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Abstract

In this paper, we consider the matrix-valuétl’ corona problem in the disk and polydisk.
The result for the disk is rather well-known, and is usually obtained from the classical Carleson
Corona Theorem by linear algebra. Our proof provides a streamlined way of obtaining this
result and allows one to get a better estimate on the norm of the solution. In particular, we
were able to improve the estimate found in the recent work of Trent in [J. Funct. Anal. 189
(2002) 267-282]. Note that, the solution of tH#E> matrix corona problem in the disk can
be easily obtained from thé/2 corona problem either by factorization, or by the Commutant
Lifting Theorem. The H? corona problem in the polydisk was originally solved by Lin in
[Bull. Sci. Math. 110(2) (1986) 69—-84, Trans. Amer. Math. Soc. 341 (1994) 371-375]. The
solution used Koszul complexes and was rather complicated because one had to consider higher
order d-equations. Our proof is more transparent and it improves upon Lin’s result in several
ways. First, we deal with the more general matrix corona problem. Second, we were able to
show that the norm of the solution is independent of the number of generators. Additionally,
we illustrate that the norm of the solution of t#&? corona problem in the polydisk” grows
at most proportionally to/n. Our approach is based on one that was originated by Andersson
in [Math. Z. 201 (1989) 121-130]. In the disk it essentially depends on Green’s Theorem and
duality to obtain the estimate. In the polydisk we use Riesz projections to reduce the problem
to the disk case.
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Notation

= equal by definition

C the complex plane

D the unit disk,D :={z € C: |z] < 1}

T the unit circle,T:=0D ={z e C:|z| =1}

du measure orD with du = 2 log |_i| dx dy

dm normalized Lebesgue measure dnm(T) =1

(-, ) inner product

-l norm; since we are dealing with matrix and operator-valued
functions this symbol is a bit overloaded, but we hope it will
not cause any confusion. The norm in the function spaces
can be always distinguished by subscript. Thus for a vector-
valued functionf the symbol|| f||> denotes its.2-norm, but
the symbol|| f|| stands for the scalar valued function whose
value at a point; is the norm of the vectoy (z)

trA Trace of the operatoa

H*> (D) space of bounded analytic functions Bnwith the supremum
norm

L?(D"; E) vector-valued Lebesgue spaces

HP(D"; E) vector-valued Hardy classes

H>*(D; E — E,) operator Hardy class of bounded analytic functions from the
disk whose values are bounded operators frémto E,,
[ Flloo := SUPIIF ()l

zeD
6,5 derivatives with respect taz and z, respectively: 0 :=
3(0/0x —id/dy), @ := 1(0/0x +10/dy)
0j, 0 J derivatives with respect to the variablgsandz; respectively
z point in C"
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z; z with the coordinatez; omitted; slightly abusing notation
we will write z = (z;, z;) or z= (z;, zj)
A “normalized” LaplacianA := A = 00

Throughout the paper all Hilbert spaces are assumed to be separable. We always
assume that in any Hilbert space an orthonormal basis is fixed, so an opdrator
E — E, can be identified with its matrix. Thus besides the usual involution> A*
(A* is the adjoint of A), we have two more:A — AT (transpose of the maitrix)
and A — A (complex conjugation of the matrix), sa* = (A)" = AT. Although
everything in the paper can be presented in an invariant, “coordinate-free”, form,
use of transposition and complex conjugation makes the notation easier and more
transparent.

0. Introduction and main result

The classical Carleson Corona Theorem, [S¢estates that if functiong’; € H* (D)
are such thath?il |fj|2>52 > 0 then there exist functiong; € H*>(D) such that
> 218 fi = 1. This is equivalent to the fact that the unit digk is dense in the
maximal ideal space of the algebfa>, but the importance of the Corona Theorem
goes much beyond the theory of maximal idealsH5F.

The Corona Theorem, and especially its generalization, the so called Matrix
(Operator) Corona Theorem play an important role in operator theory (such as the
angles between invariant subspaces, unconditionally convergent spectral decomposi-
tions, computation of spectrum, etc.). The Matrix Corona Theorem says thateif
H>*(D; E,— E) is a bounded analytic function whose values are operators from a
Hilbert spaceE.,, dimE, < +o0, to another Hilbert spac& such that

F*Q)F(2)26"1 >0, VzeD, ©)

then F has a bounded analytic left inversee H>*(D; E,— E), GF = I. We should
emphasize that the requirement difp < +oo is essential here. It was shown [ib3],
see also [14] or [15], that the Operator Corona Theorem fails if Eim= +o0c. Note
also that the above condition (C) is necessary for the existence of a bounded left
inverse.

The classical Carleson Corona Theorem is a particular case of the matrix one: one
just needs to considef being the columnF = (f1, f2, ..., f,)!. It also worth notic-
ing that the Matrix Corona Theorem follows from the classical one. Using a sim-
ple linear algebra argument Fuhrmann, see [4], was able to get the matrix version
(dim E,, dim E < +00) of the theorem from the classical result of Carleson. Later, us-
ing ideas from Wolff's proof of the Corona Theorem, M. Rosenblum, V. Tolokonnikov
and A. Uchiyama, see [11,12,17], independently extended the Corona Theorem to in-
finitely many functionsf;. Using their result, V. Vasyunin was able to get the Operator
Corona Theorem in the case difj < +o00, dmE = +o0.
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Since the Corona Theorem turns out to be very important in operator theory, there
were some attempts to prove it using operator methods. While these attempts were not
completely successful, some interesting relations were discovered. In particular, it was
shown that a functiorF € H>* = H*°(D; E,— E) is left invertible in H*° if and only
if the Toeplitz operatofT} is left invertible; hereF denotes the complex conjugate of
the matrix F.

Let us recall that given an operator functigh € L>°(T; E, — E), the Toeplitz
operatorTg : H2(E,) — H?(E) with symbol @ is defined by

Tof := Pr(Df),

where P, is the Riesz Projection (orthogonal projection orH@).

Considering the adjoint operat¢fz)* = T+ = Tpr one can conclude from here that
F is left invertible in H>° if and only if the Toeplitz operatolzr : H*(E) — H2(E,)
is right invertible. SinceF” is an analytic function

Terf=F'f, VfeHXE),
and F is left invertible in H> if and only if for any g € H2(E,) the equation
FTf =g (0.1)

has a solutiorg € H2(E) satisfying the uniform estimat&f|l><C|lg|l2.

The result that condition@) implies (if dimE, < +oo) left invertibility of the
Toeplitz operatorT, or equivalently the solvability of Eq. (0.1), is called tfieeplitz
Corona TheoremIn the case of the unit disk) one can easily deduce the Matrix
Corona Theorem from the Toeplitz Corona Theorem by using the Commutant Lifting
Theorem.

