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a b s t r a c t

Classical orthogonal polynomials in two variables can be characterized as the polynomial
solutions of a matrix second-order partial differential equation involving matrix
polynomial coefficients. In this work, we study classical orthogonal polynomials in two
variableswhosepartial derivatives satisfy again a second-order partial differential equation
of the same type.
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1. Preliminaries

In 1991, Lyskova [1] studied partial differential equations in n variables

n∑
i,j=1

aij
∂2 v

∂xi∂xj
+

n∑
i=1

bi
∂v

∂xi
+ λ v = 0, (1)

satisfying that all the partial derivatives of the solutions are again solutions of a similar equation; then, Eq. (1) is said to
belong to the basic class. On the basis of this fact, he constructed systems of orthogonal polynomial eigenfunctions of the
differential operator. This kind of equation has been studied by several authors (see, for instance, [2,3]).
In this paper, we focus our attention on the two-variable case. For a complete description of this and another related

subjects see, for instance, [4].
We give an extended definition of classical orthogonal polynomials in two variables, using the vector notation for

orthogonal polynomials introduced in [5].
A polynomial system is a sequence of vectors {Pn}n≥0 such that

Pn =
(
Pn,0, Pn−1,1, . . . , P0,n

)t
,

where
{
Pn,0, Pn−1,1, . . . , P0,n

}
are independent polynomials of total degree n.

A polynomial system is calledmonic if

Ph,k(x, y) = xhyk + R(x, y), h+ k = n,

where R(x, y) is a polynomial of total degree at most n− 1.
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Let u be a linearmoment functional. Wewill say that a polynomial system {Pn}n≥0 is aweak orthogonal polynomial system
(WOPS) with respect to u if

〈u, PnPtm〉 = 0, m 6= n,
〈u, PnPtn〉 = Hn,

(2)

where Hn is a (n+ 1)× (n+ 1) nonsingular matrix. In the particular case in which Hn is a diagonal matrix, the polynomial
system is said to be an orthogonal polynomial system (OPS).
A linear moment functional u is said to be quasi-definite if there is an orthogonal polynomial system with respect to u. In

this case, there is a uniquemonic WOPS with respect to u (see [6]).

Definition 1. Let u be a quasi-definite moment functional, and let {Pn}n≥0 be the monic WOPS associated with u. Then, u is
classical if and only if for all n ≥ 0, there exist nonsingular (n+ 1)× (n+ 1)matricesΛn with constant entries such that

L[Pn] ≡ a ∂xxPn + 2b ∂xyPn + c ∂yyPn + d ∂xPn + e ∂yPn = Λn Pn, (3)

where a, b, and c are polynomials of total degree less than or equal to 2, and d, e are polynomials of degree 1.

Remark 2. Note that the definition of classical does not depend on the particular choice of themonicWOPS. In fact, a matrix
partial differential equation equivalent to (3) is satisfied by everyWOPS associated with a classical moment functional u. Let
{Pn}n≥0 be themonicWOPS associated with a classical moment functional u, and let {Qn}n≥0 be a differentWOPS associated
with u. For n ≥ 0, let An be the nonsingular matrix corresponding to the change of basis Qn = An Pn, n ≥ 0. Then,

L[Qn] = Λ̃n Qn,

where Λ̃n = A−1n ΛnAn, that is,Λn and Λ̃n are similar matrices [7].

With this definition, we proved in [7] that the gradients of the vector polynomials satisfy

〈u, (∇Ptn)
tΦ∇Ptm〉 = 0, m 6= n,

where

Φ =

(
a b
b c

)
.

In [8], the authors proved a second-order partial differential equation for these gradients. However, in general, the partial
derivatives of the vector polynomials, do not satisfy an orthogonality condition or a partial differential equation.

2. Orthogonal polynomials in the extended Lyskova class

From now on, {Pn}n≥0 will denote the monic WOPS associated with a classical moment functional u. The next definition
is a natural extension of the basic class as given by Kim et al. in [2].

Definition 3. Thematrix partial differential equation (3) belongs to the extended Lyskova class if ay = bxy = cx = dy = ex =
0, that is,

a(x, y) = a(x) = a20x2 + a10x+ a0,
b(x, y) = b11x y+ b10x+ b01y+ b0,
c(x, y) = c(y) = c02y2 + c01y+ c0,
d(x, y) = d(x) = d10x+ d0,
e(x, y) = e(y) = e01y+ e0.

(4)

From this definition, we recover an extended version of the original definition of basic class given by Lyskova in [1].

