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SUMMARY

Fatty acid synthase (FAS) is a central enzyme in lipo-
genesis and transcriptionally activated in response
to feeding and insulin signaling. The transcription
factor USF is required for the activation of FAS tran-
scription, and we show here that USF phosphoryla-
tion by DNA-PK, which is dephosphorylated by PP1
in response to feeding, triggers a switch-like mecha-
nism. Under fasting conditions, USF-1 is deacety-
lated by HDAC9, causing promoter inactivation. In
contrast, feeding induces the recruitment of DNA-
PK to USF-1 and its phosphorylation, which then
allows recruitment of P/CAF, resulting in USF-1 acet-
ylation and FAS promoter activation. DNA break/
repair components associated with USF induce
transient DNA breaks during FAS activation. In DNA-
PK-deficient SCID mice, feeding-induced USF-1
phosphorylation/acetylation, DNA breaks, and FAS
activation leading to lipogenesis are impaired, result-
ing in decreased triglyceride levels. Our study demon-
strates that a kinase central to the DNA damage
response mediates metabolic gene activation.

INTRODUCTION

To meet the constant energy requirement in the face of highly

variable food supply, mammals employ intricate and precise

mechanisms for energy storage. During feeding, excess carbo-

hydrates are converted to fatty acids (de novo lipogenesis) for

synthesis/storage of triacylglycerol, which can then be utilized

during energy shortage, i.e., fasting. Lipogenesis is under tight

nutritional and hormonal control (Sul and Wang, 1998). Enzymes

involved in fatty acid and triglyceride synthesis, such as fatty

acid synthase (FAS) (Paulauskis and Sul, 1988; Paulauskis and

Sul, 1989) and mitochondrial glycerol-3-phosphate acyltransfer-

ase (mGPAT) (Dircks and Sul, 1997; Jerkins et al., 1995; Shin

et al., 1991; Yet et al., 1993, 1995), are coordinately regulated

during fasting/feeding. The expression of the lipogenic enzymes

is very low in fasting and is drastically upregulated during feeding

accompanied by an increase in insulin secretion (Sul et al.,

2000; Wang and Sul, 1998). Thus, precise temporal changes in
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patterns of gene repression and activation are required for

lipogenic gene regulation during fasting and feeding/insulin

treatment.

By catalyzing seven reactions in fatty acid synthesis, FAS is

a central enzyme in lipogenesis. Regulation of FAS is mainly at

the transcriptional level. We have been studying the FAS

promoter as a model system to dissect the transcriptional activa-

tion by feeding/insulin. We mapped the insulin response

sequence (IRS) of the FAS promoter in cultured cells at the

�65 E box (Moustaid et al., 1993, 1994), where upstream stimu-

latory factor (USF)-1/2 heterodimer binds (Moustaid and Sul,

1991; Sawadogo and Roeder, 1985; Wang and Sul, 1995,

1997). Functional analysis and chromatin immunoprecipitation

(ChIP) in mice transgenic for various 50 deletions and mutations

of the FAS promoter-CAT reporter gene (Latasa et al., 2000;

Moon et al., 2000; Soncini et al., 1995), however, showed that

both USF binding to the E box and sterol regulatory element-

binding protein-1c (SREBP-1c) binding to the nearby sterol

response element (SRE) are required for feeding/insulin-medi-

ated FAS promoter activation in vivo. Furthermore, although

increased expression of SREBP-1c (Shimomura et al., 1999),

mainly through insulin activation of the PI3K pathway (Engelman

et al., 2006; Taniguchi et al., 2006), to bind the FAS promoter is

critical for feeding/insulin response, SREBP-1c itself cannot

bind its SRE without being recruited by USF, which is constitu-

tively bound to the �65 E box (Griffin et al., 2007; Latasa et al.,

2003). Many of the lipogenic promoters contain closely spaced

E box and SRE at the proximal promoter region, and we

documented a similar mechanism for activation of FAS and

mGPAT promoters (Griffin et al., 2007). Thus, USF, along with

SREBP-1c, play a critical role in mediating the transcriptional

activation of lipogenesis in response to feeding/insulin.

The requirement of USF in induction of lipogenic genes, such

as FAS, has been demonstrated in USF-deficient mice (Casado

et al., 1999). In humans, SNP studies have implicated USF-1 as

a prime candidate of familial combined hyperlipidemia (FCHL)

(Pajukanta et al., 2004). How does USF regulate lipogenic gene

transcription? USF levels do not change during fasting/feeding,

and it is constitutively bound to the FAS promoter in both condi-

tions (Wang and Sul, 1995). It is possible that posttranslational

modifications of USF underlie its function during fasting/feeding.

Insulin regulates metabolism primarily through protein phos-

phorylation by the well-characterized PI3K cascades (Engelman

et al., 2006). Many of the metabolic effects of insulin are also
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mediated by protein dephosphorylation catalyzed mainly by

protein phosphatase-1 (PP1) (Brady and Saltiel, 2001). In this re-

gard, USF has been previously reported to be phosphorylated by

various kinases (Corre and Galibert, 2005). However, the signif-

icance of USF phosphorylation in lipogenic gene transcription

during feeding/insulin is not known. Moreover, USF may not

independently function to regulate transcription but recruit coac-

tivators/corepressors. Such recruited factors may also include

signaling molecules that transduce extracellular signals to bring

about covalent modifications of USF. Thus, it can be postulated

that USF and/or its potentially recruited cofactors need to be

regulated by dynamic modifications such as phosphorylation/

dephosphorylation in response to feeding/insulin.

Here, we report a novel mechanism for the sensing of nutri-

tional/hormonal status by USF to regulate lipogenic gene

transcription. We demonstrate that USF-1 phosphorylation by

DNA-dependent protein kinase (DNA-PK), which is first dephos-

phorylated/activated by PP1, is an immediate response to

feeding/insulin treatment. Phosphorylation of USF-1 also allows

recruitment and acetylation by p300 associated factor (P/CAF).

In contrast, during fasting, USF-1 association with histone de-

acetylase 9 (HDAC9) leads to USF-1 deacetylation. Thus, upon

feeding, DNA-PK-deficient SCID mice show impaired USF-1

phosphorylation/acetylation, DNA break, transcriptional activa-

tion of the FAS gene, and lipogenesis. Our present study shows

that DNA-PK is critical for the feeding-dependent activation of

lipogenic genes, linking DNA-PK to the insulin-signaling pathway.

RESULTS

Identification of USF-Interacting Proteins and Their
Occupancy on Lipogenic Gene Promoters during
Fasting/Feeding
We have previously shown that USF is required for the regulation

of FAS promoter activity in fasting/feeding (Wang and Sul, 1995,

1997). However, USF is constitutively bound to the FAS

promoter (Griffin et al., 2007; Latasa et al., 2003). We postulated

that USF may repress or activate the FAS promoter by recruiting

distinct cofactors in fasted and fed conditions. We performed

tandem affinity purification (TAP) and mass spectrometry (MS)

analysis. The USF-interacting proteins were purified from

nuclear extracts prepared from 293 cells overexpressing USF-1

tagged with streptavidin and calmodulin-binding peptides (TAP

tagged) as well as a FLAG epitope at its carboxyl terminus. In

addition to USF-1 and USF-2, we identified seven polypeptides

in the eluates by MS analysis (Figure 1A, left panel and Table S2

available online). These proteins fall into three categories: (1)

DNA break/repair components DNA-PK and its regulatory

subunits, Ku70, Ku80, as well as poly(ADP-ribose) polymerase-1

(PARP-1) and Topoisomerase IIß (TopoIIb), (2) protein phospha-

tase PP1, and (3) P/CAF, which belongs to the histone

acetyltransferases (HAT) family. Interestingly, we detected

some of the USF-interacting proteins to be poly(ADP-ribosyl)

ated (Figure S5E). TAP using cells that were first crosslinked by

DSP showed identical USF-1-interacting proteins (data not

shown).