The main result of this paper is the Toeplitz Corona Theorem for the polydisk, see
Theorem 0.2 below. To simplify the notation we us€dnstead ofF”, so the condition
(C) is replaced by the conditioRf F* > 5%1. While in the polydisk it is not known how
to get the Corona Theorem from the Toeplitz Corona Theorem (the Commutant Lifting
Theorem for the polydisk is currently not known) the result seems to be of independent
interest. In a particular case whéhfrom Theorem 0.2 is a row vector (axlz matrix)
this theorem was proved by Lin, see [8] or [7]. His approach involved using the Koszul
complex to write down the-equations. Unfortunately, in several variables, unlike the
one-dimensional case, higher order equations appear in addition té-d@hj@ation so
the computation become quite messy. Moreover, it is not clear how to use his technique
to get the result in the matrix case we are treating here since the Fuhrmann—Vasyunin
trick of getting the matrix result from the result for a column (row) vector does not
work to solve the Toeplitz Corona Theorem.
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To prove the main result we use tools from complex differential geometry to solve

J-equations on holomorphic vector bundles. In doing this we are following the ideas
of Andersson, segl] or [2], which in turn go back to Berndtsson.

While our approach is quite similar to the one used by Andersson, there are some
essential differences. To solve thesquation he uses a Hormander type approach with
weights and a modification of a Bochner—Kodaira—Nakano—Hodrmander identity from
complex geometry. While our approach is more along the lines of T. Wolff’s proof and
does not require anything more advanced than Green'’s formula.

We first use our technique to get an estimate in the Toeplitz Corona Theorem in the
disk:

Theorem 0.1.Let F € H*®(D; E—~ E,), dmE, =r < +0o0, such thatézlgFF*gl
for some0 < 52§ % For 1<p<oo if g € H?(D; E,) then the equation

Ff=g

has an analytic solutionf € H?(D; E) with the estimate
C 1, 1
IF1lp < F'O%TJFE gl p 0.2)

with C = V14 €2 + /e + /2e ~ 8.38934.

For the p = 2 case the above result with a different constahtwas obtained
recently using a different method by Trefit6]. The constant he obtained wé&s =
2./e + 2+/2¢ ~ 10.9859.

The result for allp can be obtained from the cage= 2 via the Commutant Lifting
Theorem, but we present here a simple direct proof.

Remark. Note, that we do not assume difh< +oo here.

Using a simple modification of our proof in one dimension we are also able to get
the following result in the polydisk:

Theorem 0.2. Let F € H®(D"; E — E,), dmE, = r < +o0, such thaté’l < FF*
<1 for some0 < 52<%. For 1< p < oo if g € H?(D"; E,) then the equation

Ff=g

has an analytic solutiory € H?(D"; E) with the estimate

n 1
£l < (”%%’;) log & + 5) lgllp. (0.3)
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where C = V1+¢2 + Je + +/2¢ ~ 8.38934,and C(p) = 1/sin(n/p) the norm
of the (scala) Riesz projection fron.”(T) onto H? (D). For p = 2 the estimate can
be improved to

. 1
1/l2< (@ log - + 5) g2 (0.4)

with C = V14 €2 + /e + /2e ~ 8.38934.
0.1. Plan of the paper

We will start with proving Theoren®.1 for p = 2.

In Section 1 we set up the main estimate needed to prove the theorem.
Section 2 is devoted to a version of the Carleson Embedding Theorem and its analogue
for functions defined on holomorphic vector bundles, which will be later used to prove
the main estimates.

In Section 3 we perform computation of some derivatives and Laplacians that will
be used in the estimates. We also construct there subharmonic functions to be used in
the embedding theorems.

Section 4 deals with the main estimate fpr= 2; Section 5 explains how to use
the construction for othep. In Section 6 we treat the case of the polydisk foe= 2
and in Section 7 we treat the case of genegral

1. Reduction to the main estimate

To prove Theorem 0.1 fop = 2, for a giveng € H? := H2(E,) with |g|> = 1,
we need to solve the equation

Ff=g, feH%E) (1.1)

with the estimate|| f|lo<C = C(J,r). By a normal families argument it is enough
to suppose thaf’ and g are analytic in a neighborhood @b. Any estimate obtained
in this case can be used to find an estimate wiieirs only analytic onD. Since
PI<SFF*<I, itis easy to find a non-analytic solutiofy of (1.1),

fo:=®g := F*(FF*)g.

To make fo into an analytic solution, we need to find € L?(E) such that
f:=fo—ve H?andv(z) € kerF(z) a.e. onT. Then

Ff=F(fo—v)=Ffo—Fv=g,



144 S. Treil, B.D. Wick/Journal of Functional Analysis 226 (2005) 138-172

and we are done. The standard way to find sucls to solve aé-equation with
the conditionv(z) € ker F(z) insured by a clever algebraic trick. This trick also ad-
mits a “scientific’ explanation, for one can get the desired formulas by writing a

Koszul complex. What we do in this paper essentially amounts to solvingéihe

equationdv = 0 fp on the holomorphic vector bundle kgKz). We mostly follow the
ideas of Andersson found ifi]. He used ideas from complex differential geometry to

solve the corona problem by finding solutions to thequation on holomorphic vector
bundles.

Since our target audience consists of analysts, all differential geometry will be well
hidden. Our main technical tool will be Green’s formula

1 1
/ udm —u(0) = —/ Aulog— dx dy. (1.2)
T 2n Jp (4

0y?

2 2 .
Instead of the usual Laplaciah = pfx—z + % it is more convenient for us to use the
“normalized” oneA := %A — 00 = 00. If we denote byu the measure defined by

2 1
du=—log—dxdy,
s |z]

then Green’s formula can be rewritten as
/udm—u(O):/ Audp. (1.3)
T D

1.1. Set-up

To find the functionv we will use duality. We wantfo — v € H2(E), therefore the
equality

A<fo,h>dm=ﬁ<v,h>dm

must hold for allh € (H?)*. Using Green’s formula we get

/(fo,h)dm =/((Dg,h)dm =/ 00 [(®g, )] d,u:/ a[<5cbg,h>] du.
T T D D

Here we used the harmonic extension/gfso & is anti-analytic andiz(0) = 0. The
functions® := F*(FF*)~! and g are already defined in the unit digRk.
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Now the critical moment: lefl(z) := Pyer r(;) be the orthogonal projection onto
kerF(z), Il = I-F* (FF*)~1F. Direct computation shows thé@:H(@(I))*(FF*)*l,
so [10® = 0®. Therefore, if we define a vector-valued functignon D by &(z) =
II(z)h(z), then

/D o(0Wg. byl dy = /D o1 (0. TTh)] dy = /D o@D, &Y du =: L(S)
=Ly(&). (1.4)

Note, thatL = L, is a conjugate linear functional, i.&. (defined byL(¢) := L(¢))
is a linear functional. Suppose we are able to prove the estimate

IL(OILCr, )Ell2, VE=Th, he H*E)L (1.5)

Then (by a Hilbert space version of the Hahn—-Banach Theorem, which is trivial)
can be extended to a bounded linear functionalI@(E), so there exists a function
v e L%(E), ||v]|2<C, such that

L) = f (v, &dm, VE=TIh, he HXE)*.
T

Replacing v by Ilv we can always assume without loss of generality that
v(z) € ker F(z) a.e. onT, so Fv = 0. By the construction

/(v,h)dm:/(v, M) dm = L(I1h) =/((I)g,h)dm Vh e HX(E)*,
T T T

S0 f := fo—v := ®g—v € H?(E) is the analytic solution we want to find. It satisfies
the estimate

1
I l2< M foll2 + lvliz< 5llgllz + C G gl

Therefore, Theoren®.1 would follow from the following proposition

Proposition 1.1. Under the assumptions of Theoréhi the linear functionalL defined
by (1.4) satisfies the estimate

ILOILCr, O)Ell2, VE=TIh, he HXE):
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with
C(r,0) = % log oiz,

where C = V14 ¢2 4 /e + +/2e.

