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SUMMARY

A common step in the formation of neural circuits is
the conversion of growth cones to presynaptic termi-
nals. Characterizing patterns of global gene expres-
sion during this process is problematic due to the
cellular diversity of the brain and the complex tempo-
ral dynamics of development. Here, we take advan-
tage of the synchronous conversion of Drosophila
photoreceptor growth cones into presynaptic termi-
nals to explore global changes in gene expression
during presynaptic differentiation. Using a tandemly
tagged ribosome trap (T-TRAP) and RNA sequencing
(RNA-seq) at multiple developmental times, we
observed dramatic changes in coding and non-cod-
ing RNAs with presynaptic differentiation. Marked
changes in the mRNA encoding transmembrane
and secreted proteins occurred preferentially. The
30 UTRs of transcripts encoding synaptic proteins
were preferentially lengthened, and these extended
UTRs were preferentially enriched for sites recog-
nized by RNA binding proteins. These data provide
a rich resource for uncovering the regulatory logic
underlying presynaptic differentiation.

INTRODUCTION

Uncovering the genetic programs regulating neural development

remains a central problem in neuroscience. Genetic screens

have uncovered genes regulating specific steps in neural circuit

formation, including cell fate determination, axon guidance, and

synapse formation (Desai et al., 1988; Newsome et al., 2000;

Zallen et al., 1999; Kidd et al., 1998). Biochemical and molecular

biological approaches have also led to the identification of spe-

cific genes and the proteins they encode which regulate distinct

steps in circuit assembly (Serafini et al., 1994; Cheng et al., 1995;

Schmucker et al., 2000). These single gene approaches have

been highly effective in dissecting the genetic programs regu-

lating specific steps in neural development.
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Recent advances in high-throughput RNA sequencing (RNA-

seq) technologies provide an opportunity to assess the global

patterns of gene expression during neural development and to

relate these to specific genetic programs. In principle, global

studies would be most informative in systems where traditional

genetic approaches could be applied to establish causal rela-

tionships alluded to from correlations discovered in global

studies. Drosophila offers numerous advantages for combining

these approaches. Many cell-type-specific markers enable

isolation of mRNA from specific neurons and a palette of genetic

approaches allow for incisive phenotypic analyses (Nern et al.,

2015; Venken et al., 2011). The fly visual system is particularly

well-suited to high-throughput sequencing approaches, as there

are numerous different neuronal cell types, and many of these

are present in relatively large numbers (Tuthill et al., 2013).

The fly visual system comprises the retina or compound eye

that detects light and the optic lobe or ganglia that process visual

information. The eye contains some 750 modules called omma-

tidia and they, in turn, each comprise eight photoreceptor (R)

cells. These include R1–R6 neurons, which form synapses with

target neurons in the first optic ganglion, the lamina, and the

R7 and R8 neurons with distinct visual pigments and synaptic

targets in the second optic ganglion, the medulla. Although early

steps in R cell development occur in this asynchronous fashion

(Hadjieconomou et al., 2011), the conversion of R cell growth

cones to synaptic terminals occurs synchronously (Chen et al.,

2014). This provides a unique opportunity to explore changes

in gene expression occurring in a global fashion associated

with this critical step in neuronal differentiation.

Presynaptic differentiation has been studied through genetic

and biochemical approaches. It is a complex process involving

multiple steps (Chia et al., 2013). These include the transport of

active zone and synaptic vesicle components to the presynaptic

terminus and the complex interplay between these and the actin

cytoskeleton during the assembly of the presynaptic apparatus.

Inaddition, thismustbecoordinatedwith the recognitionbetween

appropriate synaptic partners, the assembly of an adhesive syn-

aptic complex between the pre- and postsynaptic membrane

and the maintenance through secreted signals at synapses.

Here, we set out to provide a description of the changes in

gene expression that occur during presynaptic differentiation
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at a global scale. Several different approaches have been

described for isolating RNA from neurons for mRNA sequencing

studies. These include using fluorescent cell tags for isolating

neurons by manual picking after tissue dissociation or through

fluorescence-activated cell sorting (FACs) (Abruzzi et al.,

2015). The INTACT technique utilizes cell-specific expression

of a nuclear envelope tag followed by affinity purification of

nuclei (Henry et al., 2012; Steiner et al., 2012). The tagged ribo-

somal affinity purification (TRAP) technique utilizes affinity puri-

fication of ribosomes associated with mRNA from lysates

prepared from tissues where an epitope-tagged ribosomal

protein is selectively expressed in neurons of interest (Doyle

et al., 2008; Heiman et al., 2008). Each of these techniques leads

to the isolation of a specific pool of mRNA and has provided

effective ways of characterizing expression of genes in specific

cell types.

As we were particularly interested in understanding the inter-

actions of developing growth cones with their environment

and, hence, the proteome rather than the transcriptome, we

sought a method of mRNA isolation more likely to reflect

differences in protein expression than gene expression more

generally. We, thus, set out to identify transcripts associated

with ribosomes in R cells using a modified version of the TRAP

technique, called tandemly(T)-TRAP. Here, we incorporated an

additional tag for a second round of affinity purification of ribo-

somes from specific neurons. This two-step purification

increased the specificity of mRNA isolation, thereby significantly

reducing the noise from non-specific association of transcripts

expressed in other cells encountered using TRAP. In this paper,

we describe changes in gene expression in R cells during

presynaptic differentiation. These studies uncovered prominent

and dynamic changes in patterns of expression of cell surface

and secreted proteins associated with the transformation of

growth cones to synaptic terminals and suggest a selective

role for post-transcriptional regulatory mechanisms in regulating

presynaptic differentiation.

