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Abstract

The median of a profile π = (u1, . . . , uk) of vertices of a graph G is the set of vertices x that minimize the sum of distances
from x to the vertices of π . It is shown that for profiles π with diameter θ the median set can be computed within an isometric
subgraph of G that contains a vertex x of π and the r -ball around x , where r > 2θ − 1 − 2θ/|π |. The median index of a graph
and r -joins of graphs are introduced and it is shown that r -joins preserve the property of having a large median index. Consensus
strategies are also briefly discussed on a graph with bounded profiles.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of consensus is present in many different fields, for instance in economics, sociology, and biology; we
refer to [3] for a general mathematical formalization of the consensus theory. The general situation can be frequently
presented as a group of clients that wish to achieve a consensus by some rational process which can in turn be modeled
with consensus functions on some discrete structure. The most studied discrete structures in this respect are posets
(see, for instance, [4,9]) and graphs.

A natural way of achieving a consensus on a graph is by means of a median function. The special case of median
functions when the profile is the whole vertex set of a (vertex-weighted) graph has been extensively studied, see [2,14]
and the references therein. On the other hand, a profile in a graph is often small with respect to the whole graph. For
instance, it can consist of as few as three vertices of which two are at distance two [12]. In such cases the median of
the profile might be found without processing the entire graph, and many algorithms which do not work globally may
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be locally feasible for such profiles. Hence it seems reasonable to consider profiles with bounded diameter and we
initiate such studies in this paper.

In the next section we introduce the concepts and definitions needed in this paper. In particular, the majority strategy
is described. In the subsequent section we consider profiles π with bounded diameter and show that then the median
of π can be obtained locally, either in a properly bounded isometric subgraph (Theorem 2) or in an induced subgraph
that contains π (Theorem 3).

Mulder [12] proved that the majority strategy produces the median of π in G for all π if and only if the
corresponding graph is median. (In fact, this is also equivalent to the fact that the majority strategy produces the
median of π in G, for all π of length 3.) For another characterization of median graphs in terms of the median function
see [1]. Due to this central role of median graphs in the graph theoretical consensus theory we introduce in Section 4
a median index of a graph. (For graphs that are locally hypercubes see [7].) We also introduce a d-join of graphs and
prove that the d-join of graphs with median indices at least d is a graph with the same property (Theorem 7).

We conclude the paper with a discussion of known consensus strategies related to situations with bounded profiles
and propose two new strategies that could be useful in the location theory.

2. Preliminaries

All graphs considered in this paper are simple and connected.
The distance dG(u, v), or briefly d(u, v), between two vertices u and v in a graph G is defined as the number of

edges on a shortest u, v-path. A subgraph H of a graph G is an isometric subgraph if dH (u, v) = dG(u, v) for all
vertices u, v in H . The diameter diam(G) of a graph G is maxu,v∈V (G) d(u, v).

A profile π on a graph G is a finite sequence of vertices of G. (Sequences are taken in order to enable possible
repetitions.) For a vertex x of G, let D(x, π) =

∑
v∈π d(x, v), where d is the usual shortest path distance. Then x is

a median vertex for π if D(x, π) is minimum. The median function M is the function that for each profile π on G
returns the set of its median vertices M(π, G). The set M(π, G) is called the median of π in G. The median function
is also known as the median procedure, see [10,11].

For a graph G, a vertex u of G and a set of vertices X ⊆ V (G) we will write d(u, X) = min{d(u, x) | x ∈ X}. The
distance d(x, π) between the vertex x and the profile π is defined analogously. The diameter of a profile π , diam(π),
is maxu,v∈π d(u, v).

The k-ball at a vertex x of a graph G is Bk(x) = {v ∈ V | d(x, v) ≤ k}. We will also use the same notation to
denote the subgraph of G induced by Bk(x).

A connected graph G is a median graph if, for every triple u, v, w of vertices, there exists a unique vertex x , called
the median of u, v, w, such that x lies simultaneously on shortest paths joining u and v, v and w, and u and w. We
refer to [8] for a survey on median graphs including their role in location theory.

Let T be a tree. Then it is not difficult to observe that for a given profile π , we can find M(π, T ) by starting in an
arbitrary vertex and moving in the tree to the majority of π . In [12] Mulder extended this approach in the following
way.