We detected at least five of the polypeptides having molecular

weights corresponding to the above identified proteins by silver
staining of the TAP eluates separated by SDS-PAGE (Figure 1A,

second left panel). Blue native (BN) gel electrophoresis of the

TAP eluates revealed the presence of a large USF-1-containing

complex (Figure S1B). Immunoblotting of the eluates using anti-

bodies against each of the seven polypeptides further confirmed

the presence of all seven polypeptides that were copurified with

TAP-tagged USF-1 (Figure 1A, third left panel). These identified

proteins were specific to USF-1 because none of them were

found with the control TAP tag. Confirming USF-1 interaction,

coimmunoprecipitation followed by immunoblotting revealed

the presence of all interacting proteins in endogenous USF-1

immunoprecipitates (Figure 1A, second right panel). Further-

more, GST pull-down assay showed that DNA-PK and PARP-1,

but not TopoIIb, Ku70/Ku80, and PP1, can directly interact with

USF-1 (Figure S1A).

We also attempted to purify and identify USF-interacting

proteins by incubating liver nuclear extracts with bacterially

expressed TAP-tagged USF immobilized on agarose beads.

MS analysis identified an additional USF-interacting protein

HDAC9, a transcriptional corepressor that belongs to the class II

HDAC family, which was copurified with USF-1 when the nuclear

extracts from fasted mice were used (data not shown). The inter-

action between HDAC9 and USF-1 was confirmed by detection

of HDAC9 copurified with USF-1 by TAP in cells overexpressing

HDAC9 and USF-1 (Figure 1A, right panel). Overall, except for

P/CAF, which has been implicated to function with USF for

histone modification in chromosomal silencing (West et al.,

2004), none of the above proteins have previously been shown

to interact with USF.

All of the USF-interacting proteins were expressed in lipogenic

tissues, liver, and white adipose tissue (WAT) (Figure 1B). We

next performed ChIP in livers of fasted and fed transgenic mice

expressing a CAT reporter gene driven by the �444 FAS

promoter, a minimal FAS promoter sufficient for full response

to fasting/feeding and diabetes/insulin treatments (Latasa

et al., 2000, 2003; Moon et al., 2000). As shown before, we de-

tected binding of USF in both fasted and fed conditions

(Figure 1C, left panel). In the fasted state, however, we detected

the corepressor HDAC9 bound to the FAS promoter, but not

other interacting proteins that we identified by TAP-MS. Upon

feeding, HDAC9 was no longer bound to the promoter, but the

FAS promoter was now occupied by the coactivator P/CAF,

DNA break/repair components that include DNA-PK, Ku70/80,

PARP-1, TopoIIb, as well as PP1 (Figure 1C, left panel). We

also performed ChIP analysis of the mGPAT promoter using anti-

bodies against proteins that represent each of the three cate-

gories of the USF-interacting proteins. Similar to what we

observed with the FAS promoter, USF-1 was bound to the

mGPAT promoter in both fasted and fed conditions (Figure 1C,

right panel). Furthermore, as seen with the FAS promoter,

HDAC9 was bound to the mGPAT promoter only in fasting,

whereas DNA-PK, PPI, and P/CAF were bound only in the fed

state. We also verified the regulated expression of FAS and

mGPAT in these mice. As predicted, FAS and mGPAT mRNA

levels were very low in livers of fasted mice, but upon feeding,

they were induced drastically to �50- and 25-fold, respectively

(Figure 1D). The similar binding pattern of USF-interacting

proteins suggests a common mechanism for lipogenic induction
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Figure 1. Purification of USF-1-Interacting Proteins

(A) The identities (far left) of USF-1-associated polypeptides. Purified USF-1 eluates on SDS-PAGE by silver staining (second from left). Immunoblotting of TAP

eluates (middle). IP of USF-1 (second from right) from 293F cells with monoclonal anti-USF-1 antibodies. TAP eluates from 293F cells were immunoblotted

(far right).

(B) RNA from tissues were used for RT-PCR.

(C) ChIP for association of USF-1-interacting proteins to the �444 FAS-CAT promoter (left) in FAS-CAT transgenic mice or the mGPAT promoter (right) in WT

mice.

(D) Expression in liver determined by RT-qPCR.

(E) IP of FLAG-tagged USF-1 from HepG2 cells.

(F) ChIP for association of USF-1-interacting proteins to the �444 (�65 m) FAS-CAT (left) promoter or the FAS promoter in HepG2 cells (right). USF-1 protein

levels by immunoblotting (bottom right).

(G) ChIP for binding of USF-1-interacting proteins to the �444 FAS-CAT (left) and �444 (�150 m) FAS-CAT (right) promoter.

(H) ChIP analysis for DNA breaks and DNA-PK and TopoIIb binding to the FAS-CAT (left) or the endogenous FAS promoter (right) in FAS-CAT transgenic or wild-

type mice.

Error bars represent ± SEM.
involving USF and its interacting proteins in response to feeding.

Overall, USF-1 is constitutively bound to the FAS and other

lipogenic promoters in both metabolic states, whereas USF-

interacting proteins are bound in a fasting/feeding-dependent

manner. We next investigated whether this is due to the differen-

tial interaction of USF with these proteins by employing insulin-

responsive HepG2 cells overexpressing USF-1. The levels of

various USF-interacting proteins in HepG2 cells were similar

when cells were cultured in the presence or absence of insulin

(Figure S1D). As shown in Figure 1E, in insulin-treated cells,

USF-1 preferentially coimmunoprecipitated with those proteins

that were found to be bound to the lipogenic promoters in the

fed condition, whereas in the absence of insulin, USF-1 preferen-

tially interacted with HDAC9.

To further address whether the binding of the various interact-

ing proteins to the FAS promoter is USF dependent, we per-

formed ChIP in transgenic mice containing CAT driven by the

�444 FAS promoter with a specific mutation at the USF-binding

site of �65 E box (�444 (�65 m)). We have previously shown
that, due to the loss of the critical �65 E box where USF binds,

the �444 (�65 m) FAS promoter does not have any activity,

although the promoter contains an additional USF-binding site

at �332 (Latasa et al., 2003). We did not detect binding of any

of the USF-1-interacting proteins to this FAS promoter contain-

ing the �65 E box mutation, even though USF-1 was bound to

the �332 E box in both fasted and fed states (Figure 1F, left

panel). Furthermore, siRNA-mediated knockdown of USF-1 pre-

vented recruitment of the USF-1-interacting proteins to the wild-

type FAS promoter (Figure 1F, right panel). Taken together, these

data clearly demonstrate the requirement of USF-1 binding to

the �65 E box for recruitment of various proteins to the FAS

promoter.