RESULTS

T-TRAP Purification of mRNA
To assess changes in gene expression associated with the con-

version of R cell growth cones to presynaptic terminals, we

purified mRNA associated with ribosomes selectively from R

cells before, during, and after synapse formation (Figure 1A;

see below) and analyzed these via RNA-seq. To increase the

signal to noise in the TRAP method (Doyle et al., 2008; Heiman

et al., 2008), we included a second tag to facilitate a second

affinity purification step. We refer to this method as T-TRAP

(see below and Experimental Procedures). We modified the N

terminus of the Drosophila ribosomal protein RpL10 with two

tandemly arranged epitopes, 3X FLAG and GFP, separated by

the Tobacco Etch Virus (TEV) protease site and expressed this

in specific cell types using the GAL4/upstream activating system

(UAS) (Figure 1B). In brief, ribosomes from extracts prepared in

the presence of cycloheximide were immunoprecipitated with

anti-FLAG antibody containing beads, followed by cleavage

with TEV protease to release the ribosome from the beads. Ribo-

somes were then immunoprecipitated again with antibodies to
Cell R
GFP, mRNA was extracted, and RNA-seq libraries were pre-

pared (see Experimental Procedures).

To profile R cell mRNA, we used chaoptic-Gal4 (chp-Gal4) to

selectively drive the modified RpL10 protein under UAS control

in these cells. The tagged ribosomal protein was seen in the

cell bodies and, at lower levels, in axon terminals of R cells

(Figure 1C). No evidence of toxicity was observed at the level

of light microscopy; R cell morphology was indistinguishable

from wild-type as assessed at multiple stages of development

and in the adult. In addition, defects were not observed in ani-

mals in which the tag was expressed ubiquitously during devel-

opment. Quantitative western blots revealed that the level of

tagged Rpl10 protein normalized to the number of R cells

remained constant between 40 and 65 hr; the levels at 24 and

35 hr were 33% and 160% to that observed at 40 hr. As normal-

ized transcript levels were compared these differences do not

affect comparisons of reads per kilobase of a specific mRNA

per million reads (RPKM) values between samples.

To assess purification, we used qPCR to compare the enrich-

ment of known R cell-specific genes (e.g., [chp] and senseless)

to genes expressed in the optic lobe that are not expressed

in R cells (e.g., apterous, brain-specific homeobox, and single-

minded). Levels of two retina-specific and three optic lobe-

specific transcripts were assessed in extracts prepared from

dissected tissues including both the optic lobe and retina at

24 hr after pupae formation (APF) and compared to the levels

in the complexes prepared by TRAP and T-TRAP. The levels

were normalized to the ribosomal protein RpL11 in extracts

and in the immunoprecipitants. For TRAP, the enrichment of

retinal-specific genes over optic lobe genes was between one

to ten times (Figures 1D and S2). By contrast, for T-TRAP the

enrichment through the two-step purification was 25–500 times

(see Experimental Procedures for calculations). This increase in

enrichment is attributed to a significant depletion of optic lobe

transcripts. As expected, this increase in specificity through

the second round of immunoprecipitation comes at a cost of

decreased yield of mRNA (�30% compared to TRAP).

cDNA libraries were prepared frommRNA associated with the

affinity purified ribosomes and sequenced using an Illumina

HiSeq 2000 (Figures 1E and S1; Experimental Procedures). As li-

braries were generated by first strand synthesis using oligo dT,

there was a 30-bias in the sequences obtained. The correlation

in the distribution of RPKM values between biological replicates

for each time point was excellent with an average Pearson’s r of

0.99 (Figures 2A and 2B). By contrast, the further time points

were away from each other, the lower the correlation score

(i.e., from 0.97 to 0.77). Importantly, the correlation of RNA-seq

data between biological replicates using T-TRAP was consider-

ably improved over TRAP (0.99 versus 0.93) (Figures 2A and 2B;

see Experimental Procedures for details). This is consistent with

the additional affinity purification step resulting in an increase in

signal-to-noise. We performed a principal component analysis

on R cell expression profiles and found seven distinct subpopu-

lations during R cell development, clearly distinguishable by the

first principal component (PC1, 38% of the total variation;

Figure 2C). We restricted our analysis to genes with RPKM

values >1 at one or more time points (see Experimental Proce-

dures). A total of 9,806 genes fell into this category. This
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Figure 1. T-TRAPMethod forRNA-Seq from

Developing R Cells

(A) Schematic of R cell differentiation during pupal

development. Target selection period refers to

R1–R6. Target selection for R7 and R8 overlaps

with the early phase of synapse formation (i.e.,

post 45 hr).

(B) Schematic of the tandem-tagged ribosomal

affinity purification (T-TRAP) construct. The N

terminus of the Drosophila ribosomal protein L10

(RpL10) coding region was fused to two tan-

demly arranged epitopes (3xFLAG and GFP)

separated by the TEV protease site. 3x (GS)

refers to three tandemly arrayed tripeptide se-

quences (glycine, glycine, serine) used as linker

segments.

(C) Tagged RpL10 was selectively expressed in

R cells using Gal4 driven by a Chp enhancer

element. Upper panels show low magnification,

63x images of eye and part of the optic lobes

(i.e., the lamina and medulla comprising synaptic

targets for R cell axons) at 24 hr APF. Tagged

RpL10 protein accumulates in R cell bodies

(white arrowhead), and in the growth cones of

R1–R6 (insets), and R7 and R8 (lower panels: R7,

yellow arrowhead; R8, white arrowhead). The

tagged RpL10 was visualized with an antibody

to GFP and R cells were visualized with

MAb24B10.

(D) qPCR from RNA isolated from R cells using

TRAP and T-TRAP. The TRAP construct com-

prises from the N terminus, GFP followed by

RpL10. Enrichment represents the fold increase

between the level of the mRNA indicated and an

mRNA encoding a ribosomal subunit RpL11 (see

text).

