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SUMMARY

Genomic imprinting regulates parental-specific ex-
pression of particular genes and is required for nor-
mal mammalian development. How imprinting is
established during development is, however, largely
unknown. To address this question, we studied the
mouse Kcnq1 imprinted cluster at which paternal-
specific silencing depends on expression of the non-
coding RNA Kcnq1ot1. We show that Kcnq1ot1 is
expressed from the zygote stage onward and rapidly
associates with chromatin marked by Polycomb
group (PcG) proteins and repressive histone modifi-
cations, forming a discrete repressive nuclear com-
partment devoid of RNA polymerase II, a configura-
tion also observed at the Igf2r imprinted cluster. In
this compartment, the paternal Kcnq1 cluster exists
in a three-dimensionally contracted state. In vivo
the PcG proteins Ezh2 and Rnf2 are independently
required for genomic contraction and imprinted
silencing. We propose that the formation of a paren-
tal-specific higher-order chromatin organization
renders imprint clusters competent for monoallelic
silencing and assign a central role to PcG proteins
in this process.

INTRODUCTION

In placental mammals, genomic imprinting ensures the strict

parent-of-origin-specific expression of about 80 currently known

imprinted genes. The majority of these genes are involved in pla-

cental and embryonic development or in postnatal neurological

processes. Most imprinted genes are localized in multigene clus-

ters in which monoallelic expression is controlled by a cis-acting

imprinting control region (ICR). ICRs are marked by DNA methyl-

ation acquired during preceding oogenesis or spermatogenesis.

At the H19-Igf2 imprinted cluster, parental-specific DNA methyl-
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ation at the ICR directs silencing in cis via a CTCF-mediated in-

sulator mechanism (Kurukuti et al., 2006; Murrell et al., 2004). At

the Kcnq1 and Igf2r imprinted clusters, however, expression of

the Kcnq1ot1 and Air long noncoding RNAs (ncRNA) from the

unmethylated paternal alleles is required for silencing in cis (Fitz-

patrick et al., 2002; Mancini-Dinardo et al., 2006; Sleutels et al.,

2002). Although widely discussed (Pauler et al., 2007; Umlauf

et al., 2008), it is not known whether Kcnq1ot1 and Air ncRNAs

mediate repression in cis by forming a repressive nuclear com-

partment devoid of RNA polymerase II (RNAP), like Xist during

X inactivation (Xi) (Chaumeil et al., 2006), or whether transcription

through the ncRNA locus per se is required for imprinted

silencing in cis.

Here, we study the Kcnq1 imprinted gene cluster as a model

system to unravel the molecular mechanisms by which ncRNAs

and epigenetic modifiers cooperate to mediate monoallelic gene

silencing during mammalian development. Recent studies point

to differential regulation of genes along the 1 Mb Kcnq1 genomic

cluster (Lewis et al., 2004, 2006; Shin et al., 2008; Umlauf et al.,

2004; reviewed in Peters and Schubeler, 2005). Whereas so-

called ‘‘inner’’ genes are ubiquitously imprinted in embryonic

and extraembryonic tissues, ‘‘outer’’ genes are imprinted exclu-

sively in extraembryonic tissues in the absence of promoter DNA

methylation (Figure 1A) (Lewis et al., 2004; Schulz et al., 2006). In

extraembryonic tissues at 9.5 days of development, H3 lysine 27

trimethylation (H3K27me3), a mark mediated by the evolutionary

conserved Polycomb repressor complex 2 (PRC2), is enriched

throughout the paternal Kcnq1 cluster (Umlauf et al., 2004), sug-

gesting a role for PRC2-dependent mechanisms in regulating

genomic imprinting. Consistently, paternal repression of Cdkn1c

was partly alleviated in E7.5 embryos deficient for the PRC2

component Eed (Mager et al., 2003). PRC1 is thought to cooper-

ate with PRC2 to mediate repression by inhibiting chromatin re-

modeling, blocking transcription through Rnf2-mediated H2A

lysine 119 monoubiquitination (H2AK119u1), and by mediating

chromatin compaction (Levine et al., 2004; Stock et al., 2007;

van der Stoop et al., 2008). Whether PRC1 is involved in regulat-

ing imprinted silencing is still unknown. The repressive H3K9me2

and H3K9me3 modifications are also enriched at paternally im-

printed genes within the Kcnq1 cluster (Umlauf et al., 2004).
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Figure 1. Nascent Kcnq1ot1 ncRNA Marks

a Distinct Subnuclear Repressive Compart-

ment in TS Cells

(A) Schematic representation of the�1 Mb mouse

Kcnq1 cluster with allelic transcription (arrows) as

determined in placenta at E9.5/E13.5 (Schulz

et al., 2006; Umlauf et al., 2004). Kcnq1ot1 ncRNA

is controlled by the KvDMR1 ICR. Ubiquitously im-

printed ‘‘inner’’ genes (blue), placental-specific im-

printed ‘‘outer’’ genes (pink), and nonimprinted

genes (gray) are indicated. Yellow and black lolli-

pops indicate germline and somatic DNA methyla-

tion, respectively. Tel, telomeric; Cen, centro-

meric; Mat, maternal; Pat, paternal.

(B) RNA/DNA-FISH detection of Kcnq1ot1 (red)

and Kcnq1 parental loci (313I3, green) in TS cells.

(C) Immuno-RNA-FISH for H3K27me3, Ezh2,

H2AK119u1, Rnf2 and H3K9me3 (green), and

Kcnq1ot1 ncRNA (red) in female TS cells. Small

bottom panels show 3D reconstructions (left) high-

lighting colocalization between Kcnq1ot1 ncRNA

and marks/proteins in yellow (right). The inactive

X chromosome is also strongly enriched in PcG

marks/proteins.

(D) Serial optical sections illustrating the 3D asso-

ciation of Kcnq1ot1 (red) with a repressive com-

partment enriched in H2AK119u1 (green), insert

from (C). Yellow indicates colocalization between

RNA and H2AK119u1.

(E) Percentage of cells with different association

levels between Kcnq1ot1 and indicated marks/

proteins. Serial confocal z slices were used for

3D reconstructions and quantifications. The occu-

pancy level of the Kcnq1ot1 signal with a chroma-

tin mark is categorized as follows: high (>50%),

intermediate (20%–50%), limited overlap (0%–

20%), or exclusion of the mark from the domain

defined by the ncRNA (0%). The number of nuclei

analyzed is indicated.