Let uv be an edge of a connected graph G, and let π be a profile in G. Set πuv to be the subprofile of π consisting
of all elements of π nearer to u than to v. Then the majority strategy for π reads as follows.

Input: A connected graph G and a profile π in G.
Output: X ⊆ V (G).

1. Start at an initial vertex u of G.
2. If v is a neighbor of u with |πuv| ≥ |π |/2, then move to v; move to a vertex already visited twice only if there

is no other choice.
3. Stop when either we are stuck at a vertex v (i.e. |πwv| < |π |/2, for all neighbors w of v) or we have visited

vertices at least twice, and, for each vertex v visited at least twice and each neighbor w of v, either w is also
visited twice or |πwv| < |π |/2.

4. Let X consist of the single vertex where we get stuck or of all vertices visited at least twice.

If the majority strategy produces for π the same set X from any initial vertex, then we say that it produces X for
π . Mulder [12] proved:
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Theorem 1. Let G be a connected graph. Then the following conditions are equivalent.

(i) G is a median graph.
(ii) The majority strategy produces M(π, G), for all π .

(iii) The majority strategy produces M(π, G), for all π of length 3.

3. The median function on profiles with bounded diameter

In this section we consider profiles with bounded diameter. We obtain conditions on the containment of the profile
in some isometric or induced subgraph which guarantee that we can act locally. We begin by showing that the median
of a profile π in G with diam(π) = θ can be obtained by restricting to a relatively small isometric subgraph of G.

Theorem 2. Let θ be a nonnegative integer, G a connected graph, π a profile in G with diam(π) = θ , and x ∈ π .
Let H be an isometric subgraph of G containing Br (x) where r is a fixed integer satisfying

r > 2θ − 1 −
2θ

|π |
.

Then M(π, H) = M(π, G).

Proof. Note first that if θ = 0 then π = (x) and hence clearly M(π, H) = M(π, G) = {x}. Assume in the rest that
θ > 0, and let r > 2θ − 1 −

2θ
|π |

.
Claim: M(π, G) ⊆ Br (x).

Let w ∈ π . Then

D(w, π) =

∑
u∈π
u 6=w

d(w, u) ≤ (|π | − 1)θ.

Let w′
∈ G \ Br (x). Then d(w′, x) ≥ r + 1 while for any other w ∈ π, w 6= x , we infer

r + 1 ≤ d(w′, x) ≤ d(w′, w) + d(w, x) ≤ d(w′, w) + θ,

therefore d(w′, w) ≥ r + 1 − θ . Thus for w′
∈ G \ Br (x) we have:

D(w′, π) ≥ r + 1 + (|π | − 1)(r + 1 − θ)

= r |π | + |π | − θ |π | + θ

> (2θ − 1 −
2θ

|π |
)|π | + |π | − θ |π | + θ

= (|π | − 1)θ

≥ D(w, π).

This proves the claim.
Since H is an isometric subgraph of G containing Br (x) we have DH (w, π) = DG(w, π) for any w ∈ V (H).

Hence by the above argument, M(π, H) ⊆ Br (x). As Br (x) is a subgraph of H we conclude that M(π, H) =

M(π, G). �

Note that if Br (x) is an isometric subgraph of G for some vertex x of π then we may set H = Br (x) in Theorem 2.
This holds in particular for any tree T and any vertex from a profile in T .

In the previous theorem the graph H to which a computation can be restricted must be isometric. In some cases
it might not be easy to find such a subgraph (or it might also not exist), hence we next wish to drop the isometry
assumption. This can be done by extending the corresponding balls.

Theorem 3. Let G, π, θ, x and r be as in Theorem 2. Let H be an induced subgraph of G containing Br+θ (x). Then
M(π, H) = M(π, G).
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Fig. 1. Situation from the proof.

Proof. Note that in order to establish the claim in the proof of Theorem 2 the isometry assumption of H is not
used. Therefore, also in the induced case, M(π, G) ⊆ Br (x). Thus it suffices to prove that the distance between
a vertex v ∈ π and a vertex y ∈ Br (x) is unaltered in the induced subgraph Br+θ (x). This distance cannot
increase because every shortest path from v to y in Br (x) is also a path in Br+θ (x). Also in Br+θ (x) we have
d(v, y) ≤ d(v, x) + d(x, y) ≤ r + θ .