Because USF binding to the E box is necessary for SREBP

binding to the nearby SRE in lipogenic promoters and USF and

SREBP-1 directly interact for promoter activation (Latasa et al.,

2003; Griffin et al., 2007), we examined whether the binding of

the USF-1-interacting proteins to the FAS promoter is depen-

dent on the SREBP-1 binding to SRE. We performed ChIP in
Cell 136, 1056–1072, March 20, 2009 ª2009 Elsevier Inc. 1059



transgenic mice containing CAT driven by the �444 FAS

promoter with a specific mutation at the �150SRE (�444

(�150 m)). As shown in Figure 1G, we could not detect recruit-

ment of the various interacting proteins to the FAS promoter con-

taining the �150 SRE mutation during feeding. Similar results

were observed in HepG2 cells when transfected with �444

(�150 m) FAS-Luc or SREBP-1 siRNA (Figures S2A and S2B),

correlating with the diminished FAS promoter activation

(Figure S2E). As a control, we examined the p53 promoter, which

has a proximal E box but does not respond to feeding/insulin

(Figures S1C and S2D). Upon insertion of an artificial SRE, the

p53 promoter was activated by USF-1 recruiting various inter-

acting proteins in response to insulin (Figures S2D and S2E),

demonstrating that nearby SRE is critical for USF-1 to recruit

various interacting proteins.

As shown, the components of DNA break/repair machinery

were recruited to the FAS promoter in fed state. In this regard,

it has recently been reported that a transient DNA break is

required for estrogen receptor-regulated transcription (Ju

et al., 2006). By end labeling using biotin-UTP and subsequent

ChIP, we clearly detected DNA breaks in the �444 FAS-CAT

as well as the endogenous FAS promoters after 3 hr of feeding,

a time point when binding of DNA-PK and TopoIIb was detected

(Figure 1H). The observed DNA breaks in the FAS promoter

region preceded the maximal FAS transcription that occurs

6 hr after the start of feeding (Paulauskis and Sul, 1989).

Feeding-Induced Phosphorylation of USF-1
Constitutive binding of USF-1, despite its differential recruit-

ments during fasting/feeding, prompted us to investigate

whether USF-1 is posttranslationally modified. We immunopre-

cipitated USF-1 from liver nuclear extracts of fasted or fed

mice and performed MS analysis. Notably, we detected a phos-

phoserine residue at the S262 of USF-1 only in nuclear extracts

from fed mice. We detected higher S262 phosphorylation of

USF-1 in the fed state than in the fasted state (Figure 2A, panel

2) using antibodies against a USF-1 peptide containing phos-

phorylated S262 (referred to as anti-P-USF-1) that we generated.

ChIP analysis of the FAS-CAT promoter using anti-P-USF-1

showed that this specific phosphoUSF-1 occupied the FAS

promoter only in the fed state, even though USF-1 occupancy

was detected in both fasted and fed conditions (Figure 2B). Simi-

larly, USF-1 bound to the mGPAT promoter was phosphorylated

at S262 in fed state (Figure S5D). To test the functional signifi-

cance of this S262 phosphorylation, we expressed FLAG-

tagged-USF-1 containing a mutation at the S262 (S262D or

S262A). We detected similar protein levels of transfected S262

mutants and wild-type (WT) USF-1 (Figure 2C, bottom panel).

ChIP analysis of the FAS promoter using anti-FLAG antibodies

showed no differences in promoter occupancy between WT

and FLAG-tagged USF-1 proteins harboring S262 mutation

(Figure 2C, top panel). However, the S262D mutant that mimics

hyperphosphorylation activated the FAS promoter at a much

higher level than WT USF-1, whereas the nonphosphorylatable

S262A mutant could no longer activate the FAS promoter

(Figure 2C, bottom panel). By immunoblotting lysates from these

cells, we also detected changes in FAS protein levels corre-

sponding to the FAS promoter activity (Figure 2C, bottom panel).
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Taken together, these data suggest that the feeding-dependent

phosphorylation of USF-1 at S262 is linked to FAS promoter

activation.

Feeding-Induced Acetylation of USF-1
As shown in Figure 1, USF-1-interacting proteins HDAC9 and

P/CAF occupied the lipogenic gene promoters in fasted and

fed states, respectively. During the MS analysis of USF-1 for

posttranslational modification(s), we identified two acetylated

lysine residues at K237 and K246 of USF-1. However, when

we performed MS analysis of immunoprecipitates from cells co-

transfected with USF-1 and P/CAF that interacts with USF in the

fed state, we detected acetylation of only K237, but not K246.

Therefore, we raised antibodies against USF-1 peptide contain-

ing acetylated K237 (anti-Ac-USF-1) and used them to compare

acetylation of USF-1 at K237 in fasted and fed states. Indeed, we

detected higher K237 acetylation of USF-1 in the fed state

(Figure 2D, panel 2) compared to the fasted state. ChIP analysis

of the FAS-CAT promoter using anti-Ac-USF-1 showed that the

USF-1 bound to the FAS promoter was acetylated at K237 only in

the fed state, even though USF-1 was bound to the FAS

promoter in both fasted and fed states (Figure 2E). These data

indicate that K237 is likely to be a regulatory site of USF-1 during

fasting/feeding and that its acetylation might be catalyzed by

P/CAF in the fed state.

To test the functional effects of this putative acetylation site,

we expressed FLAG-tagged USF-1 with a mutation at the

K237 (K237A or K237R) in 293 cells. ChIP analysis of the FAS

promoter using anti-FLAG antibodies showed no difference in

recruitment among WT USF-1, FLAG-tagged USF-1 with the

K237A mutation that mimics hyperacetylation, and the FLAG-

tagged USF-1 with nonacetylatable K237R mutation (Figure 2F,

top panel). However, in the FAS promoter-reporter assay,

cotransfection of the K237A mutant activated the FAS promoter

at a much higher level than WT USF-1, whereas 237R mutant

could no longer activate the FAS promoter (Figure 2F, bottom

panel). These differences in promoter activation were reflected

in FAS protein levels upon immunoblotting of cell lysates

(Figure 2F, bottom panel). These data suggest that the

feeding-dependent acetylation of USF-1 is responsible for FAS

promoter activation in the fed condition.

DNA-PK Mediates Feeding-Dependent
Phosphorylation of USF-1
The first step in understanding how the feeding-dependent

phosphorylation of USF-1 activates the FAS promoter would

be to identify the kinase that catalyzes this S262 phos-

phorylation. A search of numerous phosphoprotein databases

predicted that a member of the PIKK family of kinases likely

phosphorylates the S262 site. DNA-PK is a multimeric nuclear

serine/threonine protein kinase composed of the DNA-PK cata-

lytic subunit and the Ku70/Ku80 regulatory subunits (Collis et al.,

2005). We found all of the DNA-PK subunits to be the USF-1-

interacting proteins and bound to the FAS promoter in the fed

state. Therefore, to examine whether S262 of USF-1 is a target

of DNA-PK, we performed in vitro phosphorylation of bacterially

expressed USF-1 by DNA-PK. Indeed, we could easily detect

S262 phosphorylation of USF-1 by DNA-PK (Figure 3A, lane 1)
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Figure 2. Feeding-Induced S262 Phosphorylation and K237 Acetylation of USF-1

(A) USF-1 immunoprecipitates using monoclonal anti-USF-1 was western blotted with polyclonal anti-USF-1 or anti-P-USF-1. Immunoblotting with anti-P-USF-1

in the presence of peptide or with preimmune serum are shown as controls.

(B) ChIP for indicated proteins binding to the �444 FAS-CAT promoter.

(C) ChIP (top) for WT USF-1 and S262 USF-1 mutant association to the FAS promoter in 293FT cells. The FAS promoter activity (bottom) was monitored. Immu-

noblotting for protein levels of WT, S262 USF-1 mutants (insert), and FAS are shown.

(D) IP of USF-1.

(E) ChIP for binding of indicated proteins to the �444 FAS-CAT promoter.

(F) ChIP (top) for association of WT USF-1 and K237 USF-1 mutant to the FAS promoter. The promoter activity was measured.

Error bars represent ± SEM.
in vitro, which is DNA-PK concentration dependent (Figure S3A).