(F) Double immunofluorescence detection of

H2AK119u1 (green) and H3K4me2 (red) or of

H3K27me3 (green) and RNAP (red), followed by

Kcnq1ot1 RNA-FISH (blue). Serial confocal z

slices with colocalization between repressive

marks and Kcnq1ot1 (yellow) are shown. 3D-

reconstructed views of nuclei and close-ups (right

panels) illustrate exclusion of H3K4me2 and

RNAP from the repressive paternal Kcnq1

domain marked by Kcnq1ot1. Quantifications as

in (E). Scale bars: 5 mm (nuclei) and 0.5 mm

(magnifications).
Deficiency for the H3K9 histone methyltransferase G9a causes

stochastic loss of imprinted repression of outer cis genes in pla-

cental tissues of E9.5 embryos (Wagschal et al., 2008), under-

scoring the importance of multiple repressive pathways in

imprinted repression. Recent studies suggest that Kcnq1ot1-

mediated silencing initiates during early embryonic development

and is maintained along the entire the Kcnq1 domain, exclusively

in the extraembryonic lineages (Green et al., 2007; Lewis et al.,

2006; Umlauf et al., 2004). However, the timing and nature of

the chromatin features associated with the initiation of imprinted

silencing have remained elusive.

In this manuscript, we characterize the higher-order chromatin

and genomic organization at the paternal repressed Kcnq1 clus-
Developme
ter in preimplantation embryos and in trophectodermal stem (TS)

cells, an in vitro model system for early extraembryonic develop-

ment. By combining RNA-FISH with immunofluorescence stain-

ing and DNA-FISH, we reveal the existence of a repressive sub-

nuclear compartment at the paternal Kcnq1 and Igf2r clusters,

as previously identified at the Xi (Okamoto et al., 2004). Impor-

tantly, we provide unprecedented in vivo evidence that, in com-

parison to the active maternal cluster, the paternally repressed

Kcnq1 cluster exists in a three-dimensionally (3D) contracted

state in early embryos. In the absence of maternal and zygotic

Ezh2 expression and H3K27me3, the paternal Kcnq1 repressive

compartment remained largely intact. Yet, paternal genomic

contraction was abrogated, and several cis genes failed to be
ntal Cell 15, 668–679, November 11, 2008 ª2008 Elsevier Inc. 669
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silenced in extraembryonic tissues after implantation. Remark-

ably, comparable observations were made in the absence of ma-

ternal and zygotic Rnf2 expression. Our results indicate that

during early development, the paternal Kcnq1 cluster becomes

progressively competent for silencing cis genes through the for-

mation of a higher-order repressive compartment and PcG-

mediated genomic reorganization.

RESULTS

The Kcnq1ot1 and Air ncRNAs Distinguish Discrete
Repressive Nuclear Compartments
To study whether the �90 kb Kcnq1ot1 ncRNA (Mohammad

et al., 2008) directs the formation of a repressive nuclear com-

partment, we established a RNA-FISH assay in TS cells in which

Kcnq1ot1 is paternally expressed (Lewis et al., 2006). Using

a probe intronic to Kcnq1 and covering 11 kb of the Kcnq1ot1

transcriptional region (Figure 1A), we detected a single, intense

RNA-FISH signal in 90.6% (SD ±4.1%; n = 1050) of TS cells.

By combining RNA and DNA-FISH, we observed that the

Kcnq1ot1 transcript originates from the Kcnq1 locus on one pa-

rental chromosome (Figure 1B), confirming the specificity of

Kcnq1ot1 detection by RNA-FISH. Treatment of TS cells with

the RNAP elongation inhibitor DRB led to a rapid and dramatic

reduction in Kcnq1ot1 levels by quantitative PCR and FISH

(see Figure S1 available online), suggesting low transcript stabil-

ity and continuous RNAP-dependent transcription of the

Kcnq1ot1 ncRNA.

Next, we combined immunodetection and RNA-FISH to inves-

tigate whether the Kcnq1ot1 ncRNA associates with a repressive

subnuclear domain at the paternal Kcnq1 cluster in female TS

cells. Remarkably, the analyses of consecutive confocal

sections revealed strong enrichment for PcG proteins and

Polycomb-mediated marks as well as H3K9 trimethylation

(H3K9me3) at proximity to, and in association with, the Kcnq1ot1

ncRNA signal (Figures 1C and 1D). To quantify the level of asso-

ciation, we generated 3D reconstructions of confocal stacks and

determined the relative volume of the Kcnq1ot1 domain that is

labeled by a given chromatin mark (Figure 1C, bottom panels).

For H3K27me3 and Ezh2, the PRC2 component catalyzing this

mark, we scored high percentages of cells with strong (>50%)

and intermediate (20%–50%) levels of association with

Kcnq1ot1 (Figure 1E). We observed similar degrees of associa-

tion for H2AK119u1 and the E3-ubiquitin ligase Rnf2. Finally,

Kcnq1ot1 was also extensively associated with selected other

PcG-proteins (PRC2 proteins Eed and Suz12, and PRC1 pro-

teins Cbx2, Rybp, and Phc2) and additional histone marks

(H3K9me2 and H4K20me1) (Figure S2). In contrast, double im-

muno-RNA-FISH stainings revealed that markers for transcrip-

tional activity such as H3K4me2 and RNAP were excluded

from Kcnq1ot1 and its surrounding chromatin enriched in

H2AK119u1 and H3K27me3 (Figure 1F). Importantly, the size

of the repressive chromatin compartment generally exceeds

that of the domain delineated by the Kcnq1ot1 ncRNA, suggest-

ing limited association of Kcnq1ot1 ncRNA with the flanking

regions of the Kcnq1 cluster (see below). A similar repressive

compartment was observed at the Igf2r imprinted gene cluster

using a probe directed against the Air ncRNA (Figures S3A–

S3D). Altogether, these data identify higher-order repressive
670 Developmental Cell 15, 668–679, November 11, 2008 ª2008 Els
compartments for the paternal Kcnq1 and Igf2r clusters,

analogous to what was previously described for the inactive

X chromosome.

