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Abstract

In this paper, we consider the matrix-valuedHp corona problem in the disk and polydisk.
The result for the disk is rather well-known, and is usually obtained from the classical Carleson
Corona Theorem by linear algebra. Our proof provides a streamlined way of obtaining this
result and allows one to get a better estimate on the norm of the solution. In particular, we
were able to improve the estimate found in the recent work of Trent in [J. Funct. Anal. 189
(2002) 267–282]. Note that, the solution of theH∞ matrix corona problem in the disk can
be easily obtained from theH2 corona problem either by factorization, or by the Commutant
Lifting Theorem. TheHp corona problem in the polydisk was originally solved by Lin in
[Bull. Sci. Math. 110(2) (1986) 69–84, Trans. Amer. Math. Soc. 341 (1994) 371–375]. The
solution used Koszul complexes and was rather complicated because one had to consider higher

order �̄-equations. Our proof is more transparent and it improves upon Lin’s result in several
ways. First, we deal with the more general matrix corona problem. Second, we were able to
show that the norm of the solution is independent of the number of generators. Additionally,
we illustrate that the norm of the solution of theH2 corona problem in the polydiskDn grows
at most proportionally to

√
n. Our approach is based on one that was originated by Andersson

in [Math. Z. 201 (1989) 121–130]. In the disk it essentially depends on Green’s Theorem and
duality to obtain the estimate. In the polydisk we use Riesz projections to reduce the problem
to the disk case.
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Notation

:= equal by definition
C the complex plane
D the unit disk,D := {z ∈ C : |z| < 1}
T the unit circle,T := �D = {z ∈ C : |z| = 1}
d� measure onD with d� = 2

� log 1
|z| dx dy

dm normalized Lebesgue measure onT, m(T) = 1
〈·, ·〉 inner product
‖ · ‖ norm; since we are dealing with matrix and operator-valued

functions this symbol is a bit overloaded, but we hope it will
not cause any confusion. The norm in the function spaces
can be always distinguished by subscript. Thus for a vector-
valued functionf the symbol‖f ‖2 denotes itsL2-norm, but
the symbol‖f ‖ stands for the scalar valued function whose
value at a pointz is the norm of the vectorf (z)

tr A Trace of the operatorA
H∞(D) space of bounded analytic functions onD with the supremum

norm
Lp(Dn;E) vector-valued Lebesgue spaces
Hp(Dn;E) vector-valued Hardy classes
H∞(D;E → E∗) operator Hardy class of bounded analytic functions from the

disk whose values are bounded operators fromE to E∗,
‖F‖∞ := sup

z∈D

‖F(z)‖
�, �̄ derivatives with respect toz and z, respectively: � :=

1
2(�/�x − i�/�y), � := 1

2(�/�x + i�/�y)
�j , �̄j derivatives with respect to the variableszj andzj respectively
z point in Cn
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zj z with the coordinatezj omitted; slightly abusing notation
we will write z= (zj , zj ) or z= (zj , zj )

�̃ “normalized” Laplacian,̃� := 1
4� = ��̄

Throughout the paper all Hilbert spaces are assumed to be separable. We always
assume that in any Hilbert space an orthonormal basis is fixed, so an operatorA :
E → E∗ can be identified with its matrix. Thus besides the usual involutionA �→ A∗
(A∗ is the adjoint ofA), we have two more:A �→ AT (transpose of the matrix)
and A �→ A (complex conjugation of the matrix), soA∗ = (A)T = AT . Although
everything in the paper can be presented in an invariant, “coordinate-free”, form,
use of transposition and complex conjugation makes the notation easier and more
transparent.

0. Introduction and main result

The classical Carleson Corona Theorem, see[3], states that if functionsfj ∈ H∞(D)

are such that
∑∞

j=1 |fj |2��2 > 0 then there exist functionsgj ∈ H∞(D) such that∑∞
j=1 gjfj = 1. This is equivalent to the fact that the unit diskD is dense in the

maximal ideal space of the algebraH∞, but the importance of the Corona Theorem
goes much beyond the theory of maximal ideals ofH∞.