S262 phosphorylation was abolished when wortmannin

was added at a concentration (Hashimoto et al., 2003) effecti-

ve to inhibit DNA-PK activity (Figure 3A, lane 2). However, we

could not detect S262 phosphorylation by PKA or PKC in vitro,
nor did we detect changes in phosphorylation upon cotransfec-

tion with PKB (Figure S3B). Based on these results and the

fact that DNA-PK is associated with USF-1 in the fed state,

we conclude that the S262 of USF-1 is a specific target of

DNA-PK.
Cell 136, 1056–1072, March 20, 2009 ª2009 Elsevier Inc. 1061
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Figure 3. Feeding-Dependent S262 Phosphorylation of USF-1 Is Mediated by DNA-PK that Is Dephosphorylated/Activated in Feeding

(A) USF-1 was incubated with DNA-PK.

(B) IP of USF-1. Immunoblotting for DNA-PK.

(C) IP (left) of USF-1. The FAS promoter activity was measured (right).
1062 Cell 136, 1056–1072, March 20, 2009 ª2009 Elsevier Inc.



We next tested S262 phosphorylation of USF-1 by DNA-PK

in cultured cells. We overexpressed USF-1 along with WT

DNA-PK, kinase-dead DNA-PK with a T3950D mutation, or

constitutive active DNA-PK with a T3950A mutation. T3950D

mutation mimics hyperphosphorylation (Douglas et al., 2007),

whereas T3950A mutation mimics dephosphorylation. We de-

tected higher S262 phosphorylation of USF-1 immunoprecipi-

tated from cells overexpressing WT DNA-PK (Figure 3B, left

panel, lane 2), but not from cells expressing DNA-PK with

T3950D mutation (Figure 3B, lane 3) or control cells

(Figure 3B, lane 1). Furthermore, we detected even higher

S262 phosphorylation of USF-1 from cells expressing DNA-

PK with T3950A mutation compared to WT DNA-PK-express-

ing cells (Figure 3B, middle panel, lane 3). Next, to investigate

whether DNA-PK-mediated phosphorylation of USF-1 is S262

specific, we overexpressed WT USF-1 or the S262A mutant

along with DNA-PK. WT USF-1, but not USF-1 containing

S262A mutation, was detected to have higher phosphorylation

upon cotransfection with DNA-PK (Figure 3B, right panel, lanes

2 and 3). To further verify the role of DNA-PK in S262 phosphor-

ylation, we performed siRNA-mediated knockdown of DNA-PK.

We observed low but detectable S262 phosphorylation of

USF-1 (Figure 3C, left panel, lane 5). S262 phosphorylation

was significantly reduced in the DNA-PK siRNA-transfected

cells that had more than an 80% decrease in DNA-PK levels

(Figure 3C, lane 6). FAS promoter activity in DNA-PK siRNA-

transfected cells was reduced by 65% compared to control

siRNA-transfected cells (Figure 3C, right panel), which was

similar to that observed upon transfection of nonphosphorylat-

able S262A USF-1 mutant (Figure 2C). These results demon-

strate that S262 phosphorylation of USF-1 is mediated by

DNA-PK.

PP1-Mediated Dephosphorylation/Activation of DNA-PK
Causes USF-1 Phosphorylation upon Feeding
We found that DNA-PK phosphorylates USF-1 at S262 and that

S262 phosphorylation is lower in the fasted state but increases

upon feeding. This prompted us to ask whether the changes in

DNA-PK activity account for the differences in S262 phosphory-

lation during fasting/feeding. Using the specific DNA-PK

substrate, a biotinylated p53 peptide, we compared DNA-PK

activity in liver nuclear extracts of fasted or fed mice

(Figure 3D). While total DNA-PK protein levels remained the

same (data now shown), DNA-PK activity in the fed state was

6-fold higher than in the fasted state. Wortmannin treatment

drastically reduced DNA-PK activity when measured with the

DNA-PK-specific peptide as a substrate (Figure 3D). This

demonstrates that the kinase activity we detected can be attrib-

uted to DNA-PK.

DNA-PK activity is known to be regulated by phosphoryla-

tion/dephosphorylation, independent of its activation by DNA.
Thus, autophosphorylation of DNA-PK results in a decrease

in its kinase activity, whereas dephosphorylation by PP1 acti-

vates DNA-PK (Douglas et al., 2001, 2007). Among the PIKK

family members, DNA-PK is the only kinase that is activated

by dephosphorylation. To examine the involvement of DNA-

PK in USF phosphorylation, we first examined the phosphory-

lation status of DNA-PK in fasted and fed states. DNA-PK

phosphorylation was detected using phosphoserine/threonine

antibodies that detect autophosphorylation at the S/TQ motifs

of DNA-PK. As shown in the top panel of Figure 3E, phosphor-

ylation of DNA-PK was higher in the fasted state than in the fed

state, whereas DNA-PK protein levels did not change. We also

found that DNA-PK phosphorylation was not detectable in

insulin-treated HepG2 cells, whereas phosphorylation was

easily detected in noninsulin-treated cells (Figure 3E, bottom

panel).

During the examination of the occupancy of USF-interacting

proteins, we found that PP1 along with DNA-PK was bound to

lipogenic gene promoters in the fed state (Figure 1C) when lipo-

genesis is induced. It is possible that PP1, which we found to be

a USF-interacting protein, mediates the feeding/insulin signal by

dephosphorylating DNA-PK. Therefore, we tested the S262

phosphorylation status of USF-1 upon treatment with okadaic

acid (OA), which is known to prevent dephosphorylation of

DNA-PK (Douglas et al., 2001). As expected, phosphorylation

of DNA-PK greatly increased in OA-treated cells (Figure 3F,

left panel, lane 4), whereas DNA-PK autophosphorylation was

reduced in cells overexpressing PP1g (Figure S3C). We next

examined S262 phosphorylation in OA-treated cells by western

blotting of immunoprecipitated USF-1 with anti-FLAG or anti-

P-USF-1 antibodies. Compared to a single USF-1 band de-

tected in control DMSO-treated cells, several USF-1 bands

were detected in OA-treated cells, suggesting a multisite phos-

phorylation of USF-1 (Figure 3F, lane 6). However, S262 phos-

phorylation of USF-1 that was easily detected in control cells

was hardly detectable in OA-treated cells (Figure 3F, lane 9).

To further test the specificity of PP1 on S262 phosphorylation

status, we also used tautomycin (Taut), which is known to

more selectively inhibit PP1. As expected, we easily detected

phosphorylated DNA-PK in cells treated with Taut at 1 uM,

but not in control cells (Figure 3F, right panel). On the other

hand, S262 phosphorylation of USF-1 was detected in control

cells as expected but was decreased in cells treated with Taut

at 10 nM and was hardly detectable at 1 uM (Figure 3F, right

panel). We also tested the role of PP1 by using a siRNA

approach. S262 phosphorylation of USF-1 did not increase

but, rather, greatly decreased in PP1 knockdown cells (Fig-

ure 3G, lane 2), indicating that PP1 does not directly dephos-

phorylate S262 phosphorylation. Furthermore, S262 phosphor-

ylation could be restored upon cotransfection of constitutively

active DNA-PK (Figure S3D). This indicates that S262
(D) DNA-PK activity was assayed.

(E) IP of DNA-PK.

(F) IP of USF-1-FLAG. Total and phosphorylated DNA-PK by western blotting.

(G) IP of USF-1. PP1 protein levels by western blotting.

(H) IP of PP1 from nuclear extracts or total lysates. USF-1 and b-actin protein levels by western blotting.

