation of full-edged code from high level exe-
cutable speci�cations (the ESTEREL instructions and the Statecharts diagrams) leads to a
signi�cant productivity increase. No quanti�cation was performed, but a 30% reduction
of the overall development time is guessed.
A few formal properties were veri�ed with TIGER on the global model of the spec-

i�cation (Kernel + MP), and then on the Kernel module. The mutual exclusion of
the running tasks, given for free in the on-line approach, had to be proved on the
global automaton. It was also veri�ed that no task capable of triggering tests may be
activated in ight. These veri�cations were made in early 1994 at Digital Equipment
Paris Research Laboratory on a �nite state machine with more than 1012 reachable
states. This experience convinced the engineers at Dassault Aviation that BDD based
symbolic model checking was a technological breakthrough to verify ESTEREL programs.
Previous explicit methods were limited to automata with at most 105 reachable states.

5.3. The landing computer case study

This experiment was carried out in 1995 and was focused on formal veri�cation.
The main objective was to assess the power of the TIGER BDD package since brilliant
results had been obtained from the MTC case study. Starting from a risk analysis and

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 21

a system level dependability study, 17 safety properties of the landing software were
identi�ed.
This time, complexity limits were reached in spite of TIGER e�ciency. The few

properties (2 out of 17) needing closed-loop veri�cation and counter values simultane-
ously failed be veri�ed. TIGER ran out of memory. The problem was circumvented by
reducing the range of counters while preserving the ratios between the di�erent timing
constants of the program. This was not really satisfactory, but thanks to this trick no
property remained unproved. A non-trivial error in the ESTEREL program was found by
formal veri�cation.
Two examples of formally veri�ed properties are:

• no up (resp. down) motion of the landing gears without a previous up (resp. down)
command. These two properties can be checked on the controller part only (open-
loop veri�cation), with abstraction of the value of the counters.

• Assuming that there is no breakdown in the environment (controlled part), the land-
ing gears are locked in the down (resp. up) position at most 15 s after the up (resp.
down) command was issued by the pilot. These two properties require closed-loop
veri�cation (hypothesis on the behavior of the environment) and the timer values in
the states of the global �nite-state machine.

The experiment was judged conclusive, but the opinion about the absolute power of
BDD algorithms was slightly revised. The di�culties motivated R&D engineers at
Dassault Aviation to start paying some attention to assume guarantee reasoning and
compositional model checking.

5.4. The side displays management case study

This experiment represents nearly a third of a large reactive program, the develop-
ment of which is undergoing at Dassault Aviation. This future program will gather
in a single synchronous machine the cockpit management logic and the operational
functions activation logic. Operational functions are air to air combat or ground at-
tack for instance. These two logics are tightly coupled, hence the need for global
analysis.
Fig. 4 shows two pages displayed on the two side screens of the cockpit. These

screens are represented by the windows named VTLG and VTLD. The lower part of
the �gure shows other man-machine devices involved in the management of the side
displays. Squared or grayed labels in these two pages are activated tactile commands.
These commands control the activation of operational functions and the activation of
sensors. For instance, the squared RDR label means “activation of the RaDaR”, “A/A”
is the abbreviation of Air to Air combat.
In this experiment, three di�culties were encountered. The �rst one is related to

memory mechanisms based on stacks. Pages formerly displayed on a screen as well
as activated operational functions are memorized in some sort of three places “stacks”.
These stacks may have easily been programmed in C, but this would have banned

22 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

Fig. 4. Cockpit side displays.

formal veri�cation. The Boolean encoding of the three so-called stacks in pure ESTEREL
signals and latches was possible, but it was awful (see Fig. 5).
The second di�culty was related to cyclic BES generation. Several cyclic circuits

were generated and the SCCAUSAL causality analysis processor ran out of memory while
attempting to transform them into acyclic circuits. This situation compelled Dassault
Aviation to prototype modular compilation facilities to plug acyclic circuits in larger
programs that SCCAUSAL did not manage to process as a whole. This demonstrated
the need for modular compilation of large ESTEREL programs in case of combinational
cycles.
The third di�culty was the following one: global formal veri�cation prior to any

optimization phase turned out to be impossible. Using the compositional compilation
utilities, a global program composing optimized partial circuits together was produced
from the non-optimized component circuits and from the composition context. The
reachable state space of the composition of the optimized components (a global lo-
cally optimized program) turned out to be computable. This observation motivated
compositional optimization before veri�cation.
The main conclusion of this case study was the absolute need for compositionality in

the ESTEREL compilation and optimization processes. This was recognized as a critical
issue for ESTEREL programming in the large by all the authors.