(E) Summary of T-TRAP RNA-seq. Chx, cyclo-

heximide.

See also Figures S1 and S2.
represents 66.3% of the 14,794 genes encoding proteins

annotated inDrosophila. In addition to mRNA encoding proteins,

the expression of 578 long intergenic non-coding RNAs (linc-

RNAs) were also observed with RPKM values >1 at one or

more time points. We describe the analysis of lincRNAs in the

Supplementary Information and in Figure S3 and Table S3.
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Dynamic Changes in Gene
Expression during Conversion of
Growth Cones to Presynaptic
Terminals
Although early R cell development is

asynchronous, from 24 APF onward the

development of R cell terminals occurs

in a largely synchronous fashion. We

chose seven time points for RNA-seq

analysis of R cells during pupal develop-

ment corresponding to 24, 35, 40, 45,

53, 65, and 96 hr APF. These time inter-

vals correlate with specific steps in R

cell development (see Figure 1A):
1. 24–35 hr APF: R1–R6 growth cones undergo a rearrange-

ment within the lamina plexus (Clandinin and Zipursky,

2000; Lee et al., 2003; Bate, 1993). No changes are seen

in the growth cones of R7 and R8.

2. 35–40 hr APF: growth cones do not alter their positions or

their morphologies.



Figure 2. Correlation of RNA-Seq Data from Different Libraries

(A) Scatterplot comparison of biological replicates using the single purification approach (TRAP) and the double purification approach (T-TRAP).

(B) Correlograms showing the correlation score matrix across all libraries at all time points.

(C) Principal component analysis (PCA) of expression in R cells for seven time points. PC1, first principle component; PC2, second principle component. R,

Pearson correlation coefficient.
3. 40–45 hr APF: this interval marks the onset of the morpho-

logical transformation of R cell growth cones of each class

into presynaptic terminals (Chen et al., 2014).

4. 45–53 hr APF: conversion of bulbous growth cones to

elongated shape of synaptic terminals is complete. Bruch-

pilot (Brp) puncta, markers for the presynaptic active zone,

begin to accumulate (Chen et al., 2014).

5. Post 53 hr APF: postsynaptic differentiation in target

neurons occurs (Chen et al., 2014). Maturation of synaptic

terminals overlaps with the development of the rhabdo-

mere, the photosensitive organelle containing rhodopsin

(Kumar and Ready, 1995).
Cell R
In summary, the conversion of R cell growth cones to differen-

tiating presynaptic structures takes place between 35 and 53 hr

APF, spanning four time points in our time series.

We sought to assess how many genes exhibited marked

changes in their levels of expression between different time

points (Figure 3). Here, we performed the differential expression

analysis between two successive time points with an adjusted p

value < 0.001 and plotted the number of genes, with RPKM

values >1 at any given time point, that changed five times or

more (Figure 3A). As expected, there is a substantial change dur-

ing the 30 hr time interval between 65–96 hr APF corresponding

to the massive change in morphology and the acquisition of
eports 14, 1258–1271, February 9, 2016 ª2016 The Authors 1261



phototransduction properties in these cells. Importantly,

changes in the expression of many genes were seen in two

narrow time intervals (i.e., 5 hr, 35–40 hr, and 40–45 hr), corre-

sponding to a period prior to and during the onset of presynaptic

differentiation, respectively. Between 35–40 hr APF, just before

the onset of presynaptic differentiation, �450 genes were up

or downregulated by greater than five times with more genes

downregulated during this interval. A similar number of genes

were regulated by greater than five times between 40–45 hr,

corresponding to the onset of presynaptic differentiation. By

contrast, considerably more genes were upregulated than

downregulated during this second interval. Interestingly, the

changes during the subsequent two intervals (45–53 hr APF

and 53–65 hr APF) were less pronounced. The rate of addition

of presynaptic active zones in all three classes of photoreceptor

neurons during this period occurs in a largely linear fashion (Chen

et al., 2014). Thus, marked changes in gene expression were

seen just prior to synapse formation (i.e., 35–40 hr APF) and coin-

cident with the onset of the conversion of a growth cone to a syn-

aptic terminal (i.e., 40–45 hr).

Changes in mRNA Encoding Cell Surface and Secreted
Proteins Associated with Ribosomes during Conversion
of Growth Cones to Presynaptic Terminals
To obtain a global view of the biological processes represented

in these differentially expressed genes, we carried out Gene

Ontology (GO) term enrichment analysis using a p value of 0.05

(Figure 3B). There was an increase in genes expressed during

later stages (from 65–96 hr APF) involved in photosensitivity

and neuronal function, consistent with the terminal differentiation

of these cells into photoreceptor neurons. In addition, a marked

change in gene expression was observed between 40–45 hr APF

coincident with the onset of presynaptic differentiation. GO

enrichment analysis revealed preferential increases in the

expression of genes during this interval involved in ‘‘cell surface

receptor-linked signal transduction,’’ ‘‘cell adhesion,’’ ‘‘extracel-

lular structure organization,’’ ‘‘regulation of membrane poten-

tial,’’ ‘‘ion transport,’’ and ‘‘neurological system process.’’ The

marked changes in chitin metabolism seen in this time interval

were also observed in T-TRAP of lamina neurons (data not

shown) and thus this is likely to represent background due to

high levels of expression associated with the formation of the

lens and other chitinous tissues. The enrichment in ‘‘cell sur-

face-linked signal transduction’’ and ‘‘cell adhesion’’ and ‘‘extra-

cellular structure organization’’ are consistent with the cellular

processes associated with the transformation of the growth

cone to a presynaptic terminal.