The Corona Theorem, and especially its generalization, the so called Matrix
(Operator) Corona Theorem play an important role in operator theory (such as the
angles between invariant subspaces, unconditionally convergent spectral decomposi-
tions, computation of spectrum, etc.). The Matrix Corona Theorem says that ifF ∈
H∞(D;E∗→ E) is a bounded analytic function whose values are operators from a
Hilbert spaceE∗, dimE∗ < +∞, to another Hilbert spaceE such that

F ∗(z)F (z)��2I > 0, ∀z ∈ D, (C)

thenF has a bounded analytic left inverseG ∈ H∞(D;E∗→E), GF ≡ I . We should
emphasize that the requirement dimE∗ < +∞ is essential here. It was shown in[13],
see also [14] or [15], that the Operator Corona Theorem fails if dimE∗ = +∞. Note
also that the above condition (C) is necessary for the existence of a bounded left
inverse.

The classical Carleson Corona Theorem is a particular case of the matrix one: one
just needs to considerF being the columnF = (f1, f2, . . . , fn)

T . It also worth notic-
ing that the Matrix Corona Theorem follows from the classical one. Using a sim-
ple linear algebra argument Fuhrmann, see [4], was able to get the matrix version
(dimE∗,dimE < +∞) of the theorem from the classical result of Carleson. Later, us-
ing ideas from Wolff’s proof of the Corona Theorem, M. Rosenblum, V. Tolokonnikov
and A. Uchiyama, see [11,12,17], independently extended the Corona Theorem to in-
finitely many functionsfk. Using their result, V. Vasyunin was able to get the Operator
Corona Theorem in the case dimE∗ < +∞, dimE = +∞.
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Since the Corona Theorem turns out to be very important in operator theory, there
were some attempts to prove it using operator methods. While these attempts were not
completely successful, some interesting relations were discovered. In particular, it was
shown that a functionF ∈ H∞ = H∞(D;E∗→E) is left invertible inH∞ if and only
if the Toeplitz operatorTF is left invertible; hereF denotes the complex conjugate of
the matrixF .

Let us recall that given an operator function� ∈ L∞(T;E∗→ E), the Toeplitz
operatorT� : H 2(E∗)→ H 2(E) with symbol � is defined by

T�f := P+(�f ),

whereP+ is the Riesz Projection (orthogonal projection ontoH 2).
Considering the adjoint operator(TF )

∗ = T
F
∗ = TFT one can conclude from here that

F is left invertible inH∞ if and only if the Toeplitz operatorTFT : H 2(E)→ H 2(E∗)
is right invertible. SinceFT is an analytic function

TFT f = FT f, ∀f ∈ H 2(E),

andF is left invertible inH∞ if and only if for any g ∈ H 2(E∗) the equation

FT f = g (0.1)

has a solutiong ∈ H 2(E) satisfying the uniform estimate‖f ‖2�C‖g‖2.
The result that condition (C) implies (if dimE∗ < +∞) left invertibility of the

Toeplitz operatorTF , or equivalently the solvability of Eq. (0.1), is called theToeplitz
Corona Theorem. In the case of the unit diskD one can easily deduce the Matrix
Corona Theorem from the Toeplitz Corona Theorem by using the Commutant Lifting
Theorem.

The main result of this paper is the Toeplitz Corona Theorem for the polydisk, see
Theorem 0.2 below. To simplify the notation we usedF instead ofFT , so the condition
(C) is replaced by the conditionFF ∗��2I . While in the polydisk it is not known how
to get the Corona Theorem from the Toeplitz Corona Theorem (the Commutant Lifting
Theorem for the polydisk is currently not known) the result seems to be of independent
interest. In a particular case whenF from Theorem 0.2 is a row vector (a 1×n matrix)
this theorem was proved by Lin, see [8] or [7]. His approach involved using the Koszul
complex to write down thē�-equations. Unfortunately, in several variables, unlike the
one-dimensional case, higher order equations appear in addition to the�̄-equation so
the computation become quite messy. Moreover, it is not clear how to use his technique
to get the result in the matrix case we are treating here since the Fuhrmann–Vasyunin
trick of getting the matrix result from the result for a column (row) vector does not
work to solve the Toeplitz Corona Theorem.
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To prove the main result we use tools from complex differential geometry to solve

�-equations on holomorphic vector bundles. In doing this we are following the ideas
of Andersson, see[1] or [2], which in turn go back to Berndtsson.