Error bars represent ± SEM.
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phosphorylation is through DNA-PK that is first dephosphory-

lated/activated by PP1. When we compared the abundance of

PP1 in liver nuclear extracts, we detected higher levels of PP1

in the nucleus in the fed state than in the fasted state, whereas

PP1 protein levels in total cell lysates as well as PP1 gene ex-

pression levels did not change (Figure 3H, left panel and

Figure S3E). Similarly, PP1 was not detected in nuclear extracts

from control HepG2 cells but was increased upon insulin treat-

ment (Figure 3H, right panel). Overall, we conclude that the

feeding-dependent S262 phosphorylation of USF-1 is mediated

by DNA-PK. But first, DNA-PK is dephosphorylated/activated

by PP1 whose level in nucleus increases in response to

feeding/insulin.

P/CAF-Mediated Acetylation of USF-1 Activates the FAS
Promoter, whereas HDAC9-Mediated Deacetylation
Causes Promoter Inactivation
HDAC9 and P/CAF are recruited by and interact with USF-1 in

a fasting/feeding-dependent manner. Therefore, we next exam-

ined whether acetylation and deacetylation of USF-1 is through

P/CAF and HDAC9, respectively. When we cotransfected USF-1

and P/CAF, by using pan-acetyl lysine antibodies, we detected

higher acetylation of USF-1 (Figure 4A, top panel, lane 6). As

shown in the bottom panel of Figure 4A, USF-1 was acetylated

in vitro by P/CAF (lane 3), and acetylation was not detected in

the absence of P/CAF or acetyl CoA (lane 1 and 2). MS analysis

of USF-1 in cells overexpressing P/CAF revealed a regulatory

site at K237, the residue that was acetylated upon feeding

(Figure 2). To examine whether this site was a target of P/CAF,

we overexpressed FLAG-tagged WT USF-1 or USF-1 mutated

at K237 along with P/CAF. As detected by pan-acetyl lysine anti-

bodies, only WT USF-1 was efficiently acetylated by P/CAF

(Figure 4B, top-left panel, lane 1), but the K237A USF-1 mutant

was not (Figure 4B, top-left panel, lane 2). We next employed

anti-Ac-USF-1 antibodies specific for USF-1 acetylated at

K237, and we detected higher K237 acetylation in cells overex-

pressing P/CAF (Figure 4B, top right, lane 1). To further investi-

gate whether P/CAF-mediated acetylation of USF-1 is K237

specific, we overexpressed WT USF-1 and various (K237 and

K246) USF-1 mutants along with P/CAF. WT and K246R

(Figure 4B, bottom panel, lanes 1, 4, and 5), but not K237R or

K237R/K246R (Figure 4B, bottom panel, lanes 2 and 3), of

USF-1 were found to be acetylated upon cotransfection with

P/CAF, demonstrating that acetylation of K237, but not K246,

is mediated by P/CAF.

With the binding of HDAC9 to the lipogenic promoters only in

the fasted state, we speculated that HDAC9 would be an ideal

candidate to remove the P/CAF-mediated acetylation of USF-1

in the fed state. We transfected USF-1 and P/CAF along with
HDAC9 or a control empty vector into 293 cells. We detected

a decrease in P/CAF-catalyzed acetylation of USF-1 in cells co-

transfected with HDAC9 (Figure 4C, lane 2). Furthermore, we de-

tected significant HDAC9 protein levels in liver nuclear extracts

from fasted, but not fed, mice or in nuclear extracts of HepG2

cells cultured in the absence, but not presence, of insulin

(Figure S4A), whereas its expression did not change in various

conditions (Figure S4B). These experiments indicate that, in

the fasted state, nuclear HDAC9 is in higher abundance and is

recruited to the FAS promoter to deacetylate USF-1.

We found by GST pull-down that USF-1 can directly interact

with HDAC9 and P/CAF (but not p300) (Figure S4C). Therefore,

we dissected the domains of USF-1 required for interaction

with P/CAF and HDAC9. As shown in Figure 4D, the bHLH

domain of USF-1, the domain containing K237 that is acetylated

by P/CAF, was sufficient for the interaction with P/CAF, although

the leucine zipper (LZ) domain could weakly interact with P/CAF.

On the other hand, for the USF-1 interaction with HDAC9, the LZ

domain of USF-1 was sufficient for its interaction with HDAC9.

Thus, the domains of USF-1 required for interaction are in prox-

imity to K237, the residue modified by these HAT/HDAC.

Cotransfection of USF-1 together with HDAC9 resulted in

a 50% decrease in FAS promoter activity in a fashion similar to

that detected upon cotransfection of USF-1 containing a K237R

mutation (Figures 2F and 4E). In contrast, the expression of

USF-1 with P/CAF resulted in a 2-fold higher promoter activity

in a manner similar to that observed upon cotransfection of

USF-1 containing the K237A mutation (Figures 2F and 4E).

Furthermore, cotransfection of P/CAF enhanced, while cotrans-

fection of HDAC9 suppressed, USF-1 activation of the FAS

promoter in a dose-dependent manner (Figure 4F). We detected

changes in FAS protein levels parallel to the FAS promoter

activity. In addition, cotransfecting P/CAF or HDAC9 with USF-1

containing K237A or K237R mutation did not change the FAS

promoter activity or FAS protein levels (Figure S4E). These

data indicate that acetylation and deacetylation of USF-1 cata-

lyzed by P/CAF and HDAC9, respectively, function as a dynamic

switch for the transition between fasting/feeding in FAS pro-

moter regulation.

Phosphorylation-Dependent Acetylation of USF-1
Since USF-1 is both phosphorylated and acetylated at nearby

sites and these posttranslational modifications are critical for

USF-1 function in FAS promoter activation, we tested whether

an increase in S262 phosphorylation of USF-1 could affect

K237 acetylation. We cotransfected USF-1 and DNA-PK and

examined S262 phosphorylation and K237 acetylation of USF-1.

If S262 phosphorylation affects acetylation, cotransfection of

DNA-PK would cause not only S262 phosphorylation of USF-1,
Figure 4. Acetylation of K237 of USF-1 by P/CAF and Deacetylation by HDAC9

(A) IP of USF-1 (top). USF-1 was in vitro acetylated with P/CAF (bottom).

(B) IP of USF-1. P/CAF protein levels by immunoblotting.

(C) IP of USF-1.

(D) USF-1 was incubated with in vitro translated 35S-labeled proteins before subjecting to GST pull-down. GST was used as a control.

(E) The �444 FAS-Luc promoter activity was measured.

(F) The �444 FAS-Luc promoter activity was measured. Total cell lysates were immunoblotted.

Error bars represent ± SEM.
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but also K237 acetylation. Indeed, S262 phosphorylation of

USF-1 upon DNA-PK transfection strongly enhanced USF-1

acetylation at K237 (Figure 5A, lane 2). Conversely, we detected

a significant level of K237 acetylation of USF-1 in control cells,

which was reduced in OA-treated cells (Figure 5B, left panel,

lane 2). Likewise, K237 acetylation of USF was high in control

cells but was reduced to an undetectable level in PP1 siRNA-

transfected cells (Figure 5B, right panel, lane 1). Inactivation of

PP1 by OA treatment or siRNA-mediated knockdown of PP1

caused phosphorylation/inactivation of DNA-PK resulting in

reduced S262 phosphorylation of USF-1. This suggests that

S262 phosphorylation brings about K237 acetylation. We then

asked whether phosphorylation of USF-1 at S262 could affect

USF-1 acetylation status by transfecting FLAG-tagged WT

USF-1 or S262 mutants and examining the K237 acetylation

status of the various USF-1 forms. We found that the S262A

mutant had the lowest K237 acetylation among the three USF-1

forms (Figure 5C, lane 6), whereas the S262D mutant displayed

the highest acetylation to a level significantly higher than WT

USF-1 (Figure 5C, lane 7). Overall, these results demonstrate

phosphorylation-dependent acetylation of USF-1.