Interestingly, in contrast to the increase in ‘‘cell surface recep-

tor-linked signal transduction’’ and ‘‘cell adhesion’’ gene cate-

gories observed between 40–45 hr APF, there was a substantial

decrease in the levels of this class of transcripts between 35–

40 hr APF (see below). This corresponds to a stage in which

growth cones largely remain ‘‘quiescent,’’ where there are no

obvious changes in growth cone dynamics or position. Thus, a

marked re-programming of gene expression regulating intercel-

lular communication occurs during two sequential time intervals

corresponding to a period following axon guidance and the onset

of the conversion of R cell growth cones to presynaptic terminals.
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We sought to explore the expression pattern of genes encod-

ing cell surface and secreted proteins in more detail. Examina-

tion of GO terms in FlyBase revealed that some proteins with

known functions in axon guidance and cell adhesion were not

included in the GO terms ‘‘cell adhesion’’ and ‘‘cell surface re-

ceptor-linked signal transduction.’’ To provide a more compre-

hensive assessment of the expression patterns, we used the

set of 968 genes identified by Kurusu et al. (2008) as putative

cell surface and secreted proteins encoded in the fly genome

and generated additional ‘‘hand’’ curated lists for an additional

15 categories (Table S1).

We focused on three time intervals marking the transition from

growth cones to differentiating presynaptic terminals, including a

stage prior to overt changes in growth cone morphology (35–

40 hr), the onset of morphological transformation to a presynap-

tic terminal (40–45 hr), and the appearance of presynaptic active

zones (45–53 hr APF), respectively (Figure 3C). Changes in selec-

tive expression of cell surface proteins for all three time intervals

were observed. Between 35–40 hr APF, 69 transcripts encoding

cell surface/secreted proteins changed by >5-fold. Approxi-

mately one-third of these transcripts increased and the remain-

ing two-thirds decreased. By contrast, many more transcripts

encoding cell surface proteins increased during the 40–45 hr

APF interval, with 62 transcripts changing five times or more,

of which 56 increased and the remaining six decreased. In addi-

tion, between 35–40 and 45–53 hr APF there were selective

changes in genes associated with photoreceptor function,

consistent with the role of these cells in the adult. Although genes

in other categories, including those encoding synaptic proteins

(see below), were differentially expressed, the number of such

genes was not different from that expected by chance.

Many of the genes encoding cell surface and secreted pro-

teins that were upregulated between 40–45 hr APF, were down-

regulated in the developmental window just prior to this interval

(i.e., 35–40 hr APF). The transcripts for some 25 cell surface pro-

teins changed during 45–53 hr APF, with �50% increasing and

the remaining decreasing (Figures 3C and 3D). In summary, in

the union set of transcripts changing between 40–45, 45–53,

and 40–53 hr APF, corresponding to the onset of the final target-

ing step and onset of presynaptic differentiation, 125 cell surface

proteins were up or downregulated by greater than five times.

We categorized the patterns of expression of genes in the

union set that go up greater than five times into three major clas-

ses (Figures 4A and 4B): class I genes were downregulated

before being upregulated between 40–53 hr APF; class II genes

were unchanged between 35–40 hr APF and were subsequently

upregulated between 40–45 hr APF; and class III genes were up-

regulated between 45–53 hr APF. These fall into different protein

families (Figure 4C; see Table S8 for a complete list of expression

of protein families at all time points). It should be noted that the

five times cut-off is arbitrary and, indeed, many other cell surface

proteins are present at each time point and may change

modestly (e.g., 2- to 4-fold) or not at all (see below). Indeed,

several genes known to contribute to wiring during these devel-

opmental steps are expressed by a change less than five times

between different developmental time points within the broader

interval from 35–53 hr APF (data not shown). Nevertheless, the

changes in expression of many genes corresponding to discrete
rs
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development steps in wiring raise the possibility that they play

roles at these developmental steps or alternatively that signaling

in growth cones changes the spectrum of proteins loaded onto

ribosomes for use at later stages.

Comparison between FACS and T-TRAP Generated
Transcriptomes
We next sought to assess whether the changes observed in

T-TRAP reflected changes in transcription or in post-transcrip-

tional mechanisms (i.e., association of mRNAs with ribosomes).

To do this, we compared patterns of gene expression from

FACS-sorted cells, using the GFP in the T-TRAP-labeled

RpL10 protein as a marker for cell sorting and mRNA isolated

from flies of the same genotype using T-TRAP at two time points,

40 hr and 53 hr APF. We then assessed whether changes in gene

expression observed between these two time points reflected

changes in transcription or in post-transcriptional mechanisms.

There were 669 and 308 transcripts that changed by more than

five times between these two time points in T-TRAP and

FACS, respectively (Table S2). Of the overlap set of 142 genes

differentially expressed between these time points in both the

T-TRAP and FACS analysis, 138 were regulated in a similar

manner in both FACS and T-TRAP. For 531 differentially ex-

pressed genes in T-TRAP (79.3%), however, there was either

no change in FACS or the change was in the opposite direction.

Thus, although changes in gene expression associated with

presynaptic differentiation occur at the level of transcription,

the changes in ribosome association suggests that post-tran-

scriptional regulatory mechanisms play a prominent role in pre-

synaptic differentiation.

Changes in Presynaptic 30 UTR Regulation during
Synapse Formation
We next sought to assess the relationship between the expres-

sion of genes encoding presynaptic proteins and the transforma-

tion of R cell growth cones to presynaptic terminals. Despite the

abrupt change in morphology correlated with the transition from

growth cones to synaptic terminals and the dramatic changes in

the expression of cell surface and secreted proteins associated

with this transition, a similar change in the expression of presyn-

aptic proteins, as a class, was not observed (Figure 5A; compare

to Figure 4A).