In what follows we will need the following simple technical lemma that is proved
by direct computation.

Lemma 1.2. For IT and ® defined above we have

oM =—F*(FF*) " F'TI,
o0 =T1(F)* (FF*)™",

and 000 = OTI(F')* (FF*)~1 — (0®) F'® = 0T10® + (OT1)*®F'®.

Corollary 1.3. For the projectionIl defined above we have
Mol =0, (AIHIT=aIl, (A =0, TIAI = ATl

The above identities are well-known in complex differential geometry, but we can
easily get them from Lemma.2. Namely, sincdl is the orthogonal projection onto
ker F we haveFII = 0. Taking the adjoint we gdfl F* = 0 which impliesIToIT = 0.

The second identity is trivial, and the last two are obtained from the first two by taking
adjoints.

2. Embedding theorems and Carleson measures

As is well known, Carleson measures play a prominent role in the proof of the Corona
theorem, both in Carleson’s original proof and in T. Wolff's proof and subsequent
modifications. It is also known to the specialists, that essentially @hrleson measures
can be obtained from the Laplacian of a bounded subharmonic function. We will
need the following well-known theorem, see [9], which was probably first proved by
Uchiyama.

1By “essentially all” we mean here that a Carleson measure should first be mollified, to make it
smooth, and then it can be obtained from the Laplacian of a subharmonic function.
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Theorem 2.1 (Carleson Embedding Theorgniet ¢ be a non-negative bounded
subharmonic functionThen for anyf € H?(E)

/DZ@(Z)IIf(Z)IIZdM(Z)<e||</)||oo||f||%‘

Here dp = 2log 5 dx dy, and A=3iA=00.

Proof. Because of homogeneity, we can assume without loss of generality that
lolloo = 1. Direct computation shows that

A®@Y f @)D = e?Aol f1? + e?ldp f + dfI2= Aol £112.

Then Green’s formula implies
/D&p I£1I7du < /Dz(e"’llfllz)du=/Teff’llfllzdm—e‘”(o)llf(O)llz

< e/T 1f12dm = el f12. O

Remark 2.2. It is easy to see, that the above Lemma implies the embeq”gmgfnzdu

<C [y | f1IZdm (with C = e) for all analytic functionsf. Using the function 42 —

@) instead ofe? it is possible to get the embedding for harmonic functions with
the constantC = 4. We suspect the constanésand 4 are the best possible for
the analytic and harmonic embedding respectively. We cannot prove that, but it is
known that 4 is the best constant in the dyadic (martingale) Carleson Embedding
Theorem.

We will need a similar embedding theorem for functions of fokm= Ilx,
h € H?(E)*:. Such functions are not analytic or harmogicso the classical Car-
leson Embedding Theorem does not apply. As a result, the proof is more complicated,
and the constant is significantly worse.

We will need several formulas. Recall thBl(z) = Pkerr(;) is the orthogonal pro-
jection onto ke (z), I1 =1 — F*(FF*)~1F, and thatdu = % Iog%dx dy.

Lemma 2.3. Let ¢ be a non-negativebounded subharmonic function ifD satisfying
Agp() > 02, Vz e D,

270 be precise, such functions are anti-holomorphic functions (with respect to the metric connection)
on the holomorphic hermitian vector bundle Kef).
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and let K = ||¢lloo. Then for all ¢ of the form¢é = I1h, h € H2(E)*

/D Ap@NIE@ N2 du(z) <eKeX || E113
and
/D||55||2d.u<(1+eKeK)Hf“%

Proof. Let us take an arbitrary non-negative bounded subharmonic funeticand
computeA(e?||&[|%). Corollary 1.3 implies thatlToIT = 0 and oTTIT = OI1. Therefore,
using oh = 0 we getdé = d(I1h) = 0Ilh + [1oh = oI1h = 0I1&, and so

(02, &) = (0¢,T1¢) = (OII&, TIE) = 0.
Therefore
Ae?[1E12) = €212 + P (08, &) + e (&, 08) = €00 £ + e?(E, 08).
Takingé of this equality (and again usingf, 0¢) = 0) we get
A 1E1?) = e? Aol €12 + 10gE + N1 + (&, AS)).
To handle(¢, Zé) we take thed derivative of the equationé, &) = 0 to get
(0, 08) + (&, 008) =0,
and therefore(¢, A) = —[|0&]12 = —||(ATDE||%. Sincep >0
/D(Z<pllé||2— 1@ dp
< /D(Zq)lléllz — [QIDE|2 + 1 09E + 0| P)e? dp = /Te‘f’nénzdm; (2.1)

the equality is just Green’s formula (recall thaD) = 0). In the last inequality replacing
@ by te, t >1 we get

/D(qu»uéuz— ||(6H>é||2>du<Ae"f’||é||2dm<e”<||é||%
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Now we use the inequalitshe > [|0TT||2. It implies A [|&]|2— || 0TIE|2 >0, and therefore
=3 [ Rolean<e a3

Hence

etK

t—1

wa||i||2du<min IE15 = eKeX 115
D >1

(minimum is attained at = 1+ 1/K), and thus the first statement of the lemma is
proved.

To prove the second statement, gut= 0 in (2.1) (we do not use any properties of
¢ except thatp >0 in (2.1)) to get

/(néénz— ||(6H>é||2)du=/ 117 dm = [IE]15.
D T
But the second term can be estimated as

/D||<6H)é||2du</D&o||é||2du<e1<e’<||é||§,
and thereforefy, ||5€||2du<(1+eKeK)||é||§. O

3. Finding the correct subharmonic functions

There will be points in the proof where we would like to invoke Carleson’s Em-
bedding Theorem. To do so we will need a non-negative, bounded, subharmonic func-
tion. In this section we construct the necessary subharmonic functions so they will
be available when we finally estimate the integral in question. With this in mind
we define the two functions used and collect their relevant properties. First, we re-
call a basic fact that will aid in showing that the functions we construct are sub-
harmonic.

Lemma 3.1. Let A(r) be a differentiablen x n matrix-valued function Define the
function f () = det(A(r)). Then

f1(t) = detA)tr (A1 DA (1)),
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Proof. Fix a pointr and for brevity of notation let us us@ instead ofA(z). Since
A(+) is differentiable

det(A(r + h)) = det(A + A'h + o(h)) = detAdet] + A~2A'h + o(h))
=detA ] [(1+ huy + o(h)),

where i, are the eigenvalues oA~ 1(r)A'(r). Expanding this product we have
[JA+hw +o) =141Y  w +o(h) =1+ htr(A™FA) + o(h).
Then
det(A(t + h)) = det(A) + hdet(A)tr(A~1A") + o(h),

which implies the desired formula for the derivative.]