Differential Chromatin Configurations at Parental
Kcnq1 Imprinted Clusters
To control for the specificity of Kcnq1ot1 association with re-

pressive chromatin, we directly compared the chromatin con-

figuration at the maternal and paternal Kcnq1 genomic clusters

in TS cells. In these experiments, we combined immunodetec-

tion and RNA FISH detection of Kcnq1ot1 ncRNA and nascent

transcripts for Osbpl5 or Cd81, two maternally expressed cis

genes within the Kcnq1 cluster (Figure 1A), as well as for the

unrelated LaminB1 nascent transcript. Maternally, we observed

an ‘‘active’’ chromatin configuration rich in H3K4me2 and

RNAP and devoid of H3K27me3 and H2AK119u1 (Figures S4

and S5). In the same nuclei, a repressive chromatin configura-

tion was detected at the paternal allele, at proximity to

Kcnq1ot1. LaminB1 nascent RNA was equally devoid of

H3K27me3 and H2AK119u1 (Figure S5). To additionally test

whether the association of repressive marks with the Kcnq1ot1

FISH signal could be explained by random, nonspecific proxim-

ity to one of the numerous nuclear spots, we performed an

in silico simulation (Noordermeer et al., 2008). We developed

an algorithm to generate diffraction-limited, randomly posi-

tioned loci in 3D confocal stacks and scored only limited levels

of association relative to H3K27me3 and H2AK119u1, two

marks highly associated with Kcnq1ot1 (Figure S5). Altogether

these data underscore the specificity of the immuno-RNA-FISH

assay and support the notion that the two parental Kcnq1 clus-

ters exist in different nuclear chromatin configurations within

the same cell.

H2AK119u1 Is Enriched at Imprinted Genes
in a Parental-Specific Manner
To investigate whether the immuno-RNA FISH results reflect

the local enrichment of repressive marks along the paternal

Kcnq1 cluster, we performed allele-specific chromatin immu-

noprecipitation (ChIP) analyses in undifferentiated TS cells.

We used polymorphisms between Mus musculus C57BL/6J

and Mus spretus (SD7) to distinguish parental alleles. We ob-

served a 2- to 6-fold enrichment of H2AK119u1 around tran-

scriptional start sites of paternal versus maternal alleles for

three cis genes (Cdkn1c, Tssc4, and Cd81) (Figures 2A and

2B). Likewise, paternal alleles were also strongly enriched in

H3K27me3, whereas maternal alleles were enriched in

H3K4me2 and RNAP. At the Osbpl5 locus, H2AK119u1 and

H3K27me3 were about 2-fold enriched paternally. Parental en-

richments were concordant with levels of allelic gene expres-

sion as analyzed by quantitative polymorphic RT-PCR (see

Figures 7A–7C). In contrast, we observed no differential allelic

enrichment at Nap1l4, a nonimprinted gene located within the

Kcnq1 cluster, underscoring the specificity of the ChIP condi-

tions. As anticipated, RNAP and H3K4me2 were enriched at

KvDMR1. This latter finding is in concordance with immuno-

RNA-FISH results showing partial focal colocalization of

Kcnq1ot1 with RNAP (see Figure S4E), possibly marking the

site of Kcnq1ot1 transcription within the repressive compart-

ment. Quantitative PCR analyses demonstrated comparable
evier Inc.
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enrichments of H2AK119u1, H3K27me3, H3K4me2, and RNAP

at imprinted versus nonimprinted control genes such as HoxA9

and Oct4 (Figure S6). Our ChIP results confirm allelic enrich-

ment for repressive marks observed by immuno-RNA-FISH

and, to our knowledge, demonstrate for the first time allele-

specific enrichment of H2AK119u1 at repressed Kcnq1 cluster

cis genes. Taken together, our data strongly suggest a regula-

tory role not only for PRC2, but also for PRC1, in imprinted

gene silencing.

In Vivo Dynamics of the ‘‘Kcnq1 Compartment’’
We next studied preimplantation embryos to address whether

the imprinted repressive compartments exists in vivo. Remark-

ably, by FISH and PCR, we found Kcnq1ot1 already expressed

in mid- to late zygotes (at pronuclear stage 4–5) (Figures 3A–

3C, data not shown), before the main wave of genome activation

at the two-cell stage. As in TS cells, brief exposure of zygotes to

the RNAP inhibitor DRB abrogated detection of Kcnq1ot1 in the

paternal pronucleus (Figure S1), demonstrating that the

Kcnq1ot1 ncRNA is instable and continuously transcribed in

early embryos as well.

Immuno-RNA-FISH analyses revealed that the Kcnq1ot1

ncRNA domain starts to associate with PRC2 (H3K27me3,

Figure 2. PRC1-Mediated H2AK119u1 Is

Enriched at Kcnq1 Imprinted Cluster cis

Genes in TS Cells

(A) Allelic ChIP assays were carried out using anti-

bodies directed against H2AK119u1, H3K4me2,

H3K27me3, and RNAP. ChIP material was ampli-

fied by PCR, and parental alleles of Cdkn1c,

Tssc4, Cd81, and Osbpl5, nonimprinted Nap1l4,

and ICR KvDMR1 were distinguished by SSCP.

Results are representative of three independent

ChIP experiments. M, maternal; P, paternal.

(B) Quantification of relative ChIP enrichment of

assayed marks at the Kcnq1 parental alleles

shown in panel (A), normalized to input. Standard

deviation was calculated from 2–3 PCR-SSCP

gel repeats.

Ezh2) and PRC1 (Rnf2) markers in zygotes

(Figure 3). Levels of association were low

in zygotes; they increased in two-cell em-

bryos and remained high in trophecto-

derm cells (TE) of blastocyst embryos.

Likewise, we consistently observed Air

ncRNA expression and association with

H3K27me3 in TE cells of blastocysts

(Figure S3E), though not in zygotes (n =

26). Our results indicate an early estab-

lishment of the Kcnq1ot1-associated re-

pressive domain during preimplantation

embryonic development.

The Kcnq1 Repressive
Compartment Exists in the Absence
of Ezh2 In Vivo
To investigate the function of PRC2 in the

formation of the repressive compartment

and initiation of imprinted repression, we generated embryos de-

ficient for maternal and zygotic Ezh2 expression (Ezh2m�z�). In

such embryos, Ezh2 proteins and global H3K27me3 are absent

from the zygotic stage onward (Figure 4A) (Puschendorf et al.,

2008). Nevertheless, Ezh2m�z� embryos develop normally to

the blastocyst stage, at which we observed no change in cell

number or in expression patterns of Oct4 and Cdx2, markers of

the inner cell mass and trophectoderm (data not shown). We

did not observe H3K27me3 staining in association with Kcnq1ot1

nor with the Xi, marked by the Xist ncRNA, in female Ezh2m�z�

embryos lacking the Ezh2 protein (Figure S7). Nevertheless,

RNAP and active marks such as H3K4me2 and H3K36me3 were

largely excluded from the Kcnq1ot1 ncRNA domain in Ezh2m�z�

as in wild-type (WT) blastocysts (Figures 4B and 4D, data not

shown). Moreover, we measured similar levels of higher-order as-

sociation for several PRC1 members (Rnf2, Cbx2, and Rybp) with

Kcnq1ot1 in both genotypes (Figures 4C and 4D and Figure S7).