Most genes encoding presynaptic proteins were expressed at

moderate levels as early as 24 hr APF, well before synapse for-

mation and these generally increased over time (Table S1).

Furthermore, as a class, these genes were no more likely to be

upregulated than expected by chance (see Figure 3C). Only
Figure 3. Differential Gene Expression during R Cell Development

(A) The number of upregulated and downregulated genes during R cell developm

(B) Enriched biological processes across different stages during R cell developme

classified into two categories: upregulated (red) and downregulated (blue).

(C) Biological categories (see text) of differentially regulated genes (five times upr

and 45–53 hr APF. The p value represents the likelihood that the number of ge

significantly different from that expected from a random distribution in each biolo

(D) The number cell surface and secreted molecules upregulated and downregul

time point must be greater than one and levels between time points are greater

See also Tables S1 and S2.
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five genes encoding known presynaptic proteins exhibited

substantial changes in levels between 40 and 53 hr APF. Two

synaptic vesicle proteins, synapsin (Syn) and synaptogyrin

(Syngr), increase seven times and five times, respectively, during

this period. Syngr increases another 32 times between 53–96 hr

APF, consistent with its requirement for normal synaptic vesicle

biogenesis (Stevens et al., 2012). Adult R cells are densely

packed with synaptic vesicles and Syngr expression appears

linked to this accumulation. Other transcripts encoding proteins

involved with synaptic vesicle function, fusion and recycling (i.e.,

n-synaptobrevin [n-Syb], synaptosomal-associated protein

25 kDa [SNAP-25], and endophilinA [EndoA]) increased

modestly between 53–95 hr APF (two to three times) (Bhatta-

charya et al., 2002; Guichet et al., 2002; Vilinsky et al., 2002).

Transcripts encoding active zone proteins Cacophony (Cac),

Straight-jacket (Stj), and Brp increased two to seven times be-

tween 24 and 53 hr; the patterns of expression exhibited different

kinetics and the level of these transcripts generally decreased by

two to ten times by 96 hr APF (Ly et al., 2008; Smith et al., 1996).

The level of highwire (hiw) mRNA, encoding a ubiquitin E3 ligase

that acts as a negative regulator of active zones (Wan et al.,

2000), was very low at all times points with only one RPKM value

>1 at 40 hr APF. Together, these observations are consistent

with a role for post-transcriptional regulation during presynaptic

differentiation.

Given the implication of the importance of post-transcriptional

regulation during synapse formation, we examined the 30 UTRs of
mRNAs encoding presynaptic proteins. We observed that 30

UTRs of 55% of these genes (45 genes analyzed) changed

between 24–96 hr APF (Figure 5; Table S4). By contrast, only

26% of five randomly selected sets of genes (45 genes in each

set) during this time period showed changes in their 30 UTRs.
This difference is highly significant (p = 1.71e-07, z test). In other

systems, enzymes regulating 30 UTR cleavage and polyadenyla-

tion site selection are downregulated during development (Di

Giammartino et al., 2011; Ji et al., 2009), thereby resulting in

longer 30 UTRs. Consistent with this, we observed a universal

downregulation of enzymes regulating the 30 UTRs during devel-

opment. These included the cleavage and polyadenylation spec-

ificity factor (CPSF), cleavage stimulation factor (CSTF), and

cleavage factor IM (CFIM) ranging from 3.5 times to 44 times

from 24–96 hr APF (Table S5). In addition, regulatory factors of

the Elav family of RNA binding proteins including Elav, Rpb9,

and Fne show dynamic changes in expression (Samson and

Chalvet, 2003) (Table S5). Elav protein has been shown to pro-

mote the formation of longer 30 UTRs in the developing fly embry-

onic nervous system (Hilgers et al., 2012). In developing R cells,
ent. RPKM values are greater than one (see text).

nt using GO term enrichment analysis. The differentially expressed genes were

egulated and five times downregulated) between 35–40 hr APF, 40–45 hr APF,

nes expressed greater than five times between the indicated time points is

gical category (see Experimental Procedures).

ated greater than five times. For both (C) and (D), RPKM for a transcript at one

than five times.
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Figure 4. Dynamic Regulation of Cell Surface and Secreted Molecules Expressed during Presynaptic Differentiation

(A) Heatmap showing differential regulation of 125 cell surface or secreted molecules changing greater than 5 times in the union set of differentially expressed

genes between 40–45 hr APF, 45–53 hr APF, and 40–53 hr APF. Color code as indicated. Expression for each of transcript is shown across the entire time series.

The fold change refers to the significant change in level between two neighboring time points. Note that these are relative changes not absolute values and boxes

showing genes with RPKMs less than one in both time points are labeled as ‘‘no change’’ (white).

(B) Schematic presentation of gene expression patterns of a group of genes as indicated. Gene expression patterns of four cell surface or secreted molecules are

shown (see text).

(C) Pie chart showing the numbers of 125 differentially expressed genes in different gene families during presynaptic development. There are six Ig superfamily

proteins: three Beat paralogs, Dscam4, Hbs, and Dpr14.

See also Table S8.
elav mRNA expression peaks at 40 hr APF and gradually falls to

low levels at 96 hr APF. By contrast, Rpb9 increases continuously

to high levels at 96 hr APF and Fne shows a complex pattern of

regulation with peak levels at both 35 and 45 hr APF before

decreasing gradually to low levels by 96 hr APF. Thus, although
Cell R
there is a general trend toward lengthening the 30 UTR in all genes

in R cells as development proceeds, there is a selective increase

in 30 UTR length for genes encoding presynaptic components

and correlated changes in mRNAs encoding proteins and paral-

ogs of them, which regulate processing of 30 UTRs.
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Figure 5. Identification of Alternative 30 UTRs in Presynaptic Proteins

(A) The heatmap showing gene expression level changes of 45 presynaptic proteins between two adjacent time points during development.