While our approach is quite similar to the one used by Andersson, there are some

essential differences. To solve the�-equation he uses a Hörmander type approach with
weights and a modification of a Bochner–Kodaira–Nakano–Hörmander identity from
complex geometry. While our approach is more along the lines of T. Wolff’s proof and
does not require anything more advanced than Green’s formula.

We first use our technique to get an estimate in the Toeplitz Corona Theorem in the
disk:

Theorem 0.1. Let F ∈ H∞(D;E→E∗), dimE∗ = r < +∞, such that�2I �FF ∗�I

for some0 < �2� 1
e
. For 1�p�∞ if g ∈ Hp(D;E∗) then the equation

Ff = g

has an analytic solutionf ∈ Hp(D;E) with the estimate

‖f ‖p�
(

C

�r+1 log 1
�2r + 1

�

)
‖g‖p (0.2)

with C = √1+ e2+√e +√2e ≈ 8.38934.

For the p = 2 case the above result with a different constantC was obtained
recently using a different method by Trent[16]. The constant he obtained wasC =
2
√
e + 2

√
2e ≈ 10.9859.

The result for allp can be obtained from the casep = 2 via the Commutant Lifting
Theorem, but we present here a simple direct proof.

Remark. Note, that we do not assume dimE < +∞ here.

Using a simple modification of our proof in one dimension we are also able to get
the following result in the polydisk:

Theorem 0.2. Let F ∈ H∞(Dn;E → E∗), dimE∗ = r < +∞, such that�2I �FF ∗
�I for some0 < �2� 1

e
. For 1 < p <∞ if g ∈ Hp(Dn;E∗) then the equation

Ff = g

has an analytic solutionf ∈ Hp(Dn;E) with the estimate

‖f ‖p�
(

nCC(p)n

�r+1 log 1
�2r + 1

�

)
‖g‖p, (0.3)
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where C = √
1+ e2 + √e + √2e ≈ 8.38934, and C(p) = 1/ sin(�/p) the norm

of the (scalar) Riesz projection fromLp(T) onto Hp(D). For p = 2 the estimate can
be improved to

‖f ‖2�
(√

nC

�r+1 log 1
�2r + 1

�

)
‖g‖2 (0.4)

with C = √1+ e2+√e +√2e ≈ 8.38934.

0.1. Plan of the paper

We will start with proving Theorem0.1 for p = 2.
In Section 1 we set up the main estimate needed to prove the theorem.

Section 2 is devoted to a version of the Carleson Embedding Theorem and its analogue
for functions defined on holomorphic vector bundles, which will be later used to prove
the main estimates.

In Section 3 we perform computation of some derivatives and Laplacians that will
be used in the estimates. We also construct there subharmonic functions to be used in
the embedding theorems.

Section 4 deals with the main estimate forp = 2; Section 5 explains how to use
the construction for otherp. In Section 6 we treat the case of the polydisk forp = 2
and in Section 7 we treat the case of generalp.

1. Reduction to the main estimate

To prove Theorem 0.1 forp = 2, for a giveng ∈ H 2 := H 2(E∗) with ‖g‖2 = 1,
we need to solve the equation

Ff = g, f ∈ H 2(E) (1.1)

with the estimate‖f ‖2�C = C(�, r). By a normal families argument it is enough
to suppose thatF and g are analytic in a neighborhood ofD. Any estimate obtained
in this case can be used to find an estimate whenF is only analytic onD. Since
�2I �FF ∗�I , it is easy to find a non-analytic solutionf0 of (1.1),

f0 := �g := F ∗(FF ∗)−1g.