Define the functionp = tr(Iog(é‘zFF*)) = Iog(é‘z” det(F F*)). Then a straight
forward application of the above lemma gives

~

Ap = (75(/)
= Oltr((FF*) " F(F')")]
=tr[(FF*) YF'TI(F)*
with the last line following by substitution ofl. For another approach to this compu-
tation see[16]. Using the identitied 12 = I, tr(AB) = tr(BA), and recalling that
ol = —F*(FF* 1F'TI

we get

Ao = tr[(FF*) " F'TI(F)*]
= tr[F*(FF*) YFTIII(F)* (FF*)~'F]
= tr[ATI(OTT)*]
> |or|?

with the last inequality following since tAA*]>|A|2. This function will play a
prominent role in the estimation of certain integrals. We should also note that
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We will also need another function to help in the estimation of the linear
functional L in question. Let 1 = tr((FF*)‘l). A simple computation
gives,
AJ, = tr[@* (F')*(FF*)~1F'®]
—tr[(FF) YF'TI(F)*(FF*™
> tr[@*(F)*(FF*) "L F'®*] — 6~ 2tr[oT1(OT])*].
Now we define the functiony = /. + 6~2¢. Then, recalling thatb = F*(FF*)~1 we
get
AY > tr[@* (F)*(FF*)"LF @]
= tr[OF O(DF'D)*]
> |OF'O|°.

So y is subharmonic and Qi < 012 + blz log ()iz,q We should note that the assumption
0 < <! implies logé 2> 1. This gives

— 2 10g-L
o<y <L := 2 Iog(S .

4. Estimating the integral

Now we need to estimaté(&). Computingd of the inner product we get
L= [ o[@0g.5] du
D
— / (000, &) dpu+ f (00’ &) dp+ f (0Dg. 58) dp
D D D
=141 +l.

We need to estimate each of the above integrals as closely as possible. Each integral
has a term involving derivatives dil, ¢ and £. The idea is to separate the integrals
using Cauchy—Schwarz, giving one derivative to each term.

We now estimate the first integral. Recalling thad® = JT10® + (JTD*OF'®
we get

- /D (03g. &) dyt = /D ((OT13®g, &) + ((OTT)* DF'Dg, &)} dy.
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Since (oID*I1 = 0 we have(dI)*¢ = 0, and so(&H(_';’(Dg, &) = 0. Therefore
= [ (@ or g & du= [ (@F g @My
D D

and the Cauchy—Schwarz inequality implies

1/2 1/2
|I|<(/D||<I>F’<Dg||2du) (/Dll(ﬁn)éllzdu> :

To estimate the second factor we use Lem2i® Recall that the function
¢ =log (5*2” det(FF*)) ,
constructed in SectioB satisfies the inequalities
Ap>oTI|2, and 0<@<K :=logs 2. (4.1)
Therefore, Lemma.3 implies
/D IOIDEI? du< ek X [1E]5 = e~ log s~ |I¢]5.
To estimate the first factor, notice that the functibrtonstructed in SectioB satisfies
Ay > OF @2, and 0Ky <L :=25 2logs 2.
Then the Carleson Embedding Theorem (Theo&f) implies
/D IOF' Dg||? du<eLligl = 2¢5-21og s llgl3,

and thus

V2e
5n+1

IN<VKLI<l2lgll2 = log 6= [I€l12l1gl2-

Now we estimate Il. By the Cauchy—Schwarz inequality, we have

| </ (6D, &) di
D

. 1/2 1/2
<(/ ||a<1>||2||f||2du) (/ ||g’||2du) .
D D
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Observe that~3||g||2 = |l¢’|I? sinceg is holomorphic. So, applying Green’s Theorem to
the second factor we get

f Ilg/llzdu=f lgll?dm — g0 I>< llgl3.
D T
To estimate the first integral, notice, that
|02 = @ D|| = |(FF*) Y <672
(recall that® = F*(FF*)~1). Since 0® = —(0I)*®, we can estimate
10D = [|(0D)*0D|| = [|&*TI(AT)* D < [|ATL@T)*|| - [ D[? <52 M2,

Therefore (see4(1)), [0D|2< 5 2Agp, where ¢ = log(5~2" det(FF*)) is the subhar-
monic function constructed in Section 3. Applying Lemma 2.3 we get

/D||ad>||2||é||2du<5—2/DZ(p||é||2du<5—2e1(e’<||é||%,
where K = log %" see 4.1). Joining the estimates together, we get

_ _ Nz
<O VeKeX 2| g2 Ell2< 6™ VeK X |gl211éll2 = i1 1099 >ligli2ll €2

(since 62<%, the value ofK satisfiesk1/2< K).
Finally moving on to integral Ill. Using Cauchy—Schwarz, we have

i | <fD|<é<Dg, o6 du

_ 1/2 _ 1/2
<(/ ||a<1>||2||g||2du> (f ||a£||2du) .
D D

As we already have shown aboV{B_i@HZgé‘zZ(p. The Carleson Embedding Theorem
(Theorem2.1) implies

/D||a®||2||g||2du<5‘2/DA<o||g||2du<5‘2e1<||g||%.

Using Lemma2.3 we can estimate

/D||aé||2du<<1+eKeK)||é||%<(e—1+e)1<e’<||é||§.
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Here we are using the fact that>1 for 52<1/e. Combining the estimates, we get

V142 _
I <V1+e2KeX 2| g|2lIE]2 =W|095 21 g l1211¢]l2-

Joining the estimates for I, II, Il we get

Proposition 4.1. Under the assumptions of Theordéhi the linear functionall. defined
by (1.4) satisfies the estimate

ILOISCT, O)Ell2, VE=TIh, he H*E)*,
with
C(r,0) = 551109 =5,

where C = V1+e2 + /e + +/2e.

Proposition 4.1 is just a restatement of Proposition 1.1, and this then proves
Theorem 0.1 for the case gf = 2. Note, that the constanf® is a bit better than
the constant 22¢ + 2,/e ~ 10.9859 obtained by Trent in [16].

5. The H? corona problem in the disk

Now we indicate how we can use thé? result to figure out theH” result. We
can use much of the same approach as in Bf&E) case. Our goal is to solve the
equation

Ff=g, [feHP(E)

for the giveng € HP(E,), with |g], = 1, and furthermore we want the estimate
I fll,<C. Again we will have the obvious non-analytic solution to the problem

fo:=®g := F*(FF*)g.