Altogether, these data confirm the catalytic inactivity of the

PRC2 complex in the absence of Ezh2 and support PRC2-inde-

pendent targeting of PRC1 members to the paternal Kncq1 com-

partment. Importantly, maternal and zygotic Ezh2 function is not

required for formation of the repressive compartment devoid of

active marks and RNAP at the paternal Kcnq1 cluster in vivo.

Developmental Cell 15, 668–679, November 11, 2008 ª2008 Elsevier Inc. 671
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Ezh2 Regulates Kcnq1ot1 ncRNA Association along
the Kcnq1 Genomic Cluster
In human cell lines, KCNQ1OT1 has been reported to physically

interact with inner cis genes (CDKN1C and SLC22A18) within

the KCNQ1 cluster (Murakami et al., 2007). To assess the extent

of interaction of Kcnq1ot1 along the Kcnq1 cluster, we com-

bined RNA-FISH for Kcnq1ot1 and DNA-FISH for distinct re-

gions of the Kcnq1 genomic cluster. Codetection of Kcnq1ot1

and a probe telomeric to the Kcnq1 gene (313I3) in TS cells re-

vealed only partial overlap between the RNA and genomic re-

gion (see Figure 1B and Figure 4F, left panel), suggesting limited

spreading of the ncRNA in cis. To extend these analyses to

more distant genomic regions and to evaluate the regulatory

role of Ezh2 in such interactions in vivo, we used two differen-

tially labeled BAC probes, specific for the centromeric

(473N24) and telomeric (16K9) ends of the Kcnq1 cluster on

WT and Ezh2m�z� blastocysts (Figure 4E). In each trophecto-

dermal cell, we determined the relative volume of the DNA-

FISH signals that is also occupied by the Kcnq1ot1 ncRNA

signal. In WT blastocysts, Kcnq1ot1 partially colocalized with

473N24 and 16K9 genomic regions, confirming limited coating

of the Kcnq1ot1 ncRNA along the Kcnq1 cluster. Interestingly,

in Ezh2m�z� embryos, colocalization levels were significantly re-

duced for both regions, with a majority of nuclei showing no

physical association between Kcnq1ot1 and 16K9 or 473N24

(Figure 4F, illustrated in Figure 4E). However, no difference in

the levels of Kcnq1ot1 RNA was detected by RNA-FISH in WT

and Ezh2m�z� embryos (data not shown). These data thus sug-

gest an important function for Ezh2 in either spreading of the

Kcnq1ot1 ncRNA along the imprinted gene cluster in cis and/

or in organizing the three-dimensional genomic organization of

the cluster.

Figure 3. The Kcnq1ot1-Associated Re-

pressive Configuration Is Established Early

in Preimplantation Embryos

(A–C) Immuno-RNA-FISH for H3K27me3 (A), Ezh2

(B), and Rnf2 (C) (green) and Kcnq1ot1 ncRNA

(red) in preimplantation mouse embryos. Scale

bars: 5 mm (embryos, nuclei) and 0.5 mm (magnifi-

cations).

(D) Scoring data indicating the percentage of cells

with Kcnq1ot1/mark association at different

stages of embryonic development (late zygote,

two-cell stage, and blastocyst [E3.5] embryos).

Quantifications were based on evaluating multiple

serial 2D optical slices (described in Figure S2):

high (++); intermediate (+); partial overlapping

(+/�); exclusion of the mark from the domain de-

fined by the ncRNA (�). The number of nuclei an-

alyzed is indicated.

Ezh2 Mediates Genomic
Contraction In Vivo
To address the latter possibility, we di-

rectly compared the genomic organiza-

tion of the two parental Kcnq1 imprinted

gene clusters in WT and Ezh2m�z� condi-

tions. We performed RNA/DNA-FISH as

described above and measured the

physical distance between the centroids of the FISH signals de-

tected by the 16K9 and 473N24 BAC probes (Figure 4E). We

identified the paternal alleles on the basis of Kcnq1ot1 expres-

sion. After normalization to the nuclear radius, we revealed sig-

nificantly shorter distances between the two FISH signals at

paternal over maternal Kcnq1 genomic clusters in WT TS cells

(exact Wilcoxon Mann-Whitney rank sum test; n = 94; p =

6.9 3 10�6) (Figures 5A and 5B). We did not find evidence for sig-

nificant parental-specific Kcnq1 association with pericentric het-

erochromatin nor with nuclear periphery (Figures S8A and S8B),

two compartments that have been associated with gene silenc-

ing in several cell differentiation systems (Brown et al., 1997;

Wiblin et al., 2005). These data suggest that the paternal

Kcnq1 imprint cluster constitutes an autonomous repressive

nuclear compartment in TS cells, characterized by a contracted

genomic state.

To assay whether a similar local organization exists in vivo, we

repeated the analyses in TE cells of WT and Ezh2m�z� blasto-

cysts. In WT embryos, we observed a significantly higher degree

of contraction at the paternal imprinted versus the maternal non-

imprinted gene cluster (n = 112; p = 4.8 3 10�5) (Figures 5C and

5D). Remarkably, in Ezh2m�z� embryos, the median and distribu-

tionof intercentroid distances were equivalent between the pater-

nal and maternal alleles (n = 93; p = 0.25) (Figures 5E and 5F).

Direct comparison of alleles in WT and mutant embryos showed

that in Ezh2m�z� blastocysts the paternal allele exists in a relaxed

configuration, comparable to the configuration of maternal alleles

in both genotypes (Figure S8C). Furthermore, we observed no dif-

ference in nuclear radius between WT and Ezh2m�z� trophecto-

dermal cells (Figure S8D). Pair-wise parental comparison of the

Kcnq1 cluster organization in single nuclei demonstrated that

the paternal genomic Kcnq1 cluster is more contracted than its

672 Developmental Cell 15, 668–679, November 11, 2008 ª2008 Elsevier Inc.
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maternal counterpart in 70% of WT trophectodermal cells

(Figure 5G, top panel), confirming differential organization of pa-

rental imprinted gene clusters in blastocyst embryos. In contrast,

in the absence of Ezh2 we observed a random distribution of pa-

rental genomic organization, with 50% of nuclei displaying pater-

nal contraction.