Theorem 4. If the matrix partial differential equation (3) for monic WOPS belongs to the extended Lyskova class, then Λn, for
n ≥ 0, are diagonal matrices whose diagonal elementsΛn = diag[λn,0, λn−1,1, . . . , λ0,n] are given by

λn−i,i = (n− i)[a20 (n− i− 1)+ b11 i+ d10] + i[b11 (n− i)+ c02 (i− 1)+ e01],

for 0 ≤ i ≤ n. Moreover, for fixed nonnegative integers i, j ≥ 0, and for all n ≥ i+ j, there exist nonsingular (n+ 1)× (n+ 1)
matricesΛ(i,j)n with constant entries, such that ∂ ix ∂

j
y Pn is solution of the partial differential equation

a ∂xx(∂ ix ∂
j
y Pn)+ 2 b ∂xy(∂ ix ∂

j
y Pn)+ c ∂yy(∂ ix ∂

j
y Pn)+ d(i,j) ∂x(∂ ix ∂

j
y Pn)+ e(i,j)∂y(∂ ix ∂

j
y Pn) = Λ(i,j)n (∂ ix ∂

j
y Pn), (5)

where

d(i,j) = d+ i ax + 2 j by, e(i,j) = e+ 2 i bx + j cy, Λ(i,j)n = Λn − νi,j In+1,
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with

νi,j =
i(i− 1)
2

axx + 2 i j bxy +
j(j− 1)
2

cyy + i dx + j ey,

and In+1 represents the identity matrix of size n+ 1.

Proof. Using Proposition 15 in [7], the special shape of the polynomial coefficients gives the diagonal character of thematrix
Λn, for n ≥ 1. The explicit expression for the diagonal elements of the matrix Λn can be easily obtained from Eq. (3) by
considering the highest total order terms.
On the other hand, differentiating (3) i timeswith respect to x, and j timeswith respect to y, i, j ≥ 0, and using the explicit

expressions for the polynomial coefficients, we get (5). �

From this result, we remark that if a matrix partial differential equation such as (3) for the monic polynomials belongs
to the Lyskova class, then the matrixΛn is diagonal.
There are many examples of partial differential equations belonging to the extended Lyskova class.
For instance, classical orthogonal polynomials on the unit disk, B2 = {(x, y) : x2+y2 ≤ 1}, are associatedwith theweight

function

ω(x, y) = (1− x2 − y2)µ−1/2, µ > −1/2,

and they satisfy the partial differential equation

(x2 − 1) vxx + 2 x y vxy + (y2 − 1) vyy + g x vx + g y vy = λn v.

The polynomial coefficients of this partial differential equation satisfy (4), and then, the partial differential equation belongs
to the extended Lyskova class.
The Appell polynomials are orthogonal on the simplex T = {(x, y) : x, y ≥ 0, 1− x− y ≥ 0}with respect to the weight

function

ω(x, y) = xαyβ(1− x− y)γ , α, β, γ > −1.

They satisfy the partial differential equation

(x2 − x) vxx + 2 x y vxy + (y2 − y) vyy + [(α + β + γ + 2)x− (α + 1)]vx + [(α + β + γ + 2)y− (β + 1)]vy = λn v,

whose polynomial coefficients satisfy (4). Then, the above partial differential equation belongs to the extended Lyskova
class.
Nevertheless, all the partial differential equations for classical polynomials in two variables do not belong to the Lyskova

class. In [6], Krall and Sheffer showed that the partial differential equation

3 y vxx + 2 vxy − x vx − y vy = −n v,

has a WOPS as solution. These polynomials are considered classical in the Krall and Sheffer classification. However, this
equation is not in the extended Lyskova class.
Using induction on n, and the special shape of the coefficients (4), we prove the following theorem.

Theorem 5. Let u be a classical moment functional, and let {Pn}n≥0 be the monic WOPS associated with u satisfying (3). Assume
that (3) belongs to the extended Lyskova class. Then, for n ≥ 1, the following statements hold:

(i) If for all k < n, and for i = 0, . . . , k, λn,0 6= λk−i,i, then

∂yPn,0(x, y) = 0.

(ii) If for all k < n, and for i = 0, . . . , k, λ0,n 6= λk−i,i, then

∂xP0,n(x, y) = 0.

Moreover, if we define

pn(x) = Pn,0(x, y), and qn(y) = P0,n(x, y),

then {pn(x)}n≥0 and {qn(y)}n≥0 are monic orthogonal polynomial sequences in one variable satisfying

a(x) p′′n(x)+ d(x) p
′

n(x) = λn,0 pn(x),
c(y) q′′n(y)+ e(y) q

′

n(y) = λ0,n qn(y),

and therefore, they are classical in one variable.

Proof. Wewill show the result by induction on n ≥ 0. Observe that Pn,0(x, y) only depends on x, for n = 0, 1. Suppose that,
for 0 ≤ k ≤ n, the polynomials Pk,0(x, y) only depend on x, that is, Pk,0(x, y) = Pk,0(x). Then, we can express the monic
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polynomial Pn+1,0(x, y) as

Pn+1,0(x, y) = xn+1 +
n∑
k=0

k∑
i=0

mk−i,i Pk−i,i(x, y),

wheremk−i,i are constants. By linearity of L, we have

L[Pn+1,0(x, y)] = L[xn+1] +
n∑
k=0

k∑
i=0

mk−i,i L[Pk−i,i(x, y)].