The simplest hypothesis underlying S262 phosphorylation-

dependent acetylation of USF-1 would be that S262 phosphory-

lation/dephosphorylation affects recruitment of P/CAF and

HDAC9, causing acetylation and deacetylation of K237 and

USF-1, respectively. Coimmunoprecipitation assay showed

that the S262D mutant preferentially interacted with P/CAF in

comparison to the S262A mutant (Figure 5D). On the other

hand, compared to the S262D mutant, the S262A mutant prefer-

entially interacted with HDAC9, although the signal was low

probably due to the low HDAC9 levels in the nucleus. We next

examined whether S262 mutation of the USF-1 affects interac-

tion of USF with SREBP-1 that we previously reported. We found

that the S262D USF mutant, as compared to S262A mutant,

preferentially interacted with SREBP-1. Taken together, these

results show that the phosphorylation-dependent acetylation

of USF-1 functions as a sensitive molecular switch, detecting

nutritional status during the transition between fasting/feeding.

Feeding/Insulin-Dependent Phosphorylation/
Acetylation of USF-1 Are Diminished
in DNA-PK Deficiency
To further demonstrate the requirement of DNA-PK in mediating

the feeding/insulin-dependent phosphorylation/acetylation of

USF-1, we transfected DNA-PK siRNA into HepG2 cells. Insulin

treatment of these cells markedly increased S262 phosphoryla-

tion as well as K237 acetylation in control siRNA-transfected

cells, whereas USF-1 levels remained the same (Figure 5E, lanes
1 and 2). In contrast, insulin-mediated S262 phosphorylation/

K237 acetylation of USF-1 in cells transfected with DNA-PK

siRNA was markedly reduced and undetectable (Figure 5E,

lanes 3 and 4). We next compared the human glioblastoma cell

line, M059J, which lacks DNA-PKcs and DNA-PK activity, and

the related M059K cells containing WT DNA-PK (Feng et al.,

2004) as a control. Treatment of M059K cells with insulin

increased S262 phosphorylation and K237 acetylation of USF-1

(Figure 5F, lanes 3 and 4), whereas insulin treatment of M059J

cells did not result in any significant increase in USF modifica-

tions (Figure 5F, lanes 1 and 2). These data demonstrate that

DNA-PK is required not only for S262 phosphorylation, but

also for K237 acetylation of USF-1 upon insulin treatment.

By ChIP, we also tested whether recruitment of various

proteins to FAS promoter by USF is dependent on DNA-PK

(Figure 5G). Those proteins that were found to be bound to the

lipogenic gene promoters in the fed condition were recruited

by USF in insulin-treated M059K cells, but not in the DNA-PK

deficient M059J cells. In the absence of insulin, HDAC9 was

recruited by USF in both M059J and M059K cells, most likely

because cytoplasmic export of HDAC9 was not affected by

DNA-PK. Similarly, coimmunoprecipitation showed that USF-1

can interact better with various partners in insulin-treated

M059K, but not in M059J cells (Figure S5A). Furthermore,

USF-1 interaction and recruitment of various proteins were abol-

ished in 293 cells upon treatment with Taut that inhibits DNA-PK

activity (Figures S5B and S5C). Overall, these results show that

the recruitment of various proteins by USF-1 in feeding/insulin

treatment is dependent on DNA-PK and DNA-PK-mediated

S262 USF-1 phosphorylation.

We next examined in vivo the DNA-PK-mediated and feeding-

dependent S262 phosphorylation/K237 acetylation of USF-1 by

employing DNA-PK-deficient SCID (severe combined immune

deficiency) mice. A spontaneous mutation in the DNA-PK gene

causes a 90% reduction of the protein in SCID mice (Danska

et al., 1996), producing a phenotype highly reminiscent of

DNA-PK null mice. Indeed, feeding-induced phosphorylation of

USF-1 at S262 was greatly reduced in SCID mice compared to

that observed in WT mice (Figure 5H, lanes 4 and 3). ChIP anal-

ysis showed that the USF-1 detected on the FAS promoter in

SCID mice in the fed state was not phosphorylated at S262

compared to the phosphoUSF-1 detected on the promoter in

WT mice (Figure 5I). Similarly, USF-1 bound to the mGPAT

promoter was not phosphorylated at S262 in SCID mice in the

fed state (Figure S5D). Furthermore, we could not detect occu-

pancy by DNA-PK, Ku80, TopoIIb, and PP1 on the FAS promoter

in SCID mice upon feeding (Figure 5I). Because K237 acetylation

of USF-1 is dependent on S262 phosphorylation as shown
Figure 5. Feeding/Insulin-Induced Phosphorylation and Acetylation of USF-1 Are Greatly Reduced in DNA-PK Deficiency

(A–C) IP of FLAG-tagged USF-1. Nuclear extracts from nontransfected cells were used as a control.

(D) IP of USF-1-FLAG from HepG2 cells (top). Total protein levels by immunoblotting (bottom).

(E and F) IP of USF-1 from HepG2 cells (E) or from M059J or M059K cells (F).

(G) ChIP for binding of indicated proteins to the FAS promoter.

(H) IP of USF-1.

(I) ChIP for indicated protein association to the FAS promoter. ChIP samples were analyzed by semiquantitative PCR (top) or qPCR (bottom).

(J) IP of USF-1.

(K) ChIP for indicated protein association to the FAS promoter.

Error bars represent ± SEM.
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above, we investigated whether K237 acetylation was also

reduced in SCID mice. We found that K237 acetylation upon

feeding was greatly reduced in SCID mice compared to that

detected in WT mice (Figure 5J, lanes 4 and 2). The acetylated

USF-1 bound to the FAS promoter in the fed state also was

greatly reduced in SCID mice in ChIP analysis (Figure 5K). This

decrease in acetylated USF-1 bound to the FAS promoter could

be explained by the decreased recruitment of P/CAF by USF-1

(Figure 5K). HDAC9 binding was not different between WT and

SCID mice probably because cytoplasmic export of HDAC9

was not affected in SCID mice. Overall, these results show

in vivo the requirement of DNA-PK for S262 phosphorylation of

USF-1 and for P/CAF-mediated K237 acetylation leading to

transactivation of the FAS promoter.

Feeding-Dependent Activation of the FAS Gene
and De Novo Lipogenesis Are Diminished
in DNA-PK-Deficient SCID Mice
Because phosphorylation/acetylation of USF-1 for FAS pro-

moter activation is through the PP1/DNA-PK-mediated signaling

pathway, we assessed the transcriptional activation of the FAS

gene in DNA-PK-deficient SCID mice during fasting/feeding.

We first measured the nascent FAS RNA levels in liver nuclei

from WT or SCID mice that were either fasted or fed

(Figure 6A) by RT-PCR. In WT mice, the FAS nascent RNA

was not detectable in fasting but increased drastically upon

feeding. On the other hand, the nascent FAS RNA was barely

detectable in either fasted or fed SCID mice. RT-qPCR analysis

indicated a 50-fold increase in FAS nascent transcript in WT

mice upon feeding, whereas in SCID mice, the increase was

20-fold, representing approximately a 50%–60% decrease (Fig-

ure 6B). We next performed nuclear run-on assays using nuclei

from WT and SCID mice upon feeding at various time points. The

rate of transcription measured by RT-qPCR of the newly

extended nascent transcripts increased up to 10-fold in WT

mice 6 hr after feeding, a result consistent with our previously

published study. However, FAS transcription in SCID mice

increased only by 6-fold, a 40% reduction compared to WT

mice (Figure 6C).