To test whether genomic contraction of the paternal Kcnq1

cluster is maintained during implantation, we performed con-

traction analyses on extraembryonic ectodermal (Eee) cells

carefully dissected from embryos isolated at embryonic day (E)

6.5 of gestation. As in the E3.5 TE cells, we measured a high level

of contraction of the paternal imprinted cluster in WT E6.5 post-

implantation Eee cells (n = 47; p = 1.6 3 10�5) (Figure 5H). In the

absence of maternal and zygotic Ezh2 expression, however, ge-

nomic contraction was alleviated (n = 53; p = 0.15) (Figures 5H

and 5G). Taken together, our data demonstrate that Ezh2 is re-

quired for higher-order genomic contraction of the paternal

Kcnq1 cluster in extraembryonic lineages in vivo. Genomic con-

traction initiates during preimplantation development and is

maintained in subsequent stages of development.

The E3-Ubiquitin Ligase Rnf2 Is also Required for Kcnq1

Genomic Contraction In Vivo
Besides Ezh2, our FISH and ChIP data strongly suggest a regula-

tory role for the PRC1 complex and H2AK119 monoubiquitination

in imprinted gene silencing (Figures 1, 2, and 3). To test the rela-

tive contributions of PRC2 and PRC1 in regulating Kcnq1 imprint-

ing, we generated embryos deficient for maternal and zygotic

Rnf2 expression (Rnf2m�z�). In such embryos, the PRC1 complex

was disrupted, and proteins such as Bmi1 and Phc2 were unde-

tectable from the zygotic stage onward (Puschendorf et al., 2008)

(Figure S9). Nevertheless, Rnf2m�z� embryos developed nor-

mally to the blastocyst stage and up to 6.5 days of embryonic

development. Importantly, in Rnf2m�z� E3.5 TE cells, the

Kcnq1ot1-associated repressive compartment was maintained,

as assayed by the presence of PRC2-mediated H3K27me3 and

absence of RNAP (Figures 6A and 6B). We next investigated

the requirement for Rnf2 in Kcnq1 genomic organization and ob-

served loss of paternal contraction (n = 42; p = 0.37) (Figure 6C

and Figure S10), indicating that Rnf2 and, by extension, the

PRC1 complex, is also required for organizing the paternal

Kcnq1 cluster in vivo.

PcG Proteins Ezh2 and Rnf2 Regulate Imprinted
Repression In Vivo
We next investigated the role of PcG proteins Ezh2 and Rnf2 in

initiating imprinted silencing at the paternal Kcnq1 cluster during

early embryonic development. To distinguish between parental

alleles, we generated control (Ezh2F/F and Rnf2F/F) and PcG mu-

tant (Ezh2m�z� and Rnf2m�z�) embryos heterozygous for Mus

musculus and Mus spretus (SD7) along the Kcnq1 cluster. We

first analyzed the imprinting status in E3.5 control embryos. Us-

ing semiquantitative allelic RT-PCR analyses (Umlauf et al.,

2004) and as previously reported (Lewis et al., 2006), we found

biallelic expression with a maternal bias for three genes (Cdkn1c,

Tssc4, and Cd81), but not for Osbpl5. In Ezh2m�z�E3.5 embryos,

gene expression patterns were not affected (Figures 7A and 7B).

In WT E6.5 postimplantation embryos, the inner Cdkn1c cis

gene was monoallelicaly expressed from the maternal allele in
Developm
both embryonic and extraembryonic tissues (Figure 7A). In con-

trast, the outer cis genes Tssc4 and Cd81 showed monoallelic

repression only in extraembryonic tissues, while Osbpl5 was

found expressed from both parental alleles with a maternal

bias in tissues of both lineages. In Ezh2m�z� E6.5 embryos, im-

printed repression of Cdkn1c, Tssc4, and Cd81 was strongly im-

paired, exclusively in extraembryonic tissues (Eee). No signifi-

cant change in allelic repression was noticed for Osbpl5, and

this may relate to the lower degree of imprinted paternal repres-

sion observed in WT tissues at this stage of development.

To quantify the changes in paternal gene expression in the ab-

sence of Ezh2, we developed sets of real-time primers that se-

lectively amplify either Mus musculus or Mus Spretus alleles

(Figure 7C, controls). Using this quantitative method, we recapit-

ulated all results obtained in the above-mentioned analyses. We

measured 3- to 100-fold increased levels of expression along the

paternal domain, exclusively in the extraembryonic tissue of E6.5

Ezh2m�z� embryos (Figure 7C, paternal). These data strongly

support a role for Ezh2 in imprinted repression along the entire

paternal Kcnq1 cluster. Remarkably, while no change in gene ex-

pression was visible for the maternal Cd81 and Tssc4 loci, we

observed an 8-fold change in expression for the maternal allele

of the inner gene Cdkn1c (Figure 7C, maternal).

We next investigated the imprinting status in Rnf2m�z� E6.5

embryos. To our surprise, the lack of Rnf2 phenocopied the ex-

pression changes observed in Ezh2m�z� extraembryonic tissues

(Figure 7C, paternal). Noticeably, maternal and paternal Cdkn1c

expression levels were also upregulated in embryonic tissues in

the absence of Rnf2 expression (Figure 7C). Quantitative analy-

ses also confirmed the nonimprinted status of Osbpl5

(Figure 7C). The expression of Osbpl5 was increased both ma-

ternally and paternally in the absence of both Ezh2 and Rnf2,

but the relative parental expression ratios were conserved, sug-

gestive of an imprinting-independent loss of silencing (rather

than loss of imprinting), at least at this stage of development.

In summary, our data demonstrate that the PcG proteins Ezh2

and Rnf2 function in parallel to mediate full allelic repression at in-

ner (Cdkn1c) and outer (Cd81, Tssc4) cis genes within the Kcnq1

cluster in extraembryonic tissues. We also provide evidence for

Rnf2 having a role in imprinted silencing of Cdkn1c in the embryo

proper. Our data finally suggest differential, position-dependent

regulation of the Kcnq1-domain genes, both on the paternal

and the maternal alleles.