(B) Four examples of transcripts (brp, n-syb, Lar, and Liprin-alpha) demonstrating the extended 30 UTRs during development.

See also Table S6.
Identification of Enriched RNA Binding Proteins Binding
Motifs in Synaptic Transcripts
The correlation between presynaptic differentiation and changes

in the 30 UTR of many transcripts encoding synaptic proteins

raised the possibility that these regions are sites of translational

regulation through microRNAs, RNA binding proteins or both. To

explore this possibility, we compared the sequences of synaptic

transcripts with extended 30 UTRs, to those lacking the 30 UTR
extension for binding sites for both microRNA and RNA binding

proteins. This comparison included 18 transcripts with 30 UTR
extensions, on average 1.3 kb in length, to 20 transcripts that

were not extended, with 30 UTRs with an average length of 1.1

kb (Table S6).

To test for enrichment of microRNA binding sites within 30

UTRs, we searched for potential binding sites for 466 known

fly microRNAs in the miRBase database (Kozomara and Grif-

fiths-Jones, 2014). The numbers of predicted binding sites found

in both classes of 30 UTRs were very similar (R = 0.84, p value <

2.2e-16, Pearson correlation coefficient). This suggests that the
1266 Cell Reports 14, 1258–1271, February 9, 2016 ª2016 The Autho
transcripts with extended 30 UTRs in R cells are no more likely to

be regulated by microRNAs than their unextended counterparts.

Furthermore, the 30 UTRs were no more likely to contain miRNA

binding sites than randomly selected 30 UTRs (p value = 0.057, z

test). Thus, our analysis does not support the notion that the

increased length of transcripts reflects an increased propensity

of transcripts encoding presynaptic proteins to be regulated by

miRNAs.

We next assessed whether extended 30 UTRs are more likely

to be sites of regulation through RNA binding proteins than their

counterparts that were not extended. We first performed the

RNA binding proteins (RBP) binding site prediction analysis us-

ing a list of known position weight matrices (PWMs) of 224 fly

RNA binding proteins (Ray et al., 2013). This revealed that RNA

binding motifs were over-represented in mRNAs encoding syn-

aptic proteins when compared to random sequences of genomic

DNA regardless of whether the 30 UTRs were extended. Further-

more, there were marked differences between the 30 UTRs. Thir-
ty significant motifs were found in genes encoding synaptic
rs



(legend on next page)
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proteins with extended 30 UTR, whereas only one motif was

significantly enriched in genes lacking an extended 30 UTR (i.e.,

with a p value of 0.01) (Figure 6B). Four examples are shown in

Figure 6A. Sequence comparison of all the RBP binding sites be-

tween the genomes of 14 insect species revealed that 88.9% (16

out of 18) of the presynaptic genes with extended 30 UTRs have

at least one highly conserved RBP binding site (e.g., asterisks in

Figure 6A and Table S7). These findings suggest that post-tran-

scriptional mechanisms contribute significantly to synaptic

differentiation.

Interestingly, several RNA binding proteins known to regulate

mRNA localization and translation (e.g., 4EHP, Hrb27c, and Imp),

were also dynamically regulated during this period. These find-

ings are consistent with the notion that post-transcriptional reg-

ulatory mechanisms may play a prominent role in regulating the

expression of synaptic components. Several RBPs that ex-

hibited changes in expression during R cell synapse formation

and for which binding sites inmRNAs encoding synaptic proteins

are enriched have been shown to regulate synaptic strength at

the fly neuromuscular junction (Menon et al., 2004) and learning

and memory (Keleman et al., 2007). Thus, together these data

support the view that post-transcriptional mechanisms play an

important role in regulating presynaptic differentiation.

DISCUSSION

Characterization of Gene Expression during Synapse
Formation Using T-TRAP
The conversion of a growth cone to a presynaptic terminal is a

common step in the neuronal differentiation. As this step occurs

synchronously in R cells, these neurons provide a unique oppor-

tunity to characterize global patterns of gene expression during

this process. We isolated mRNA associated with ribosomes

labeled with two tandemly arranged tags (T-TRAP), rather than

a single one, separated by a protease recognition site. This facil-

itated a two-step affinity purification of mRNA associated with ri-

bosomes thereby increasing signal-to-noise and reproducibility

between biological replicates over that achieved via TRAP

(e.g., from 0.93 to 0.99). This comes at a cost of a significant,

though acceptable, decrease in yield (�30%). No developmental

or morphological abnormalities resulted from overexpression of

the tandem-tagged ribosomal subunit in various cell types, in

contrast to overexpression of other tags in the same cells used

for mRNA purification, such as the poly A binding protein

(J.M.M. and S.L.Z, unpublished data). We have recently modified

the transgenes encoding T-TRAP to further reduce background

by increasing expression via the inclusion of non-coding se-

quences enhancing translation (Pfeiffer et al., 2012) and by miti-

gating the effects of leaky expression of the UAS construct by

inserting a transcriptional stop sequences flanked by FRT-

recombination sites (unpublished data). Targeting recombinase
Figure 6. RNA Binding Proteins Binding Motifs in 30 UTRs of Presynap

(A) Four transcripts encoding synaptic proteins (brp, n-syb, Lar, and Liprin-a) with

(blue) and extended 30 UTR (gold). RBP binding sites highly conserved across sp

(B) Bar plot showing 30 significant RBP binding motifs were found in genes enco

was significantly enriched in genes without an extended 30 UTR (blue bar). The b

See also Figure S4 and Tables S6 and S7.
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expression to the cells of interest and coupling this with cell-

type-specific expression of GAL4 further increases the cell-

type specificity of this method (Golic and Lindquist, 1989). Given

the cellular diversity of neural tissue we anticipate that the T-

TRAP technique will provide effective ways for isolating tran-

scripts from increasingly smaller subsets of cells in flies and

perhaps in mouse as well.