Because we observed transient DNA breaks in the FAS

promoter region that preceded transcriptional activation upon

feeding (Figure 1I), we next examined whether the DNA break

occurs in the FAS promoter region in SCID mice, but we could

not detect transient DNA breaks, which we clearly detected in

WT mice after 3 hr of feeding (Figure 6D). Furthermore, in

contrast to WT mice, ChIP analysis did not show binding of

DNA-PK or TopoIIb to the FAS promoter region in SCID mice.

Because TopoIIb catalyzes DNA breaks, the absence of DNA

breaks in the FAS promoter region in SCID mice can be attrib-

uted to the impaired TopoIIb recruitment that is dependent on

the DNA-PK-catalyzed phosphorylation of USF-1. Thus, not

only the diminished acetylation of USF-1, but also the impaired

recruitment of the DNA break/repair components, which is

dependent on USF-1 phosphorylation, probably contributed to

the attenuated feeding-dependent transcriptional activation of

the FAS gene in SCID mice. Overall, these results clearly show

in vivo the critical role of DNA-PK in activation of FAS transcrip-

tion by feeding.
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We examined in vivo hepatic de novo lipogenesis in WT and

SCID mice using a stable isotope method. Fractional de novo

lipogenesis was hardly detected in fasting but was increased

drastically during a 24 hr period of feeding in WT mice (Figure 6E).

However, feeding-induced fractional de novo lipogenesis was

60% lower in SCID mice after 24 hr of feeding compared to

WT mice. To confirm that the decrease in de novo lipogenesis

in SCID mice was due to a decrease in FAS induction, we exam-

ined the FAS protein levels in livers of WT and SCID mice after

24 hr of feeding. Indeed, FAS protein levels in SCID mice were

significantly lower compared to WT mice (Figure 6F). The hepatic

triglyceride levels after 24 hr feeding were approximately 30%

lower in SCID mice compared to WT mice; serum triglyceride

levels were also significantly lower in SCID mice (Figure 6G).

Thus, impairment of feeding-dependent activation of FAS tran-

scription in SCID mice leads to blunted induction of de novo

lipogenesis, resulting in lower hepatic as well as—probably re-

flecting decreased VLDL secretion—serum triglyceride levels.

In this regard, SCID mice also had a lower adipose tissue

mass, indicative of a long-term defect in feeding induced lipo-

genesis (Table S1).

DISCUSSION

FAS levels in the liver change drastically during varying nutri-

tional states, correlating with circulating insulin/glucagon levels.

During fasting, fatty acid synthesis is virtually absent. However,

upon feeding, accompanying insulin secretion, fatty acid

synthesis is induced drastically. While many metabolic effects

of insulin are mediated through protein phosphorylation by

the activation of the well-characterized PI3K cascade, insulin

can also exert metabolic effects through dephosphorylation

catalyzed mainly by PP1. A central issue in metabolic regulation

is to define coordinated molecular strategies that underlie the

transition from fasting to feeding, such as the transcriptional

activation of lipogenesis along specific transduction pathways.

Here, we report a novel pathway that underlies the feeding/

insulin response, which is based on posttranslational modifica-

tions of a key transcription factor, USF-1, by an atypical kinase,

DNA-PK.

Differential Binding of USF-1-Interacting Proteins
to Lipogenic Gene Promoters in Fasted and Fed States
Our study shows that USF recruits three different coregulator

classes to lipogenic gene promoters. They are (1) the DNA

break/repair machinery, (2) kinase/phosphatase, and (3) HAT/

HDAC family. The distinct binding pattern of USF-interacting

proteins on the FAS promoter in response to feeding/fasting is

correlated with lipogenic gene activation/repression, which

involve molecular events that require the presence of specific

coactivators/corepressors, respectively.

FAS and other lipogenic enzymes such as mGPAT are coor-

dinately regulated by feeding/insulin involving USF and SREBP-

1c binding to the closely spaced E box and SRE, respectively.

We show here that the USF-1 bound to the �65 E box recruits

various USF-1-interacting proteins as well as SREBP-1c to bind

SRE. Herein, we address the molecular function of various

USF-1-interacting proteins and USF-1 modifications required
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Figure 6. Diminished FAS Induction Leading to Blunted De Novo Lipogenesis and Decreased Triglyceride Levels in Liver and Serum

(A and B) Nascent RNA were used for (A) RT-PCR or (B) RT-qPCR. Fold induction normalized by b-actin.

(C) Run-ons of labeled nascent transcripts were analyzed by RT-qPCR.

(D) ChIP for DNA breaks and indicated protein binding to the FAS promoter.

(E) Newly synthesized labeled fatty acids in livers from 9-week-old mice were measured. Values are means ± SEM. n = 12.

(F) Immunoblotting of equal amounts of liver extracts from 9-week-old mice after 24 hr of feeding.

(G) Hepatic and serum triglyceride levels were measured in 9-week-old fed mice.

(H) Schematic representation of USF-1 and its interacting partners and their effects on lipogenic gene transcription in fasting/feeding.

Error bars represent ± SEM.
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for FAS promoter activation. Furthermore, FAS and mGPAT

have the same differential recruitment of distinct USF-interact-

ing proteins, indicating a common key mechanism in the induc-

tion of lipogenic gene transcription in response to fasting/

feeding.

Phosphorylation-Dependent Acetylation of USF-1
Functions as a Sensor for Nutritional Status
Because USF-1 levels and its binding to the E box are unaltered

between fasting/feeding, it can be predicted that USF-1 is regu-

lated posttranslationally. Even though the changes in phosphor-

ylation states of metabolic enzymes during the transition

between fasting/feeding are common and well understood,

the posttranslational modifications of transcription factors in

these metabolic states are not well studied. We show here

that S262 and the nearby K237 of USF-1 are modified in

response to fasting/feeding. The S262 of USF-1 as well as

nearby residues are conserved among mammalian species

but are not found in USF-2 even though there is a 44% overall

homology between USF-1 and USF-2 (Corre and Galibert,

2005). Activation of the FAS gene by feeding has been shown

to be impaired by 80% in either USF-1 or USF-2 knockout

mice (Casado et al., 1999). Thus, USF functions as a hetero-

dimer, and both USF-1 and USF-2 were found to bind the

FAS promoter (Wang and Sul, 1995, 1997). However, the unique

S262 of USF-1 points toward its pivotal role as a sensor for lipo-

genic gene transcription.

There is increasing evidence for acetylation of some tran-

scription factors in addition to the well-recognized histone

acetylation (Gu and Roeder, 1997), and reversible acetylation

may be critical in regulation of transcription factor activity in

response to different stimuli. However, USF acetylation has

never been reported. Here, we have addressed USF-1 as

a primary substrate for HAT/HDAC. The functional significance

of acetylation of transcription factors appears to be varied. In

the case of p53, acetylation results in stimulation of DNA

binding, whereas acetylation of E2F may change protein

stability (Martinez-Balbas et al., 2000). The fact that USF levels

do not change during fasting/feeding and that USF acetylation

does not affect DNA binding but affects FAS promoter activation

suggests transactivation results from USF acetylation, and our

study demonstrates that acetylation of USF-1 at K237 increases

FAS promoter activity. Further studies are needed to clarify the

exact functional consequence of USF acetylation. Deacetylation

is mainly mediated by HDACs that generally function as tran-

scriptional repressors. HDAC9 is recruited to the FAS promoter

in the fasted state to deacetylate USF-1. Although HDAC9 has

been shown to associate with transcription factors to repress

transcription (Mejat et al., 2005), to our knowledge, HDAC9 de-

acetylation of USF-1 that we report here is the first nonhistone

substrate of HDAC9.