DISCUSSION

Here, we demonstrate that the paternal Kcnq1 imprinting cluster

organizes a distinct higher-order repressive nuclear compart-

ment in TS cells and early embryos. The ‘‘Kcnq1 chromatin com-

partment’’ is characterized by the local presence of Kcnq1ot1

transcripts, association of PRC2 and PRC1 proteins, and of var-

ious repressive histone modifications, and by exclusion of RNAP

and active histone modifications. By ChIP, we confirm local en-

richment of H2AK119u1 and H3K27me3 at repressed paternal

alleles devoid of H3K4me2 and RNAP. During development,

Kcnq1ot1 is continuously expressed from the paternal Kcnq1 lo-

cus from the zygote stage onward. Catalytically active PRC1 and

PRC2 complexes rapidly localize at proximity to the Kcnq1ot1

nascent transcripts and show high levels of association in
ental Cell 15, 668–679, November 11, 2008 ª2008 Elsevier Inc. 673



Developmental Cell

Polycomb Complexes Direct Genomic Imprinting
Figure 4. Ezh2 Is Dispensable for the Formation of the Paternal Kcnq1 Repressive Compartment

(A) Immunostaining for Ezh2 and H3K27me3 (green) showing global loss of Ezh2 and H3K27me3 in Ezh2m�z� blastocysts.

(B) Immuno-RNA-FISH for RNAP (green) and Kcnq1ot1 (red) showing normal exclusion of the transcription machinery from the repressive Kcnq1 compartment in

WT and Ezh2m�z� trophoblast cells (TE).

(C) Immuno-RNA-FISH for Cbx2 (green) and Kcnq1ot1 (red) indicating normal higher-order association of this PRC1 protein with the Kcnq1ot1 ncRNA domain in

Ezh2m�z� E3.5 TE cells. Serial z slices with the colocalization channel (yellow) illustrate the extent of association/exclusion of the Cbx2 and RNAP with/from

Kcnq1ot1. Scale bar of magnifications: 0.5 mm.

(D) Quantification of the association of Kcnq1ot1 to RNAP and PRC1-member proteins in WT and Ezh2m�z� embryos. The number of nuclei analyzed is indicated.

Rnf2 data in WT cells are identical to those in Figure 3D.

(E) Schematic diagram showing the genomic position of BACs used to detect the flanking regions of the genomic Kcnq1 cluster. Kcnq1ot1 RNA-FISH (yellow)

marks the paternal Kcnq1 cluster. 3D RNA/DNA-FISH detection of the Kcnq1 parental loci in WT and Ezh2m�z� E3.5 TE cells. 3D reconstructions show both

parental loci (left panel). Overlap between BAC-16K9 (red) or BAC-473N24 (green) with Kcnq1ot1 ncRNA signal (yellow) was measured using new colocalization

channels (right panels: merge 16K9/Kcnq1ot1 indicated in pink; merge 473N24/Kcnq1ot1 indicated in white). P, paternal.
674 Developmental Cell 15, 668–679, November 11, 2008 ª2008 Elsevier Inc.



Developmental Cell

Polycomb Complexes Direct Genomic Imprinting
two-cell stage embryos (Figure 7C). A similar repressive com-

partment exists at the Igf2r imprinting cluster. In analogy to

Xist (Chaumeil et al., 2006), these data point toward a direct role

of the Kcnq1ot1 and Air long ncRNAs in mediating gene silencing

in cis, by nucleating repressive subnuclear compartments

devoid of the transcriptional machinery, prior to actual silencing

of cis genes (reviewed in Pauler et al., 2007; Umlauf et al., 2008).

The low stability of the Kcnq1ot1 ncRNA (Figure S1), its limited

association along the Kcnq1 genomic cluster (Figure 4), and

the incomplete overlap between the ncRNA and the different

(F) Quantification of overlap as a percentage of the DNA-FISH signal volume occupied by the Kcnq1ot1 ncRNA signal volume in WT and Ezh2m�z� E3.5 TE cells.

The overlap of BAC-313I3 and Kcnq1ot1 in TS cells is plotted on the left panel. In box plots, solid line, box hinges, and whiskers indicate median, quartile, and

extreme values. Outliers, defined as values deviating more than 1.5 times the interquartile range from the closest quartile, are plotted individually as rectangles.

p values indicate statistical significance of differences in overlap measured in WT (n = 34) and Ezh2m�z� (n = 30) E3.5 TE cells.

Figure 5. Ezh2-Dependent Genomic Con-

traction of the Paternal Kcnq1 Imprinted

Gene Cluster In Vivo

(A, C, and E) 3D RNA/DNA-FISH detection of the

Kcnq1 parental loci in TS cells and WT and

Ezh2m�z� E3.5 TE cells. The distance between

centroids of 16K9 (red) and 473N24 (green) DNA-

FISH signals was measured to evaluate the degree

of compaction at the parental Kcnq1 genomic

clusters. 3D reconstructions show both parental

loci (middle panel). Single optical sections illus-

trate the extent of contraction at parental alleles

(right panels). Scale bars: 5 mm (nuclei) and

0.5 mm (magnifications). M, maternal, P, paternal.

(B, D, and F) Distributions of intercentroid dis-

tances of FISH signals at paternal (Kcnq1ot1+,

red) and maternal alleles (Kcnq1ot1�, blue) in

WT TS cells (B) and WT and Ezh2m�z� E3.5 TE

cells (D and F). Measurements were normalized

to the radius of individual nuclei. p values indicate

statistical significance of differences in distances

measured at paternal and maternal alleles.

(G) Pair-wise parental contraction ratios (P/M) in

WT and Ezh2m�z� E3.5 TE cells were mapped to

colors by sorting, taking their base-ten logarithm,

and assigning them linearly to colors ranging

from red (log10 (P/M) % �3.0) over gray (log10

(P/M) = 0, indicated by a black line) to blue

(log10 (P/M) R 3.0). Schematic representations il-

lustrate genomic organization of parental loci

(top).

(H) Distributions of intercentroid distances of FISH

signals at paternal (Kcnq1ot1+, red) and maternal

alleles (Kcnq1ot1�, blue) in WT and Ezh2m�z� ex-

traembryonic ectoderm (Eee) cells.

repressive marks (Figures 1, 3, and 4, and

Figure S2) indicate, however, that the

mechanistic role of the nascent ncRNAs

in imprinted silencing would be dynamic

and spatially restricted. Developmentally,

the Kcnq1ot1 transcripts may be required

continuously or only transiently. Given the

existence of many noncoding transcripts

in mammals (Katayama et al., 2005), some of the many Poly-

comb-repressive nuclear compartments we observed in TS cells

and early embryos may represent other sites of ncRNA-medi-

ated silencing (Rinn et al., 2007).