To make this into an analytic solution we will need to find a functioa L”(E) such
that fo—v € H? andv(z) € ker F(z). This will be accomplished by duality. As in the
H?(E) case we need

/(fo,h) dm:/(U,h)dm
T T
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to hold for allh € HP(E)* = Hoq(E) (this uses the standard duality &f? spaces

see[5] or [9]). Again we can ensure that € ker F(z) since 0@ = I10®. So we need
to get an estimate on the linear functional

L(&) = Lg(&) = /D al(0dg, &)]dp

with ¢ = ITh andh € HP(E)*. If we can then prove that

ILOILCI<g

then by the Hahn—Banach Theorem and dualityi.ih spaces with values in a Hilbert
space we would have the existence of a functioa L”(E) with |v|, <C, such that

L(&) :/(v,@dm, vé=TIlh, he HP(E)".
T

Then replacing by ITv we can assume without loss of generality thét) € ker F(z)
a.e. onT. But then the construction would give,

/(v,h)dm:/(v,l‘[h)dm:L(Hh):/(d)g,h)dm, Vh € HP(E)*,
T T T

sov — fop € HP(E). So we only need to show how to prove the estimate

ILOILCICg-

The main idea is to use the? result we just proved. Namely, if we replageby
g=0¢ g and ¢ by & = ¢, whereg is an appropriate (scalar) outer function, then

Lo (&) = Lz (D).

Suppose we are able to find the outer functipnsuch that||’§||2||~§||2<||g||p||£||q.
Then, sincep is analytic,3 € H(E) and

e K =clos2{ITh : h € H*(E)').
Therefore we can apply th&2 result we have proved before to get
ILg (O = 1Lz < 557 109612121182 < 557 1093 " lgl 1 Elly- (5.1)

To find the functiongp we need to consider the casps< 2 and p > 2 separately.
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First look at the case < 2. Consider the outer part @f, i.e. a scalar-valued outer
function goyt such that

Igout(2)] = llg(2)ll ae on T.

Define

§(2) = (go)”*(2)g(z) and

&) = @ow " 2(2)E).

Then |gll2 = ||g||Z/2, and computation using Holder's Inequality gives ajrfﬁ|2

<I€llyllgly; "%, where ¥p+1/q = 1. Therefore| g2 Ell2< ligll ]l and the main
inequality 6.1) is proved.

The case whemp > 2 is analogous, except in this case we need to construct a scalar
outer function&yy such that

[Cout(@)| = 1€ ae onT.

Note, that here we cannot say thaf is the outer part off, becausel is neither
holomorphic nor antiholomorphic. So, a little more explanation is needed.

First of all recall that we assumed in Sectidn(without loss of generality) that
F is an analytic function in a slightly bigger disk thdn, so the projectionll =
I — F*(FF*)~1F is real analytic on the unit circlél. Second, we only need to
estimate the functional on a dense set, so we can assume that the test furiciom
trigonometric polynomial in(H?)L. Therefore the functiorf = ITA is real analytic on
T, and sof1r log||é(z)|ldm(z) > —oo which guarantees existence of the outer function

fout-
Similarly to the above reasoning for the cage< 2 define for our casep > 2

(g < 2),

where ¥p + 1/g = 1. Then [E|> = ||£||Z/2 and applying Hélder inequality t&

we get|g]l2< ||g||,,||é||;_w2 (note, that the computations are the same as in the case

1 < p < 2 if we interchangep with ¢ andg with &). Then agair1|§||2||z||2< lglpllélly,
so (5.1) holds.
As we discussed in the beginning of this section, the main estimate (5.1) implies
(via duality) the solution of theH” corona problem for k p <ooc.
The casep = 1 requires just a little more work sinde! is not the dual ofL>, and
a bounded linear functional oh*™ is generally a measure. Namely, the main estimate
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(5.1) implies thatL is a bounded conjugate-linear functional, and by Hahn-Banach
Theorem it can be extended to a bounded conjugate-linear functionaf@#’). Since

any bounded linear functional oh* is a bounded linear functional on the space of
continuous functions on the unit circle, there exists a vector-valued measueh that

L) =/<dv, 9.
T

Without loss of generality one can replacewith Ilv, then

/(dv,h) =/<dv, & = L(IIh) =/(fo,h)dm.
T T T

Then rewriting this, and treatingp dm as a vector-valued measure we have

f ((fodm — dv), h) =0
T

for any anti-analytic polynomiak. Then applying the F. & M. Riesz Theorem, 48%,

we can conclude that the measufgdm — dv is absolutely continuous with respect

to Lebesgue measure, and moreover it is an analytic measure megning— dv =

(fo —v)dm with fo —v € HY(E) (Of course, the F. & M. Riesz Theorem is usually
stated for scalar measures, but applying it to the “coordinate” of the measure with
respect to some orthonormal basis, one can easily see that it holds for measures with
values in a separable Hilbert space as welll]

6. The H? corona problem in the polydisk

In the following sections we will be considering operator- and vector-valued functions
on the polydiskD". We begin with theH2(E) case. The general goal from previous
sections has not changed. We want, for a giver H>(D"; E~E*) andg € H? :=
H2(D"; E,) with |lg]l> = 1, to solve the equation

Ff=g, feH*DE) (6.1)
with the estimate|| f||2<C. Again by a normal families argument it is enough to
suppose thatF and g are analytic in a neighborhood db” because any estimate
obtained can be used to get an estimate wReis only analytic inD". It is still easy
to find a non-analytic solutiorfp of (6.1),

fo:=Dg := F*(FF*) g,

because we havé’l < FF*<I. We will again need to find @ € L%(T"; E) such
that f := fo —v € H?(D"; E) with v(z) € kerF(z) a.e. onT". Our approach is
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straightforward reduction to the one variable case, unfortunately this approach will not
yield a proof of theH> Corona problem on the polydisk since the projections are not
bounded wherp = co.

We will denote a point inD” or T" by z = (z1, z2, .. ., z»). We will use the symbol
z; for z without the coordinate;; and, slightly abusing notation, we can then write
z=(zj,z;) = (2. Zj).

Let H/” = H;’([D)”; E) be a subspace ol.?(T"; E) consisting of all functions
analytic inz;, i.e.

HP(D" E):={f € LP(T", E) : f(z),-) € H?(D; E) for almost allz; € T""1}. (6.2)

6.1. Lemmas about decompositions

Lemma 6.1.Any & e H?*D"; E)- can be written ash = Z’j’.:lhj with
hje sz(ID”; E)t.

Proof. Let P; := P2 be the orthogonal projection ontHj2 = H/Z([D”; E). We can
; ‘
decomposé: in the following way:

h=Ph+ I~ P)h=h'+hy hieHXD"; E):, h'= Pih.
Similarly,
ht = Pohl + (I — P)ht = h? + hy  hy € HZ(D"; E)t, h? = PPih.
Continuing the procedure we get
R = k=t (1 — PR Y =W 4 by by € HA(DY E)Y, hf = Py PaPih.
Combining everything we get
h=hi+hy+---+h,+h", W =P,Py_1---Pih

which proves the lemma, because the assumptior HZ2(D"; E)* implies that
W=~r --PPh=0 0O

We also are going to need an analogue of Lenfimiadealing with the decomposition
of functions on the holomorphic vector bundleH?, i.e. for the functions of the form
& =TIh, h € H3(D"; E)L. To state this lemma we need some auxiliary definitions.
Let

K(D": E) := closTI(H3(D")1)), (6.3)
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and
K;(D"; E) == closTI(HZ(D")Y). Vj=1....n, (6.4)

Lemma 6.2. Let ¢ € K, then¢ = Z’}Zlg’j with ¢; e K for j=1,...,n and

n

SEEDIISIE2
j=1
To prove Lemma6.2 we will need a few other lemmas. The first one is a simple

fact about the geometry of a Hilbert space.