Crosstalk between acetylation and phosphorylation is well

recognized. In our present study, K237 acetylation is dependent

on S262 phosphorylation in response to feeding/insulin by pref-

erential interaction with P/CAF rather than HDAC9. Thus, the

phosphorylation-dependent acetylation of USF-1 functions as

a dynamic molecular switch in sensing the nutritional transition

from fasting to feeding. Such a multistep switch provides
1070 Cell 136, 1056–1072, March 20, 2009 ª2009 Elsevier Inc.
a way to fine-tune transcription of lipogenic genes in response

to different nutritional states.

PP1-Mediated Dephosphorylation of DNA-PK Is Critical
for Feeding-Dependent Lipogenic Gene Transcription
It has been well established that PI3K pathway mainly mediates

insulin signaling for metabolic regulation (Engelman et al., 2006).

Our in vitro phosphorylation studies and the fact that S262 phos-

phorylation is abolished in DNA-PK-deficient mice point to the

notion that DNA-PK is the kinase for the S262 phosphorylation

occurring in the fed condition. However, DNA-PK is not known

to be a component in the PI3K pathway or in the insulin-signaling

pathway. Although DNA-PK was previously implicated in phos-

phorylation of S473 of PKB/Akt (Feng et al., 2004), recent

research indicates that mTORC2, another member of PIKK, is

the authentic kinase that phosphorylates this critical site of

PKB/Akt (Sarbassov et al., 2005). However, our present study

shows a link between DNA-PK and insulin-signaling pathway.

Although the molecular mechanism is complex, the stimula-

tion of PP1 by insulin has been well documented. For example,

insulin inhibits breakdown and promotes synthesis of glycogen

by activating primarily PP1. PP1 is compartmentalized in cells

by discrete targeting subunits, and several proteins called

‘‘protein targeting to glycogen (PTG) can target PP1 to the

glycogen particle where PP1 dephosphorylates enzymes in

glycogen metabolism (Printen et al., 1997). Recent studies indi-

cate that PP1 can rapidly move between subcellular compart-

ments with the aid of targeting units. PNUT, a PP1 associated

cofactor, may act as a nuclear targeting subunit of PP1 (Allen

et al., 1998). We postulate that feeding/insulin might regulate

PNUT-mediated nuclear translocation of PP1 into the nucleus

to activate DNA-PK. Thus, PP1-mediated dephosphorylation of

DNA-PK is critical in transmitting the feeding/insulin signal to

regulate lipogenic genes.

Among USF-interacting proteins, DNA-PK, along with Ku70,

Ku80, PARP-1, and TopoIIß, are identified. These proteins are

known to function in double-strand DNA break/repair, and it

has recently been shown that a transient double-strand DNA

break is required for estrogen receptor-dependent transcription.

Although Ku70, Ku80, and DNA-PK are in the same complex with

PARP-1 and TopoIIß, their function in DNA break for transcrip-

tional activation has not been reported. Here, we identified all

components of DNA break/repair machinery for transcriptional

activation of the FAS promoter by fasting/feeding, and we

observed transient DNA breaks that preceded transcriptional

activation.

We show here a unique function of DNA-PK as a signaling

molecule in response to feeding/insulin. DNA-PK is required for

USF-1 complex assembly and recruitment of its interacting

proteins. Therefore, DNA-PK-mediated USF-1 phosphorylation

governs interaction between USF-1 and its partners. SREBP-1

interacts more efficiently with the phosphorylated USF-1, which,

in turn, enhances the interaction between USF-1 and DNA-PK,

leading to USF-1 phosphorylation, an indication of positive

feed-forward regulation. Thus, impaired transcriptional activa-

tion of lipogenic genes in DNA-PK-deficient SCID mice is

probably due to the dual effects of DNA-PK on USF-1 phosphor-

ylation for feeding/insulin signaling and the transient DNA



breaks required for transcriptional activation. In SCID mice, the

absence of the feeding-induced transient DNA breaks in

the FAS promoter could be attributed to the impairment of

feeding/insulin-induced USF phosphorylation by DNA-PK, which

results in a failure to recruit various USF-1-interacting proteins,

including those for transient DNA breaks such as TopoIIb.

Taken together, we propose the following model for the mech-

anism underlying USF function in the transcriptional regulation of

lipogenic genes during fasting/feeding (Figure 6H). In the fasted

state, USF-1 recruits HDAC9, which deacetylates USF-1 to

repress transcription despite its binding to the E box (Figure 6H,

left panel). Upon feeding, DNA-PK, which is dephosphorylated/

activated by PP1, phosphorylates USF-1, which then recruits

SREBP-1 and other USF-1-interacting proteins. Thus, DNA-

PK-catalyzed phosphorylation of USF-1 allows P/CAF recruit-

ment and subsequent acetylation of USF-1 (Figure 6H, right

panel). As a result, FAS transcription is activated by USF-1 in

a reversible manner in response to nutritional status.

EXPERIMENTAL PROCEDURES

Supplemental Experimental Procedures are available in the Supplemental

Data.

Purification of USF-1-Interacting Proteins and Preparation

of Nuclear Extracts

TAP was performed as described previously (Griffin et al., 2007). Purified

protein mixture was subjected to mass spectrometry. Liver nuclear extracts

were prepared by centrifugation through sucrose cushion in the presence of

NaF.

Chromatin Immunoprecipitation

Livers from fasted or fed mice were fixed with DSG at 2 mM for 45 min at RT

before formaldehyde crosslinking. ChIP was performed as described previ-

ously (Latasa et al., 2003).

In Vitro Phosphorylation, Acetylation, and DNA-PK Kinase Assay

In vitro phosphorylation and acetylation were performed using recombinant/

purified enzymes. DNA-PK kinase assay was performed with nuclear extracts

pretreated with or without wortmannin using SignaTect DNA-PK assay system

(Promega) and g32P-ATP (Roche).

Nuclear Run-On Assay and Preparation of Nascent RNA

Nuclei were isolated as described previously (Paulauskis and Sul, 1989) for

nascent RNA and nuclear run-on assay (See the Supplemental Experimental

Procedures for further details).

Immunoprecipitation, GST Pull-Down, Luciferase Reporter Assays

Immunoprecipitation from nuclear extracts was performed under standard

procedures. GST pull-down was performed as described previously (Griffin

et al., 2007). Luciferase assays were performed in 293FT cells using Dual-

Luc reagent (Promega).

RT-PCR Analysis

RNA was isolated and reverse transcribed for PCR or qPCR.

Measurement for Metabolite and Hormone Levels

Insulin, glucose, NEFA, and triglycerides were measured by ELISA (Crystal),

glucometer (Roche), NEFA C kit (Wako), and Infinity kit (Thermo), respectively.

De Novo Lipogenesis (DNL)

Fatty acids formed during a 4 hr 2H2O body water labeling (see the Supple-

mental Experimental Procedures for further details).
Statistical Analysis

The data are expressed as the means ± SE of the means. Student’s t test was

used (*p < 0.05, **p < 0.01, ***p < 0.005, and ****p < 0.0001).

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures, five

figures, and two tables and can be found with this article online at http://

www.cell.com/supplemental/S0092-8674(09)00003-8.
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