Within the Kcnq1 cluster, the level of imprinted repression

varies among genes and between embryonic and extraembry-

onic tissues at E6.5 of gestation. In blastocysts, Cdkn1c,

Tssc4, and Cd81 are partially imprinted (Lewis et al., 2006;

Umlauf et al., 2004). We propose that imprinted repression is

progressively established, starting during preimplantation
Developmental Cell 15, 668–679, November 11, 2008 ª2008 Elsevier Inc. 675
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development and continuing through peri-implantation stages in

a gene- and lineage-specific manner. Akin to the recruitment of

genes into the Xist domain during the course of random X chro-

mosome inactivation, as characterized in differentiating ES cells

(Chaumeil et al., 2006), physical relocalization of cis genes into

the Kcnq1 repressive compartment devoid of RNAP, likely con-

trolled by Polycomb group complexes (see below), may be re-

quired for full imprinted repression in vivo. The observed devel-

opmental delay in imprinted repression versus early formation

of the repressive contracted compartment may thus be due to

constraints initially limiting the association of cis genes with the

Kcnq1 repressive domain.

Our loss-of-function analyses in postimplantation embryos

show that Ezh2 and Rnf2 are equally required in extraembry-

onic tissues to mediate full repression at inner and outer cis

genes. As observed for Rnf2 at the Xi (Schoeftner et al.,

2006), but in contrast to developmental regulatory genes

(Boyer et al., 2006), targeting of PRC1 components to the

Kcnq1 repressive compartment is independent of PRC2 func-

tion, at least at the higher-order level. We also find the target-

ing of PRC2-mediated H3K27me3 to be independent of Rnf2.

Besides the PcG pathways, imprinting along the Kcnq1 cluster

is also regulated by H3K9 methylation (Wagschal et al., 2008).

We propose that multiple layers of partially redundant, possi-

bly synergistic, repressive pathways regulate imprinted gene

silencing at the Kcnq1 cluster during development. Their rela-

tive contribution and synergies in time remain to be eluci-

dated. For Cdkn1c, partial loss of paternal repression was

previously reported in Eed-deficient E7.5 whole embryos (Ma-

ger et al., 2003). Our quantitative results indicate that this re-

ported loss of imprinting is largely due to abrogated paternal

silencing in the extraembryonic rather than embryonic lineage.

Figure 6. Rnf2-Dependent Genomic Con-

traction of the Paternal Kcnq1 Imprinted

Gene Cluster In Vivo

(A and B) Immuno-RNA-FISH for H3K27me3 and

RNAP (green) and Kcnq1ot1 (red) indicate normal

higher-order association of H3K27me3 and exclu-

sion of the transcription machinery from the re-

pressive Kcnq1 compartment in the absence of

maternal and paternal Rnf2 (Rnf2m�z�) TE cells.

The number of nuclei analyzed is indicated.

(C) Distributions of intercentroid distances of

FISH signals at paternal (Kcnq1ot1+, red) and ma-

ternal alleles (Kcnq1ot1�, blue) in Rnf2m�z� E3.5

TE cells (left). Measurements were normalized to

the radius of individual nuclei. Pair-wise parental

contraction ratios (P/M) in WT and Rnf2m�z� E3.5

TE cells.

Silencing of Cdkn1c in E6.5 embryonic

tissues was reported to depend on a re-

pression mechanism that functions

through the KvDMR1 locus but inde-

pendently of Kcnq1ot1 transcription

and DNA methylation (Shin et al.,

2008). We identify Rnf2 as a regulator

of Cdkn1c imprinting in the embryonic

lineage, suggesting a repressive role for H2AK119u1, prior to

the recruitment of DNA methylation to the Cdkn1c promoter

at later stages of development. Collectively, our observations

indicate the existence of multiple and stepwise-acting repres-

sive mechanisms involved in initiating repression at paternal

Kcnq1 cluster.

In wild-type trophectodermal cells of blastocysts and TS cells,

physical distances between the proximal and distal ends of

Kcnq1 clusters were on average two times shorter at paternal

versus maternal Kcnq1 clusters. Hence, we identify genomic

contraction as an early feature of the imprinted repressed state.

Genomic contraction presumably reflects a condensed spatial

configuration (Lanzuolo et al., 2007) formed either through loop-

ing and/or local chromatin compaction of specific genomic re-

gions within the Kcnq1 cluster.

Loss of contraction in Ezh2m�z� and Rnf2m�z� embryos de-

fines both PRC complexes as master regulators of higher-order

genomic organization at the Kcnq1 imprinted cluster. Intrigu-

ingly, Kcnq1ot1 contains a short repeat motif required for

gene silencing in cis (Mohammad et al., 2008). Likewise, Xist

harbors A-rich repeats required for gene silencing and for tar-

geting of cis genes into the repressive compartment of the Xi

(Chaumeil et al., 2006). Since the association of Kcnq1ot1 to

proximal and distal regions of the Kcnq1 cluster is significantly

reduced in Ezh2m�z� embryos, we hypothesize that contraction

is required for stable and complete silencing by facilitating tar-

geting of cis genes, possibly directly via sequence elements in

Kcnq1ot1, into the repressive compartment lacking the tran-

scriptional machinery. Genomic contraction may also contrib-

ute to local targeting of various repressive modifications at reg-

ulatory elements of cis genes. Locus contraction and

decontraction play crucial roles in Igh and Tcr recombination
676 Developmental Cell 15, 668–679, November 11, 2008 ª2008 Elsevier Inc.
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and allelic exclusion (Roldan et al., 2005; Skok et al., 2007).

Since Yy1, an evolutionarily conserved interactor of PRC2, is

required for Igh locus contraction (Liu et al., 2007), and given

the recently reported role for human EZH2 in genome-

wide long-range chromosomal interactions (Tiwari et al.,

2008), the PRC2 and PRC1 complexes are likely universal reg-

ulators of higher-order genomic organization during mamma-

lian development.

Figure 7. Ezh2 and Rnf2 Direct Monoallelic

Silencing of Kcnq1 Cluster cis Genes in

Extraembryonic Tissues

(A) Allele-specific RT-PCR analyses of Kcnq1 clus-

ter cis genes (inner Cdkn1c; outer Cd81, Tssc4,

and Osbpl5) in WT and Ezh2m�z� E3.5 embryos

and E6.5 embryonic (Emb) and extraembryonic

ectoderm (Eee) tissues (maternal C57BL/6J, pa-

ternal SD7). TS cell RNA from a reverse genetic

cross was used to control for primer bias. Reverse

transcription in the absence of reverse transcrip-

tase (�RT) controls for specificity of cDNA amplifi-

cation. Identical observations were made from 5–8

independent pools of embryos/tissues. M, mater-

nal, P, paternal.

(B) Schematic diagram of Kcnq1 imprinted cluster

with studied genes highlighted in blue.