Selective Changes in Transcripts Encoding Cell Surface
Proteins with the Onset of Presynaptic Differentiation
The detailed time course of gene expression in R cells during the

transformation of R cell growth cones to presynaptic terminals

revealed substantial changes in the expression of many mRNAs

encoding cell surface proteins, including those implicated in

cellular recognition and synapse formation. The changes in

expression were highly selective for cell surface and secreted

proteins. The only other category with selective expression

within this interval was ‘‘phototransduction’’ reflecting a preco-

cious upregulation of a subset of these genes prior to the onset

of opsin expression and, hence, photosensitivity. Indeed, just

prior to the onset of morphological changes in R cell growth

cones preceding their transformation into presynaptic terminals

(i.e., 35–40 hr APF), many more mRNAs encoding cell surface

components (approximately three times) were downregulated

than upregulated. By contrast, during the subsequent time inter-

val correlating with the first morphological manifestation of

presynaptic differentiation (i.e., 40–45 hr APF), many more cell

surface proteins (approximately ten times) were upregulated

than downregulated. The changes in the association of these

mRNAs with ribosomes during these time intervals suggests

that amassive restructuring of the cell surface plays an important

role in the transition of the growth cone to a synaptic terminal.

Comparison of expression differences between FACS and T-

TRAP indicate that many of these changes occur preferentially

at the post-transcriptional level. The complementary and alter-

nating expression of the translational inhibitors, 4EHP and 4E-

BP (or Thor) at each time point (i.e., when one is high the other

is low), is consistent with expression being highly regulated at

the level of translation just prior to and during synapse formation.

The changes in the cell surface proteome, however, also reflect

the stability of different membrane proteins. As the half-lives of

proteins vary over many orders of magnitude, the changes in

the ribosome association of mRNAs of proteins encoding

different cell surface proteins only represent part of the story.

Measuring these changes in axon terminals for proteins in vivo,

even for one protein, remains an experimental challenge.

The transcripts changing greater than five times during these

intervals included those encoding members of large families of

cell surface molecules previously implicated, or shown to be

required for, neural circuit formation including immunoglobulin-

containing proteins (e.g., Dscam4 and beat-IV) (Fambrough
tic Proteins

binding sites for the indicated RNA binding proteins (RBPs) in both early 30 UTR
ecies are labeled with asterisks (see text).

ding synaptic proteins with extended 30 UTR (red bar), whereas only one motif

lue dash line indicates a threshold of p value of 0.01.
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and Goodman, 1996; Millard et al., 2010; Yamagata and Sanes,

2008), leucine-rich repeat containing proteins (e.g., lapsyn)

(Guan et al., 2011), cadherins (e.g., Cad96Ca), integrin family

members (e.g., if), and tetraspanins (Hoang and Chiba, 1998;

Kopczynski et al., 1996; Lee et al., 2001). In addition, other pro-

teins that changed considerably during this time, including com-

ponents of the extracellular matrix (e.g., laminin and various

proteases), guidance receptors (e.g., Drl-2), secreted signals

(e.g., wingless, semaphorin2a), antagonists of BMP signaling

and spatzle family members, regulate various steps in develop-

ment, including synapse formation, terminal branchmorphology,

and cell survival (Garcı́a-Alonso et al., 1996; Liebl et al., 2008;

Zhu et al., 2008; Zlatic et al., 2009). These changes are consis-

tent with dynamic intercellular interactions occurring within the

neuropil as complex patterns of connections between R cell ter-

minals and their targets are assembled (Rivera-Alba et al., 2011;

Takemura et al., 2013).

Post-transcriptional Regulation through 30 UTRs
Although marked changes in cell surface proteins were readily

observed between closely spaced time points prior to and during

synapse formation, changes in the levels of transcripts encoding

synaptic proteins were modest. A doubling in the length of the 30

UTRs encoding presynaptic proteins was correlated with an

increase in the number of binding sites for RNA binding proteins

implicated in regulating mRNA localization, stability and transla-

tion. These binding proteins were expressed in R cells, some at

constant levels (e.g., Fmr) through the time course examined,

whereas others changed considerably (e.g., Hrb27c). Impor-

tantly, in each of these extended transcripts at least one RBP

binding site is conserved with orthologous transcripts in other

Drosophila species supporting the notion that these sites are

functionally significant. Functional studies inCaenorhabditis ele-

gans also support a role for increased 30 UTR length in regulating

presynaptic differentiation, withmutations in a negative regulator

of polyadenylation (i.e., favoring shortened 30 UTR) leading to

defects in synapse formation (Van Epps et al., 2010). Together

these data suggest that increased 30 UTR length is an important

regulator of presynaptic differentiation and that increased length

promotes post-transcriptional regulation through interactions

with RNA binding proteins.

Regulation through the 30 UTRs may also play a more wide-

spread role in regulating presynaptic differentiation (Chia et al.,

2014). For instance, actin assembly is required for presynaptic

differentiation and actin regulatory proteins are regulated post-

transcriptionally via the evolutionarily conserved protein Imp.

Imp binds selectively to sequences within the 30 UTRs of actin

regulatory proteins (Medioni et al., 2014). Indeed, biochemical

studies in Drosophila S2 cells in culture identified 40 actin regu-

latory proteins with Imp binding sites (Hansen et al., 2015). All of

these are expressed in R cells, many at very high levels, during

synapse formation. Importantly, in our dataset, Imp transcript

is upregulated some 40 times prior to the onset of presynaptic

differentiation.