Consider an arbitrary v, y-path P that does not lie completely in Br+θ (x). Then P is a concatenation of the subpath
Q from y to a vertex z outside Br+θ (x) and the subpath R from z to v; see Fig. 1.

Since y ∈ Br (x) and z 6∈ Br+θ (x) we have that |Q| ≥ θ + 1. Moreover, since

θ + r + 1 ≤ d(x, z) ≤ d(x, v) + d(v, z) ≤ θ + d(v, z)

we infer that |R| ≥ d(v, z) ≥ r + 1. Hence P is of length at least r + θ + 2 and thus P is not a geodesic. We conclude
that M(π, G) is the same as M(π, H). �

Theorems 2 and 3 can be applied in all situations in which it is possible to detect some previously studied structure
in the vicinity of a profile. As an example of such a result we state:

Corollary 4. Let θ ≥ 1 and let π be a profile in a connected graph G with diam(π) ≤ θ . If x is a vertex of π such
that B3θ (x) is a tree, then M(π, G) is either a single vertex or a path.

Proof. Goldman [5] proved that the median of a profile in a tree is either a single vertex or a path. Now we just apply
Theorem 3. �

4. Locally median graphs

As already mentioned, median graphs form one of the central graph classes in the graph theoretical consensus
theory. We therefore introduce the following concepts.

Let v be a vertex of a graph G. Then the median index of v, mxG(v), is the largest integer k ≤ diam(G) such that
B j (v) is a median graph for 0 ≤ j ≤ k. The median index of G, mx(G), is the minimum of the median indices of
the vertices of G. For instance, mx(Cn) = bn/2c − 1, while for a tree T , mx(T ) = diam(T ). G is said to be locally
p-median if its median index is p.

Proposition 5. Let θ ≥ 0 and let G be a connected graph. Let π be a profile in G with diam(π) ≤ θ , and let v be an
element of π with mxG(v) ≥ 3θ . If x is a vertex of G with d(x, π) ≤ θ , then the majority strategy started from x
produces M(π, G).

Proof. Clearly, all the vertices of π belong to Bθ (v). Since d(x, π) ≤ θ , we have x ∈ B2θ (v) and all shortest paths
from x to π lie in B3θ (v). As B2θ (v) is an induced subgraph of B3θ (v), Theorem 3 implies that M(π, G) is contained
in B2θ (v). Since B3θ (v) is a median graph, Theorem 1 implies that starting from x , the majority strategy finds the
median of π in B3θ (v). Moreover, for any vertex y outside B3θ (v), D(y, π) > D(x, π), therefore no move to an
outside vertex can be made by the majority strategy. So the same moves will be made in the original graph G and
hence the result. �
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Fig. 2. A 3-join and a 4-join.

It is therefore desirable to have graphs with large median indices. To construct large graphs with this property we
introduce a graph operation called the d-join of graphs.

Let d be an arbitrary positive integer. By a d-distance sequence in a graph G we mean a finite sequence S of distinct
vertices of G such that for any two vertices u, v of S, d(u, v) ≥ d. Clearly any permutation of a d-distance sequence
is also a d-distance sequence. Let G1 and G2 be graphs and let S1 and S2 be d-distance sequences of equal lengths
in G1 and G2 respectively. Then the d-join of G1 and G2 with respect to S1 and S2 is the graph obtained from the
disjoint union of G1 and G2 by joining the corresponding vertices in S1 and S2 by edges.

The d-join construction is illustrated in Fig. 2. The left graph is a 3-join of C12 with itself, the right graph is a 4-join
of P5 � P5 with itself. (Recall that the Cartesian product G � H of two graphs has the vertex set V (G)×V (H) where
the vertex (g, h) is adjacent to (g′, h′) whenever gg′

∈ E(G) and h = h′, or g = g′ and hh′
∈ E(H), see [6].)

To show that the d-join operation preserves large median index we first recall the following – part of the folklore –
result.

Lemma 6. A connected graph G is a median graph if and only if every block of G is median.

We can now state the main theorem of this section.