Using the special shape of the coefficients (4), we get

L[xn+1] = (n+ 1)
(
(n a20 + d10)xn+1 + (n a10 + d0)xn + n a0 xn−1

)
.

On the other hand, since the polynomials Pn+1,0(x, y), and Pk−i,i(x, y), 0 ≤ i ≤ k ≤ n, satisfy the partial differential equation
(3), we obtain

(n+ 1)(n a10 + d0)xn + (n+ 1)n a0 xn−1 +
n∑
k=0

k∑
i=0

(λk−i,i − λn+1,0)mk−i,i Pk−i,i(x, y) = 0, (6)

simplifying the terms of degree n + 1. By the induction hypothesis, Pk,0(x, y) ≡ Pk,0(x) only depends on the variable x, so
we can write

(n+ 1)(n a10 + d0)xn + (n+ 1) n a0 xn−1 =
n∑
k=0

αk Pk,0(x),

and therefore, the highest term degree of (6)

(αn + (λn,0 − λn+1,0)mn,0)Pn,0(x)+
n∑
k=1

(λn−k,k − λn+1,0)mn−k,k Pn−k,k(x, y),

must be zero since the polynomials {Pn−k,k(x, y)}nk=0 are linearly independent moduloPn−1, the linear space of polynomials
in two variables of total degree less than or equal to n− 1. In this way,

(λn−k,k − λn+1,0)mn−k,k = 0, 1 ≤ k ≤ n,

and then,mn−k,k = 0, 1 ≤ k ≤ n, using the hypothesis

λn+1,0 6= λk−i,i, k < n+ 1, 0 ≤ i ≤ k.

Therefore, using the same reasoning, expression (6) provides that

(n+ 1)(n a10 + d0)xn + (n+ 1)n a0 xn−1 + (λn,0 − λn+1,0)mn,0Pn,0(x)+ (λn−1,0 − λn+1,0)mn−1,0Pn−1,0(x)

+

n−1∑
k=1

(λn−1−k,k − λn+1,0)mn−1−k,k Pn−1−k,k(x, y),

must be zero modulo Pn−2. The first four terms of the above expression only depend on x, and then, they can be expressed
as a linear combination of {Pk,0(x)}nk=0. Hence,

βn Pn,0(x)+ βn−1 Pn−1,0(x)+
n−1∑
k=1

(λn−1−k,k − λn+1,0)mn−1−k,k Pn−1−k,k(x, y) = 0,

modulo Pn−2. Since Pn,0(x) and {Pn−1−k,k(x, y)}n−1k=0 are linearly independent modulo Pn−2, we get mn−1−k,k = 0, 1 ≤ k ≤
n− 1. The same reasoning shows that

mk−i,i = 0, 1 ≤ k ≤ n, 1 ≤ i ≤ k,

and then

Pn+1,0(x, y) = xn+1 +
n∑
k=0

mk,0 Pk,0(x). �

Other examples of orthogonal polynomials satisfying partial differential equations in the extended Lyskova class can
be constructed using the tensor product of classical orthogonal polynomials in one variable. Let {Rh}h≥0 and {Sk}k≥0 be two
families of classical orthogonal polynomials in one variable. The family of polynomials in two variables defined by the tensor
product of these two families, that is,

Ph,k(x, y) = Rh(x)Sk(y), h, k ≥ 0,
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satisfies a partial differential equation in the Lyskova class with the condition b ≡ 0. In fact, if the polynomials {Rh}h≥0 and
{Sk}k≥0 are solutions of the differential equations

a(x) R′′h(x)+ d(x) R
′

h(x) = λh Rh(x),
c(y) S ′′k (y)+ e(y) S

′

k(y) = λ
′

k Sk(y),

respectively, then Pn =
(
Pn,0, Pn−1,1, . . . , P0,n

)t is a solution of the partial differential equation
a(x)∂xxPn + c(y)∂yyPn + d(x)∂xPn + e(y)∂yPn = Λn Pn.

In this case, the polynomial coefficients satisfy (4), and the matrix Λn is diagonal with elements λn−i,i = λn−i + λ
′

i , for
0 ≤ i ≤ n.
In the following proposition, we prove the reciprocal of this property for the polynomials in the extended Lyskova class,

as a consequence of Theorem 5.

Proposition 6. Let u be a classical moment functional, and let {Pn}n≥0 be the monic WOPS associated with u satisfying Eq. (3).
Assume that (3) belongs to the extended Lyskova class. If b ≡ 0, then

(i) λh,k = λh,0 + λ0,k.
(ii) If λn,0 6= λk−i,i, and λ0,n 6= λk−i,i, for i = 0, . . . , k, and ∀k < n, then {pn(x)}n≥0 = {Pn,0(x, y)}n≥0 and {qn(y)}n≥0 =
{P0,n(x, y)}n≥0 are classical monic orthogonal polynomial sequences in one variable, and then {Pn}n≥0 is the tensor product
of two classical families in one variable.
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