A recent study suggests that different 30 UTRs may also regu-

late the transport of membrane proteins to the cell surface (Ber-

kovits and Mayr, 2015). Here, human HuR proteins bind to 30

UTRs of mRNAs encoding cell surface proteins as they are being
Cell R
translated at the ER. HuR proteins then recruit a protein complex

that selectively associates with the C terminus of the nascent

polypeptide and this complex, in turn, promotes transport of

the newly synthesized protein to the cell surface. There are three

Drosophila homologs of HuR (Elav, Fne and Rpb9). These three

proteins have been implicated in synapse formation in the

Drosophila neuromuscular junction (Zaharieva et al., 2015),

and, as we discussed above, they are also implicated in length-

ening of 30 UTRs. Interestingly, these proteins are expressed in

very different and dynamic ways in R cells during synaptic devel-

opment (Table S5). Rbp9 expression increases continuously

between 24 and 53 hr APF with a change of nearly 20 times.

By contrast, Elav and Fne are expressed in a largely complemen-

tary fashion with peak levels of Elav at 24 and 40 hr APF, whereas

Fne shows high levels of expression at 35 and 45 hr APF, with

reduced levels at 40 hr APF.

Together, these data suggest that diverse post-transcriptional

mechanisms mediated through 30 UTR sequences play an

important role in regulating synapse formation in R cells.

Concluding Remarks
Decades of genetic analysis have provided an extensive tool kit

for exploring neural circuit assembly in the fly visual system.

Here, progress has been made in large part based on the ability

to genetically manipulate specific cell types, single cells, or small

subsets of them to assess their phenotypes in an otherwise

normal or wild-type background. We recently demonstrated

that all R cells progress through synapse formation syn-

chronously. This synchrony within a single fly and the ability to

synchronize large numbers of animals at the onset of pupal

development, provided a unique opportunity to explore gene

expression at a global level during the conversion of growth

cones to presynaptic terminals. Coupling this global approach

to genetic and functional analysis at the level of single genes

provide a unique opportunity to dissect the molecular program

underlying synaptic development.

EXPERIMENTAL PROCEDURES

T-TRAP Flies

TRAP and T-TRAP constructs were generated by insertion of dRpL10a with an

N-terminal Not-I site following the ATG inserted into pUAST using EcoRI/XbaI.

Then a cassette containing either Not-I flanked GFP (TRAP) or Not-I flanked

3xFLAG-TEV-GFP (T-TRAP) was inserted. Flies were injected with either

construct and F2 progeny were screened for transgenic animals exhibiting

the lowest UAS expression in the absence of GAL4 as assessed by western

blot against GFP.

T-TRAP Purification

Brain dissections were performed in dissection buffer (13 HBSS, 2.5 mM

HEPES [pH 7.4], 35 mM glucose, 4 mM NaHCO3) containing 100 mg/ml of

cycloheximide (CHX). The central brain was discarded and optic lobes and

retina were frozen on dry ice and maintained at �80 in Lysis buffer (20 mM

HEPES [pH 7.4], 150 mM KCl, 5 mM MgCl + protease inhibitors) containing

100 mg/ml CHX until enough optic lobes were accumulated. For each replicate

with the Chp-GAL4 driver, 40 optic lobes were used.

Optic lobes were thawed and homogenized using a motorized Teflon pestle

in 500 ml of lysis buffer with RNase inhibitors; one-ninth the volume of Igepal

CA-360 was added and the tube is gently inverted, followed by addition of

one-ninth the volume of 1,2-diheptanoyl-sn-glycero-3-phosphocholine. The

tube containing this mixture was inverted and placed on ice for 5 min to lyse
eports 14, 1258–1271, February 9, 2016 ª2016 The Authors 1269



the cells. Lysates were centrifuged at 16,000 rpm for 15min at 4�C. The super-
natant was added to tubes containing anti-FLAG M2 affinity magnetic beads

(Sigma) and incubated at 4�C for 1 hr with gentle rotation. Beads were

collected and washed three times with Wash Buffer #1 (20 mM HEPES [pH

7.4], 150 mM KCl, 5 mM MgCl, 1% Igepal CA-360) and 500 ml of IP buffer #2

(20 mM HEPES [pH 7.4], 150 mM KCl, 5 mM MgCl, 1% Igepal CA-360, + pro-

tease and RNase inhibitors) was added to the beads. Five microliters of TEV

protease (10 U/ml) was added (Life Technologies) and in some cases 3 ml Turbo

DNase (2 U/ml) (Ambion), andmixtures were incubated at room temperature for

1 hr with gentle rotation. The supernatant was collected and added to protein-

G beads (Life Technologies) pre-bound with 50 mg each of anti-GFP mono-

clonal antibodies HtzGFP-19C8 and HtzGFP-19F7 (Monoclonal Antibody

Core Facility, Sloan-Kettering Cancer Center) and incubated at 4�C for

30min. Beads were collected andwashedwithWash Buffer #2 (20mMHEPES

[pH 7.4], 300 mM KCl, 5 mM MgCl, 1% Igepal CA-360) three times. RNA was

eluted from the beads by addition of 350 ml of RLT buffer (QIAGEN) and incu-

bated for 5 min with occasional inversion. RNA is then isolated using the RNA-

min elute kit from QIAGEN. RNA was then amplified in a linear fashion using

Arcturus RiboAmp HS kit (Life Technologies). cDNA was then generated for

quality assessment and then paired-end Illumina, multiplexed sequencing li-

braries were prepared.

Library Preparation from Cells Isolated by FACS

Cell dissociation procedures, FACS purification of cells from 40 and 53 hr APF,

RNApurification, and library constructions were done as described in Tan et al.

(2015).

Additional experimental procedures are included in the Supplemental

Information.
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