Theorem 7. Let d ≥ 1 and let G1 and G2 be graphs with mx(G1) ≥ d and mx(G2) ≥ d. Let G3 be a d-join of G1
and G2, then mx(G3) ≥ d.

Proof. Let G3 be the d-join of G1 and G2 with respect to the d-distance sequences S = (s1, . . . , sk) and
T = (t1, . . . , tk). Consider an arbitrary vertex x ∈ V (G3). We need to show that Bi (x) is a median graph for
1 ≤ i ≤ d .

We first show that Bd(x) is a median graph. Assume without loss of generality that x ∈ G1 and for all 1 ≤ i ≤ k
define

Ti (x) = {w ∈ V (G2) | d(x, w) = d(x, ti ) + d(ti , w) ≤ d}.

That is, Ti (x) consists of those vertices of G2 that can be reached from x via ti along a shortest path of length at
most d .

Note that

Bd(x) = (Bd(x) ∩ G1) ∪

k⋃
i=1

Ti (x).

Claim: For any 1 ≤ i 6= j ≤ k, Ti (x) ∩ T j (x) = ∅.
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Fig. 3. The d-neighborhood of x .

Suppose on the contrary that there exists a vertex y ∈ Ti (x) ∩ T j (x). Then, by the definition of Ti (x) and T j (x),

d(x, y) = d(x, ti ) + d(ti , y) = d(x, si ) + 1 + d(ti , y) ≤ d

and

d(x, y) = d(x, t j ) + d(t j , y) = d(x, s j ) + 1 + d(t j , y) ≤ d.

Summing these two inequalities we get

d(x, si ) + d(x, s j ) + d(y, ti ) + d(y, t j ) ≤ 2d − 2. (1)

On the other hand, having in mind that G3 is a d-join, we infer that

d(si , x) + d(x, s j ) ≥ d(si , s j ) ≥ d

and

d(ti , y) + d(y, t j ) ≥ d(ti , t j ) ≥ d .

This gives

d(x, si ) + d(x, s j ) + d(y, ti ) + d(y, t j ) ≥ 2d . (2)

Since inequalities (1) and (2) are in contradiction the claim is proved.
Bd(x) ∩ G1 is the d-neighborhood of x in G1. Since mx(G1) ≥ d it follows that Bd(x) ∩ G1 induces a median

graph.
Assume first that Bd(x) ∩ G2 = ∅. Then Bd(x) = Bd(x) ∩ G1 and hence we conclude that Bd(x) is a median

graph in this case.
Suppose Bd(x) ∩ G2 6= ∅. Let Hi , 1 ≤ i ≤ k, be the subgraph of G2 induced by the vertices from Ti (x). Clearly,

if d(x, ti ) > d then Hi is the empty graph. We may assume without loss of generality that for some r ≥ 1, precisely
the subgraphs H1, . . . , Hr are not empty. The situation is shown in Fig. 3. Suppose d(x, si ) = ai , 1 ≤ i ≤ r . Then
V (Hi ) = Bd−ai −1(ti ) ∩ G2 and because mx(G2) ≥ d we also find out that Hi is a median graph for i = 1, . . . , r .
Lemma 6 now implies that Bd(x) induces a median graph also in the case when Bd(x) ∩ G2 6= ∅.

Finally, the structure of Bi (x), where 1 ≤ i < d, is analogous to the structure of Bd(x), hence by the same
arguments as above Bi (x) induces a median graph. We conclude that mx(G3) ≥ d. �
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Let Gkn be the n-join of two copies of the cycle Ckn , where 2 < k ≤ n. That is, the two cycles are
connected with k edges such that an n-join is constructed. The case k = 3 and n = 4 is shown in Fig. 2. Since
mx(Ckn) = bkn/2c − 1 ≥ n, Theorem 7 implies that mx(Gkn) = n.

For another example consider the Cartesian product Gn = P2n+1 � P2n+1, where n ≥ 1. Select the four vertices
of degree 2 and the central vertex of Gn for a 2n-distance sequence of Gn and let Hn be the 2n-join of two copies of
Gn . (H2 is shown in Fig. 2.) Then mx(Hn) = 2n by Theorem 7.

5. Consensus strategies

In the preliminaries we have described the majority strategy that searches for the median set of a profile in an
arbitrary graph. The consensus criteria of the strategy is to move, if we are at v and w is a neighbor of v, from v to w

whenever

|πwv| ≥
1
2
|π |.