Lemma 6.3. Let X be a subspace of a Hilbert spad#, and letIT be some orthog-
onal projection in H. Then Ranll = IIH is decomposed into the orthogonal sum

ITH = clos(I1X) ® (X N I1H).

Proof. The proof is a simple exercise in functional analysis, and we leave it to the
reader. [

Define the subspaces

Q(D"; E):= H*NTIL?, Q;(D% E) := HZ NIIL? (6.5)

Applying the above lemma td/ = L? and X = (H*)* or X = (H?)" we get the
following result.

Corollary 6.4. The subspac@IL? = T1L2(D"; E), n = 1,2, 3, ... admits the orthog-
onal decompositions

2 2
ML =K & Q, IIL ZKJ'@QJ',

with the subspace&X := K(D"; E), K; := K;(D"; E), Q := Q(D"; E) and Q; :=
Q;(D"; E) defined by(6.3), (6.4)and (6.5), respectively

Remark 6.5. Note, that the orthogonal projectior%; and Py, are essentially “one-
variable” operators. Namely, to perform the projecti®y, on the function¢ e L2 we

simply need to perform for eacty € T (recall thatz = (zj, zj)) the “one-variable”
projection Py (z;) onto the subspace

0(z)) = HX(D; E) NTI(-, ;) L*(D; E) C H?> = H*(D; E),

and similarly for the projectionPx;.
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Indeed, if
E (. 2)) 1= Po(,)E(-, zj) for almost allz; € T" 2,
then clearly
&, z;) € HA(D; E)NTI(-, z,)L3(T) for almost allz; € T"7 2,

so&t e HA(D"; E)NIIL3(D"; E). Moreover, foré; := ¢—&L and anyy € H2(D"; E)N
IL?

/(61(z,-, zj),n(zj,z;))dm(z;) =0 for almost allz; € 1
T

and integrating over other variables we get thaté; 1 5.

The following two lemmas says that in many respects the projectign behaves
like the projection/ — P; from Lemma®6.1.

Lemma 6.6. Let H? = H(D?; E) and let Q and Q;, j = 1,2, be the subspaces as
defined above iif6.5). Then for the orthogonal projectionBy; onto the subspaceg ;
we have

Po,Pg, = Pg,Po, = Po.

Proof. It follows from the definition of Q@ and Q; and from the inclusion#? ¢ sz
that

Q=ML2NH?> CNIL2NH? = Q;

we can conclude that fof € O we havePp . {=¢, j=1,2.

Since by Corollary6.4 we have the orthogonal decompositibiL? = K @ Q, to
prove the lemma we need to show that the equaliffgsPp,é = 0, Pg, Pp,& =0
hold for all £ € K. Clearly, it is sufficient to prove only one, say the first as the second
can be obtained by interchanging indices.

Consider the orthogonal decomposition HE K,

6=PK16+PQ16=:61+51-

To prove thatPg, Po,¢ = 0 we need to show that! € K».
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By definition ¢* L K1 := clos(TI((H)1)), and sincell(H2)") > (H)' NTIL?,
we can conclude that

e L HH NI,

We know thaté, ¢; € K (&, € K becausek, C K), so &t e K. By Corollary 6.4,

&1 0:=H2NTILA
Combining the above two orthogonality relations we get

&1 (mpt+H?)nme?,

and since in the bidisk72 c (H?)* + H?, we get that

S LNL?NnHZ = 02
ie. thatel e ko, O

As an important corollary we get the following lemma.

Lemma 6.7. On I1L2 := T1L%(T"; E) we have

Po,Pg; = Po;Pg, = Pging; = Ppznpp2 YISk js<n,
where szk(lD") = H].Z(ID") N HZ(D"). Furthermore this implies

Po,...Pg, =Py, ... Po, = Py 2.

One can think of the spachZk([D”) as the space of functions ib?(T") which are,
upon fixing the other variables, holomorphic in both tite andkth variable.

Proof. The first part of the lemma follows immediately from Lem®#, because we
can just “freeze” all variables excepf andzx. Namely, to perform the projectioRy,

on the functioné € T1L2 we simply need to perform for eachy € T"1 (recall that
Z = (zj,z;)) the “one variable” projectionPy;;) onto the subspace

0(z)) = HX(D; E) NTI(-, ;) L*(D; E) ¢ H?> = H*(D; E),

see Remarl6.5.



162 S. Treil, B.D. Wick/Journal of Functional Analysis 226 (2005) 138-172

To prove the second statement of the lemma let us notice that a product of commuting
orthogonal projections is an orthogonal projection. ThereBre= Py, Pg, ... Pg, IS
an orthogonal projection.

Since foré e H2(D"; E)NTIL? = Q C Q;

we can conclude that
Q0 = H*(D"; E) N TIL? C RanP.
On the other hand, since the projectioRg, commute and RaRg, = sz NTIL?
RanP C H,?mHL2= Q; Vji=12....n

SO

RanPcﬂQ]_ﬂHzﬂHLz H?NTIL? = Q.
j=1 j=1

Therefore Ra® = Q, i.e. P is the orthogonal projection ont@. [J
We can now move onto proving Lemnta2.

Proof of Lemma 6.2. We will follow the argument in Lemma 6.1. Fdre K consider
the orthogonal decomposition

E= Py é+ Poé =& +& & e Ki(D; B).
Sinceé; L 51,
I€15 = IEal3 + M5,
Decomposing:® as
&= P&+ Po, &t = &+ &8, 185 = 1615+ 1€13
we get the decomposition af

E=8+ &+ & ekK;, &= Py,Py¢



S. Treil, B.D. Wick/Journal of Functional Analysis 226 (2005) 138-172 163

and
IEIZ = 1113 + 1 €213 + 1213
Repeating the procedure of decomposing on eachcﬁtming Pk, we finally obtain
E=8+ &+ + 4+ ek, j=12,....n, =Py, ...Pg,Pg.¢,
and
IEN3 = NELIZ + IE2l5 + - + 1,15+ 11E"13.
But according Lemmd.7 " = 0, so the lemma is proved. OJ

6.2. Proof of theH? corona for the polydisk

The idea of the proof is quite simple, we want to reduce everything to one-variable
estimates. In the one-variable case we defined the functibnah functions of the
form ITh whereh € (H3(D))* by

L(¢) = /D (0Dg, &)dp,

wheredu = %Iog%dx dy, see (.4). We have also proved (see Proposition 1.1) that

the functionalL is bounded in theL.2 norm on clo¢Ilh : h € (H3(D))1} ( this is the
one-variable analogue of the spakedefined for the polydisk).
For the polydisk, define (conjugate linear) functionals on K; by

L= /ﬂ'"*l Lg(.2))(E(, 2j)) dmy—1(z;).