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 23

Fig. 5. A sync-chart speci�cation example.

6. Conclusion and future work

ESTEREL is an industrial-strength formal method for medium-size reactive applica-
tions. Medium size means a few hundreds of I=O signals, a hundred of module in-
stances, a few thousands of ESTEREL code lines, about 100 kB of embedded code
per synchronous software unit. Nearly ten years of e�ort were needed to reach this
point. The main challenge is to produce safe code from high-level speci�cations. The
crucial steps were the translation into BES and the exploitation of the constructive
semantics.
Beyond the limits of medium-size applications, compilation, optimization, and ver-

i�cation turn out to be intractable in a brute force global way. Compositionality is
required and has proved promising on prototype experiments.
ESTEREL is used operationally at Dassault Aviation for parts of FCS software since

applications are of small or medium size in this context. The use of ESTEREL for mission
management systems is progressively introduced at Dassault Aviation too. As mission
management reactive modules turn out to be large, compositionality in compilation,
optimization and veri�cation is now on the critical path.

References

[1] J.R. Abrial, M.K.O. Lee, D.S. Neilson, P.N. Scharbach, I.H. SHrensen, The B-method, in: VDM’91:
Formal Software Development Methods, vol. 2, Lecture notes in Computer Science, Vol. 552, Springer,
Berlin, 1991, pp. 398–405.

24 G. Berry et al. / Science of Computer Programming 36 (2000) 5–25

[2] C. Andre, Representation and analysis of reactive behaviors: a synchronous approach, in: Computational
Engineering in Systems Applications, Lille (France), (1996) IEEE-SMC pp. 19–29.

[3] C. Andr�e, M. Bourdell�es, S. Dissoubray, SYNCCHARTS=ESTEREL: un environnement graphique pour la
sp�eci�cation et la programmation d’applications r�eactives complexes, Rev. du G�enie Logiciel 46 (1997).

[4] G. Berry, Esterel on hardware, Philos. Trans. Roy. Soc. London A 339 (1992) 87–104.
[5] G. Berry, The Constructive Semantics of Esterel, Draft book available at: http://www.inria.fr/

meije/esterel, 1998.
[6] G. Berry, The Foundations of Esterel, in: G. Plotkin, C. Stirling, M. Tofte (Eds.), Proof, Language and

Interaction: Essays in Honour of Robin Milner, MIT Press, Cambridge, MA, 1998, to appear.
[7] G. Berry, G. Gonthier, The Esterel synchronous programming language: design, semantics,

implementation, Sci. Comput. Programming 19 (2) (1992) 87–152.
[8] A. Bouali, XEVE, an Esterel Veri�cation Environment, in: Proc. Tenth Int. Conf. on Computer Aided

Veri�cation CAV’98, Lecture Notes in Computer Science, UBC, Vancouver, Canada, June 1998.
[9] A. Bouali, J.-P. Marmorat, R. De Simone, H. Toma, Verifying Synchronous Reactive Systems

Programmed in Esterel, Lecture Notes in Computer Science, Vol. 1135, Springer, Berlin, 1996.
[10] F. Bourdoncle, Abstract debugging of higher-order imperative languages, ACM SIGPLAN Notices

28 (6) (1993) 46–55.
[11] F. Bourdoncle, E�cient chaotic iteration strategies with widenings, Lecture Notes in Computer Science,

Vol. 735, Springer, Berlin, 1993.
[12] F. Boussinot, R. de Simone, The Esterel language, Another Look at Real Time Programming, Proc.