Modifying this consensus criteria, two other well-known strategies are obtained:

• Condorcet: move from v to w whenever |πvw| ≤
1
2 |π |.

• Plurality: move from v to w whenever |πvw| ≤ |πwv|.

It is easy to observe that in the case of bipartite graphs the majority strategy, the condorcet strategy, and the plurality
strategy coincide. This observation together with Theorem 2 yields the following result for graphs that are bipartite in
a vicinity of a profile.

Proposition 8. Let θ ≥ 0 and let π a profile in G with diam(π) ≤ θ . If v is a vertex of π such that the induced
subgraph B3θ (v) is bipartite, then the majority strategy, the condorcet strategy, and the plurality strategy coincide on
Bθ (v).

We say that a strategy is effective provided that if we start the strategy from a vertex of the profile π in a graph G,
then the strategy necessarily produces M(π, G). Now, if the majority strategy is effective then G must be bipartite in
a vicinity of the profile. More precisely:

Proposition 9. Let θ ≥ 0. If for each profile π with diam(π) ≤ θ the majority strategy is effective, then G does not
contain any odd cycle of length less than 2θ + 3.

Proof. The lemma is obvious for θ = 0 since the profile contains a single vertex, and every single vertex graph is
trivially bipartite.

Now assume that θ ≥ 1. We first prove that G is triangle-free. Assume that G contains a triangle u, v, w. Consider
the profile π = (u, v, w). Then D(x, π) = 2 for x in π and D(x, π) ≥ 3 for x outside π . So M(π, G) = {u, v, w}.
If we apply majority strategy starting at u, we find that we are stuck at u and we do not get all of M(π, G). Hence G
has to be triangle-free.

Assume that G contains an odd cycle of length less than 2θ + 3. Let C be a minimal odd cycle in G of length
t < 2θ + 3. Then C is an isometric cycle in G. Take any vertex u of C and let v and w be vertices on C at a distance t
from u. Now we have D(v, π) = D(w, π) = t + 1. Take any vertex x distinct from v and w. Since G is triangle-free,
x cannot be adjacent to both v and w, say d(x, w) ≥ 2. Due to the triangle inequality, we have d(x, u) + d(x, v) ≥ t .
Hence D(x, π) ≥ t + 2, therefore M(π, G) = {v, w}. We apply the majority strategy from initial position v with
respect to π . Let x be any neighbor of v. If x = w, only x is nearer to x than v. If x 6= w, then only u could be nearer
to x than v. Hence we do not move to x , so that we are stuck at v. Again we do not get all of M(π, G). �

To conclude the paper we propose two additional consensus strategies, the idea arising from artificial
intelligence [13]. In these strategies the consensus criteria is to move from v to w provided that:

• Hill Climbing: move from v to w whenever D(w, π) ≤ D(v, π).
• Steepest Ascent Hill Climbing: move from v to w whenever D(w, π) ≤ D(v, π) and D(w, π) is minimum among

all neighbors of v.

It seems that these strategies could offer new insights into the consensus theory.
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[8] S. Klavžar, H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30

(1999) 103–127.
[9] B. Leclerc, The median procedure in the semilattice of orders, Discrete Appl. Math. 127 (2003) 285–302.

[10] F.R. McMorris, H.M. Mulder, F.S. Roberts, The median procedure on median graphs, Discrete Appl. Math. 84 (1998) 165–181.
[11] F.R. McMorris, H.M. Mulder, R.C. Powers, The median function on median graphs and semilattices, Discrete Appl. Math. 101 (2000)

221–230.
[12] H.M. Mulder, The majority strategy on graphs, Discrete Appl. Math. 80 (1997) 97–105.
[13] P.H. Winston, Artificial Intelligence, 3rd edition, Addison-Wesley Publishing Co., Reading, MA, 1992.
[14] H.-G. Yeh, G.J. Chang, Centers and medians of distance-hereditary graphs, Discrete Math. 265 (2003) 297–310.


	The median function on graphs with bounded profiles
	Introduction
	Preliminaries
	The median function on profiles with bounded diameter
	Locally median graphs
	Consensus strategies
	Acknowledgement
	References