Since(-, zj) € K for almost allz; € T lif ¢ e K; (see Remarl6.5) the functionals
L; are well defined and boundefiL ;|| = ||L|. Note also, that on a dense setobf
the form & =11k, h € (HJ.Z)l we can represent

Li(® = f 1 / 0,1(0;Pg, O1dpu(z;) dmy-1()).
™= JD

Define a conjugate linear functional on K by decomposing € K as

=6+ 86+ 4+¢, ijKj, j=12...,n (6.6)
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and putting

n

L& =) L&)
j=1
We will show later that the functiondl is well defined, i.e. that it does not depend

on the choice of decomposition d@f (note that by Lemmd.2 one can always find at
least one such decomposition).

Assuming for now that is well defined, let us prove Theorem 0.2 fpr= 2. First
of all, by Lemma 6.2 any functiod € K can be decomposed as

E= ch where¢; € K;, and 2”51”22 IEN2.

j=1 j=1
Therefore, using the fact th@it_ ;|| = ||L|| we get foré e K
n n n 1/2
ILOIS Y NL - 1E 1 = NL1 D IE < ILIVA (Z ||¢,-||2> = Jr L] - [l
j=1 j=1 k=1
SO

C 1
ILI< v ILI< 355 log 4,

where C = V1 + e2 + /e + +/2¢ ~ 8.38934 is the constant from Theoredul.
Take h € (H?)', and decompose it according to Lemma 6.1 as

n
h=Y hj. hje(H)"
j=1

Denote
¢ :=1Tlh, «fj = I1h;.

Repeating the reasoning with the Green’s Formula from the one-variable case we can
easily show that

/ (®g, hj)dmy(2) = / / 5;‘[(5]"1)& ¢ildmzy) dmy—1(zj) = Lj(&;),
™ *H—nfl D
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SO
/ (g, ) dmy(2) = L(TTh) = L(&).

By the Hilbert space version of the Hahn—-Banach Theorem the linear functional
can be extended to a bounded functional on allLsf i.e., we can findv € L2 =
L2(T"; E) such that

L(é)z/;w(v, & dm,(2) VEeK.

Replacingv by ITv if necessary, one can assume without loss of generalityuitzte
RanIl(z) = kerF(z) a.e. onT", so Fv =0 on T". Since by the construction

/ (v, h) dm,(2) :/ (v, ITh) dm,, (z) = L(I1h)
'[I'n '[I'}’L
:/ (Dg, h)dm,(z) Vh e H*(D"; E)*,
'[I'n

the functionf := fo—v := ®g—v is analytic. SinceFv = 0, it satisfiesF f = Ffo = g,
so f is the analytic solution we want to find. O

6.3. The functionaL is well defined

Let us consider first the case of the bidigl. To show thatL is well defined in
this case, it is sufficient to show that if

0=¢C1+¢, ek

then L1(&;) + L2(&y) = 0 (simply take the difference of two representations of the
same function inK). This holds if and only if

L1(&) =Lx(&) Ve KiNKo.

Thus, the following lemma shows that is well defined in the case of bidisk?.

Lemma 6.8. Let ¢ € K1 N Ko C IIL2(T?; E). Then

L1(&) = La(%)

Proof. The proof of this lemma is really nothing more than repeated applications of
Green’s Formula, and using th&f, N K, = clogITH2) where H? are the functions
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which are anti-holomorphic in both variables. To see tkatN K, = clogI1H?2) we
use Lemmab.3. Since(K1N K2t = 01+ Q2 = Ki + K5 = (H?+ H2) NIIL?, then
by Lemma 6.3 we have the result.

By density we can work withZ of the form & = I1h with 2 anti-holomorphic in
both variables. So applying Green’s Formula twice gives

La(®) = fT /D 01(01Dg. &) dpu(zy) dm(z2)
=/ /((I)g,h)dm(zl)dm(zz)
TJT

://az(ézq)g, &) du(z2) dm(zy)
TJD
= L2(%).

Since this result holds on a dense setpénd the functionals.; and L, are continuous
we have the result for af € K1 N Ko, O

For the polydisk the lemma has the following important corollary

Corollary 6.9. Let ¢ € K; N Ky C L2(T"; E). Then

Lj(&) = Li(2).
Proof. To prove the corollary one needs to apply Lem&a to the bidisk in variables
zj andz; and then integrate the obtained equality oVér 2 (with respect to Lebesgue

measure in all other variables). [J

Now we are ready to prove that is well defined. To prove this it is sufficient to
show for any representation of O

0=) ¢, &€k (6.7)
j=1
the equality
> L) =0
j=1
holds.

We will use induction inn. The casen = 2 is already settled, so let us assume the
functional L is well defined for the polydiskD”~2. It follows from (6.7) that

éneKilm(K1+K2+"'+Kn—l):(KlmK11)+(KZMKn)"l‘""i‘(Kn—lmKn)’
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so ¢, can be represented as

n—1

&= ;. nj€KiNK, j=12..n-1
j=1

On the other hand we know thgj, = — Z?j ¢;. Using the induction hypothesis and
integrating it overT with respect tadm(z,) we obtain that

n—1 n—1
DLt == LiE).
j=1 j=1

Sincen; € K; N K,, Corollary 6.9 implies thatZ;(17;) = L, (n;). Therefore

n—1

n—1 n—1
La(G) =Y La(n)) =Y Ljtn) =—Y L&),
j=1 j=1 j=1
and 502?21 Lj(¢;)=0. @O

7. The H? corona problem in the polydisk

A simple idea of proving theZ? corona problem in the polydisk is to try to mimic
the proof of theH? case. However, there is a much easier way: just use objects which
are already defined, and modify the crucial estimates.

First of all notice, that replacing the Corona dafaand ¢ by F(rz) and g(rz),
r < 1 and using the standard normal families argument one can assume without loss
of generality (as long as we are getting the same uniform estimates on the norm of
the solution) that bothF and G are holomorphic in a slightly bigger polydisk. So we
can always assume that, for example, the right hand gitde not only in H?, but is
also bounded, smooth, etc.

As in the H? case we first construct a smooth solutigh := ®g, where ® :=
F*(FF*)~1, of the equationFf = g and then correct it to be analytic. To do that it
is sufficient to show that the conjugate linear functiohalntroduced in the previous
section isL? bounded, 1p +1/g =1, i.e. that

ILOILCIClq

for all ¢ of form ¢ = I1h, whereh is a trigonometric polynomial irH2(D"; E)~L.

If this estimate is proved, the linear functional can be extended by the Hahn—
Banach Theorem to a linear functional dif, so there will exist a functiorv €
LP(T" E), |lvll, = |IL|l, such that

L&) = / (, &dmy(z) VE=TIh, he HXD"; E)-nPol
‘[|'n
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Again, replacingv by ITv we can always assume without loss of generality thaj €
Ranll(z) = kerF(z) a.e. onT". As in the previous section, decomposihgas

n
h=7) ¢&. & eH;
j=1

(h is a trigonometric polynomial, so we can use Lemfa here), we can show that
Sy (®g, h)ydm,(z) = L(ITh) = L(¢) so

/ (v, h) dmy(2) = / (v, TT) dmy (2) = L (ITh) = f (g h) dma (2),
‘n’ﬂ

™ ™

for all h € H2(D"; E)*-NPol. Therefore, the functioff = fo—v = ®g—v is analytic,
and it clearly solves the equatiafif = ¢ (on T", and therefore orD").