IEEE 79 (1991) 1293–1304.
[13] R.E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans. Comput. C-35(8)

(1986) 677–691.
[14] J.R. Burch, E.M. Clarke, L. McMillan, D.L. Dill, J. Hwang, Symbolic model checking: 1020 and

beyond, in: 5th IEEE Symp. on Logic in Computer Science, Philadelphia, 1990, pp. 428–439.
[15] E.M. Clarke, D.E. Long, K.L. McMillan, Compositional model checking, in: Proc. Fourth Ann. Symp.

on Logic in Computer Science, Paci�c Grove, CA, IEEE Computer Society Press, Silver Spring, MD,
5–8 June 1989, pp. 353–362.

[16] Th. Coquand, G. Huet, The calculus of constructions, Inform. Comput. 76 (1988) 96–120.
[17] O. Coudert, C. Berthet, J.C. Madre, Veri�cation of synchronous sequential machines based on symbolic

execution, in: Automatic Veri�cation Methods For Finite State Systems, Grenoble, France, Lecture Notes
in Computer Science, Vol. 407, Springer, Berlin, 1989.

[18] O. Coudert, J.-C. Madre, H. Touati, TIGER Version 1.0 User Guide, Digital Paris Research Lab,
December 1993.

[19] N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer, Dordrecht, 1993.
[20] N. Halbwachs, F. Lagnier, P. Raymond, Synchronous observers and the veri�cation of reactive systems,

in: Proc. 3rd Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93, Workshops
in Computing, Springer, Berlin, June 1993.

[21] D. Harel, Statecharts: a visual formalism for complex systems, Sci. Comput. Programming 8 (3) (1987)
231–274.

[22] L. Holenderski, A. Poign�e, Synchronie workbench, in: Proc. ATOOLS’98 Workshop on Analysis Tool
Support for System Speci�cation, Development and Veri�cation, Malente, Germany, June 1998.

[23] L.J. Jagadeesan, C. Puchol, J. Von Olnhausen, Safety property veri�cation of Esterel programs and
application to telecommunications software, in: Computer-Aided Veri�cation, Lecture Notes in Computer
Science, vol. 939, Liege, Belgium, July 1995.

[24] K.L. McMillan, Veri�cation of an Implementation of Tomasulo’s Algorithm by Compositional Model
Checking, Lecture Notes in Computer Science, Vol. 1427, Springer, Berlin, 1998.

[25] J. Misra, K. Mani Chandy, Proofs of networks of processes, IEEE Trans. Software Engng. 7 (4) (1981)
417–426.

[26] S. Malik, Analysis of cyclic combinational circuits, in: IEEE=ACM Int. Conf. on CAD, Santa Clara,
CA, ACM=IEEE, IEEE Computer Society Press, Silver Spring, MD, November 1993, pp. 618–627.

[27] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan,
R.K. Brayton, A.Sangiovanni-Vincentelli, SIS: a system for sequential circuit synthesis, Technical
Report, U.C. Berkeley, May 1992.

[28] E.M. Sentovich, H. Toma, G. Berry, Latch optimization in circuits generated from high-level
descriptions, Proc. IEEE=ACM Internat. Conf. on Computer-Aided Design, November 1996.

G. Berry et al. / Science of Computer Programming 36 (2000) 5–25 25

[29] H. Sentovich, H. Toma, G. Berry, E�cient latch optimization using incompatible sets, Proc. 34th Des.
Automat. Conf., June 1997.

[30] T. Shiple, G. Berry, H. Touati, Constructive analysis of cyclic circuits, Proc. Int. Des. Testing Conf.
(ITDC), Paris, 1996.

[31] Esterel Team, The Esterel v5 Language Primer, Ecole des Mines=INRIA, available at
http://www.inria.fr/meije/esterel/, Esterel Compiler Documentation, 1998.

[32] H. Toma, Analyse constructive et optimisation s�equentielle des circuits g�en�er�es �a partir du langage
synchrone r�eactif ESTEREL, Ph.D. Thesis, �Ecole des Mines de Paris, 1997 (in French).