(C) Allele-specific RT-PCR analyses of Kcnq1 clus-

tercisgenes incontrolandPcG (Ezh2and Rnf2) mu-

tant E6.5 Emb and Eee tissues. Control panels illus-

trate the species-specificityofprimersused in these

analyses. Relative maternal and paternal Kcnq1 cis

gene expression levels were measured, and fold

changes of paternally imprinted genes (Cdkn1c,

Tssc4, and Cd81) are indicated. TS cells from a re-

verse cross were used as above. Data were normal-

ized to Gapdh and to Cytochrome1 expression

levels, and standard deviations were calculated

from three independent biological replicates.

(D) Quantitative expression levels of Ezh2 and Rnf2

in WT and mutant E6.5 samples.

(E) A working model: From the late-zygote stage on-

ward, the paternal Kcnq1ot1 ncRNA is continuously

transcribed and mediates, directly or indirectly, the

formation of a repressive chromatin compartment

devoid of the transcriptional machinery. In blasto-

cysts and postimplantation embryos, the paternal

imprinted gene cluster exists in a contracted state.

Genomic contraction and full paternal silencing of

Kcnq1 cis genes are abrogated in Ezh2m�z� and

Rnf2m�z� extraembryonic tissues, despite the

maintenance of the repressive compartment. Ge-

nomic contraction may be required for recruitment

of cis genes into the repressive compartment,

thereby contributing to full imprinted repression.

The timing of development is indicated in hours

(hrs).

EXPERIMENTAL PROCEDURES

Mice and Embryos

The generation of maternally and zygotically defi-

cient (Ezh2m�z� and Rnf2m�z�) embryos was per-

formed as previously described (Puschendorf

et al., 2008; van der Stoop et al., 2008). To discrim-

inate between parental alleles, conditionally defi-

cient males (Ezh2F/F or Rnf2F/F Prm1�Cre/+) were

made congenic for Mus. spretus at distal chromosome 7 by crossing with

SD7P11 mice (Dean et al., 1998). All experiments were performed in accor-

dance with the Swiss animal protection laws and institutional guidelines. Early

mouse embryos were obtained from superovulated 6- to 10-week-old females

mated with male studs according to standard procedures (Supplemental Data).

TS Cell Derivation and Maintenance

Trophectoderm stem cells (TS) were derived and maintained according to

standard procedures described in Supplemental Experimental Procedures.
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For assessing the stability of Kcnq1ot1 ncRNA, TS cells were treated for

1 hr with 50 mg/ml 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) (Cal-

biochem, 287891). In recovery experiments, cells were washed after DRB

treatment and cultured for 15 hr before RNA isolation.

FISH, Microscopy, and Image Analyses

FISH analyses were performed based on Chaumeil et al. (2006). Details on

slides preparation, immuno-FISH and RNA-DNA FISH procedures, as well

as antibodies and probes used are given in Supplemental Experimental Proce-

dures. Image acquisition was performed using a laser scanning confocal mi-

croscope LSM510 META (Zeiss). Serial z series of 0.2 mm slices were recorded

and deconvolution applied (Huygens from SVI) when necessary. TetraSpeck

Fluorescent Microspheres (Invitrogen) were used to adjust alignments be-

tween channels. Confocal stacks were analyzed using Imaris (Bitplane) soft-

ware. For measuring relative overlap of signals in immuno-RNA-FISH and

RNA-DNA-FISH, a colocalization channel was created, analyzed in serial z op-

tical series, and used for 3D reconstructions and numerical quantifications of

overlap. For generating random spots in 3D confocal stacks, an algorithm was

developed that generates random coordinates within the volume defined by

the segmented DAPI nuclear staining (detailed in Supplemental Experimental

Procedures). These in silico signals were used to verify association with differ-

ent repressive marks.

Statistical Analysis

Measured distances between BAC RP23-16K9 and BAC RP23-473N24 FISH

signals were normalized to the nuclear radius of individual nuclei. Significance

of differences between sets of normalized distances were calculated using the

one-sided exact Wilcoxon Mann-Whitney rank sum test as implemented in the

package ‘‘coin’’ for R (www.r-project.org). The significance of differences in

percent colocalization between RNA-FISH and DNA-FISH signals in WT and

Ezh2m�z� cells was calculated similarly, using two-sided testing. For visualiza-

tion, kernel density estimates for a Gaussian kernel were computed using R’s

density function and default bandwidth.

Allelic RT-PCR Analyses

Pools of E3.5 embryos or E6.5 embryonic and extraembryonic tissues were

isolated from independent crosses after careful dissection of embryos at

6.5 days of development (E6.5). Care was taken to eliminate maternal tissue

contaminations through successive washes in FHM media (Chemicon). Total

RNA was extracted using the PicoPure RNA Isolation Kit (Arcturus Bioscience,

Mountain View, CA), treated with DNaseI (Stratagene), and reversed tran-

scribed by using oligo d(T)20 primers and SuperScript III Reverse Transcrip-

tase (Invitrogen), according to the manufacturer’s protocols. Semiquantitative

analyses were performed as previously described (Lewis et al., 2006; Umlauf

et al., 2004) (see Table S1). For quantitative analyses, primers that selectively

amplify Mus musculus or Mus Spretus alleles were developed (Table S2), and

real-time PCR was performed using the SYBR Green PCR Master Mix (Applied

Biosystem) and ABI Prism 7000 Real-time PCR machine.

Allelic Chromatin Immunoprecipitation

Proliferating TS cell cultures were treated with cytoskeletal buffer (100 mM

NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM PIPES, 1 mM EGTA) including

0.5% Triton X-100 on ice for 5 min and then subsequently fixed in 1% PFA.

Chromatin extracts were prepared as described previously (Stock et al.,

2007). Antibodies used are described in Supplemental Experimental Proce-

dures. Maternal (SD7) and paternal (C57Bl/6J) alleles were discriminated by

PCR-SSCP analysis (Umlauf et al., 2004). Gels were stained with SYBR Gold

(Invitrogen), and the fluorescence was detected on a Typhoon 9400 scanner

(Amersham Biosciences) and quantified using ImageQuant software. The

amount of precipitated material was calculated from the intensity of each

band and normalized to the intensity of input. Primers and conditions used

for allelic ChIP analyses are indicated in Table S3.

SUPPLEMENTAL DATA

Supplemental Data include three tables, ten figures, and Supplemental Exper-

imental Procedures and can be found with this article online at http://www.

developmentcell.com/cgi/content/full/15/5/668/DC1/.
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