7.1. Main estimates

Let us introduce some notation. Denote
K9 :=closII((H?)')) c 1LY, Q7 := HINTIILY,
so for K and Q introduced in the previous secticki = K2 and Q = Q2. Let also
Hj‘.’ = Hj‘.](ID"; E):={f e L{(T" E): f(-.2/) € HI(D; E)}
be the spaces of functions analytic in variable and let
K4 := clos(II(H/(D"; E)*)) C ILY(T"; E), Q% := H!(D"; E)yNTILI(T"; E).
To estimate the functiondl we need the following analogue of Lemnga2

Lemma 7.1. Any function € K9 can be decomposed as
n
=Y ¢, & ekl &g <C@ ¢l
j=1

where C(q) = 1/ sin(n/q) is the norm of the scalar Riesz Projectidty from L9(T)
onto H7(D) (note thatC(p) = C(q) for 1/p + 1/q = 1).

Let us show how this lemma implies the estimatelfoin Section5 we have proved
the L? bound for the functional. (in the one-variable case),

. 1 1
ILOISCr dElp, Cr,0) = Cﬁlogg,
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where C = 1+ ¢2 + /e + ~/2e. That would imply the same estimates for the
functionalsL; on L4(T"; E), so applying Lemm&.1 we get

ILOISCE ) D 1&g <Cr 9)Elg Y Cl@) <Cr, HnC@) 1€l

j=1 j=1

Recalling thatC(p) = C(q) we get the desired estimate of the solution.

There is a little detail here as the functionalwas defined initially only onk?. So
formally, if ¢ < 2 (i.e. if p > 2) the functional is not defined oK%. However this
is not a big problem and the simplest way of dealing with it is to use the standard
approximation arguments. Since the polynom|als(1i112)l N Pol are dense ij”)L
the functions of formllx, h € Hzm Pol are dense |qu So, approximating functlons
¢; from Lemma7.1 by funct|ons of this form, we WI|| get the desired estimate. Note,
that we are estimating (¢) on a dense set of functions= ITh, h € (H®)* N Pol, so
we do not need it be formally defined da?.

The main step in proving Lemma 7.1 is the following result that states that in the
one-variable case the norm of the orthogonal projectiBgsand Py in L9 is the same
as the norm of the Riesz projectid?y. in L?. See [6] for the norms of in L”.

Lemma 7.2. Let H?2 = H%(D; E) and letK, Q0 c H? be the subspaces defined above
in (6.3) and (6.5). Then forl < ¢ < oo

1PkElly SC@IElly.  1Poelly <C@IIEN, ¥E e TILANTILY,

where C(g) = 1/sin(n/q) is the norm of the Riesz ProjectioR, in LY (or in L7,
1/p +1/q =1).

Note that sincd1L2NTILY is dense in[ILY, the projectionsPx and Po extend to
bounded operators oA LY.

Proof. Take ¢ € IIL2NTILY and decompose it as
¢ =P+ Poé=: ¢+ <.

Since Q is a z-invariant subspace oH2(D, E), by the Beurling-Lax theorem, see
[10], it can be represented a8 = @H?%(D; E,), where® € H®(E,~E) is an inner
function (i.e.®(z) is an isometry a.e. o) and E, is an auxiliary Hilbert space. So
o can be represented as

Ep=0On, neH*E)NHIE,).
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By duality

ISollg = lInlly = sup
heLPNL2:
llhllg=1

/(n,h)dm‘.
.

Let hy = Pyh. Sincen € H?
/ 1, ) dm = / (0, hy) dm = / (©n, Oh) dm
T T T

T T

the second equality holds becau&k is an isometry a.e. onl, and the last one
holds becausely € K L Oh,. Therefore, sincelli|,<C(p)lhl,, we can
conclude

‘A(n, h) dm‘ < ‘A(é,@u)th‘ SIClghill, <CPIClqlinll,

S0 [[Eplly <C(p)l¢lly- Thus we get the desired estimate for the normpPgf

Since Pg + Pp = I we can estimate the norm dfx by C(p) + 1 for free. Note,
that unlike the case of Hilbert spaces, complementary projections in Banach spaces
do not necessarily have equal norms. So, to get rid of the 1 some extra work is
needed.

It is easy to see thab,-ozK = {0}, so the decompositioflL? = K & Q implies
that the set

Uz e=J7'0H%E.)

n>0 n>0

is dense inl1L2. ThusTIL? = ®L?, and since® is an isometry a.e. ol we can
conclude thatk = @(H?(E)1). Therefore we can represefi; as

Exk =On, ne HXE)ENLIEY.

Performing the same calculations as in the casé€ gfonly usingh_ = P_h, P =
I — P, instead ofh, we get the estimat§ Pk ||z« <| P—|/rs. But the isometryr,

(=751 kez

interchangesH? and (H?)+, and sincer is an isometry in allL”, we conclude the
IP—llze = I1P4lla. U
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Corollary 7.3. Let H?> = H*(D"; E) and letK;, Q; C H? be the subspaces defined
in (6.4) and (6.5). Then forl < ¢ < oo and 1< j <n we have

1Pk Elg SC@IIENg,  1PoEllg <C@Ely V¢ e ML NTILY,

where C(g) = 1/sin(n/q) is the norm of thegone-dimensiondlRiesz ProjectionP,
in L9 (orin L?, 1/p +1/q = 1).

Proof. This corollary follows directly from Lemmar.2. Since by Remark 6.5 we
can view Pk, and Py, as “one-variable” operators. Then we “freeze” all variables
except thez; variable and apply Lemma 7.2 and then integrate in the “frozen”
variables. [
It only remains to prove Lemma 7.1.

Proof of Lemma 7.1. The proof is almost the same as the proof of Lemma 6.2,
only here we cannot use the fact that thg are orthogonal projections. However,
according to Corollary 7.3 the projection%; are bounded, and this allows the proof

to go through.
Take ¢ € K9. Repeating the proof of Lemma 6.2 we can write

6=PK1CV+PQ16=:61+51-

By Corollary 7.3 we have that;eK{ with [[¢1]l, <C(g)lIE]l, and|[EYg < C(@) 1 Ellq-
Decomposingﬁ1 in the same manner we have

E = P, 4 P&t = 64 &,
SO
_ I3 2 q 2_
E=&8+86L+< (eK;, 8= Po,Pyl.

Corollary 7.3 applied twice giveﬂlizllq<C(q)llﬁlllq<C(q)2I|§||q, and thus||¢;l,
<C(@) €ll4- Continuing this decomposition at each step we find

E=&G+ &+ + 8+ EieK], =P, ...Pg,Po,¢,

and ||, <C(g)/I£ll; by applying Corollary7.3 j times. Finally, by Lemma 6.7
Py, - Pp, =0 on the dense s&t N K?. [

n
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