To make f0 into an analytic solution, we need to findv ∈ L2(E) such that
f := f0 − v ∈ H 2 and v(z) ∈ kerF(z) a.e. onT. Then

Ff = F(f0 − v) = Ff0 − Fv = g,
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and we are done. The standard way to find suchv is to solve a�-equation with
the conditionv(z) ∈ kerF(z) insured by a clever algebraic trick. This trick also ad-
mits a “scientific” explanation, for one can get the desired formulas by writing a

Koszul complex. What we do in this paper essentially amounts to solving the�-

equation�v = �f0 on the holomorphic vector bundle kerF(z). We mostly follow the
ideas of Andersson found in[1]. He used ideas from complex differential geometry to

solve the corona problem by finding solutions to the�-equation on holomorphic vector
bundles.

Since our target audience consists of analysts, all differential geometry will be well
hidden. Our main technical tool will be Green’s formula

∫
T
u dm− u(0) = 1

2�

∫
D

�u log
1

|z| dx dy. (1.2)

Instead of the usual Laplacian� = �2

�x2 + �2

�y2 it is more convenient for us to use the

“normalized” one�̃ := 1
4� = �� = ��. If we denote by� the measure defined by

d� = 2

�
log

1

|z| dx dy,

then Green’s formula can be rewritten as

∫
T
u dm− u(0) =

∫
D

�̃u d�. (1.3)

1.1. Set-up

To find the functionv we will use duality. We wantf0 − v ∈ H 2(E), therefore the
equality

∫
T
〈f0, h〉 dm =

∫
T
〈v, h〉 dm

must hold for allh ∈ (H 2)⊥. Using Green’s formula we get

∫
T
〈f0, h〉 dm =

∫
T
〈�g, h〉 dm =

∫
D

��
[〈�g, h〉] d� =

∫
D

�
[
〈��g, h〉

]
d�.

Here we used the harmonic extension ofh, so h is anti-analytic andh(0) = 0. The
functions� := F ∗(FF ∗)−1 and g are already defined in the unit diskD.
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Now the critical moment: let�(z) := Pker F(z) be the orthogonal projection onto

kerF(z), � = I−F ∗ (FF ∗)−1F . Direct computation shows that��=�(��)∗(FF ∗)−1,
so ��̄� = �̄�. Therefore, if we define a vector-valued function� on D by �(z) :=
�(z)h(z), then

∫
D

�[〈��g, h〉] d�=
∫

D
�[〈��g,�h〉] d� =

∫
D

�[〈��g, �〉] d� =: L(�)

=Lg(�). (1.4)

Note, thatL = Lg is a conjugate linear functional, i.e.L (defined byL(�) := L(�))
is a linear functional. Suppose we are able to prove the estimate

|L(�)|�C(r, �)‖�‖2, ∀� = �h, h ∈ H 2(E)⊥. (1.5)

Then (by a Hilbert space version of the Hahn–Banach Theorem, which is trivial)L

can be extended to a bounded linear functional onL2(E), so there exists a function
v ∈ L2(E), ‖v‖2�C, such that

L(�) =
∫

T
〈v, �〉 dm, ∀� = �h, h ∈ H 2(E)⊥.

Replacing v by �v we can always assume without loss of generality that
v(z) ∈ ker F(z) a.e. onT, so Fv = 0. By the construction

∫
T
〈v, h〉 dm =

∫
T
〈v,�h〉 dm = L(�h) =

∫
T
〈�g, h〉 dm ∀h ∈ H 2(E)⊥,

so f := f0−v := �g−v ∈ H 2(E) is the analytic solution we want to find. It satisfies
the estimate

‖f ‖2�‖f0‖2+ ‖v‖2� 1

�
‖g‖2+ C(r, �)‖g‖2.

Therefore, Theorem0.1 would follow from the following proposition

Proposition 1.1. Under the assumptions of Theorem0.1 the linear functionalL defined
by (1.4) satisfies the estimate

|L(�)|�C(r, �)‖�‖2, ∀� = �h, h ∈ H 2(E)⊥



146 S. Treil, B.D. Wick / Journal of Functional Analysis 226 (2005) 138–172

with

C(r, �) = C

�r+1 log 1
�2r ,

whereC = √1+ e2+√e +√2e.

In what follows we will need the following simple technical lemma that is proved
by direct computation.

Lemma 1.2. For � and � defined above we have

��=−F ∗ (FF ∗
)−1

F ′�,

�̄�=�
(
F ′
)∗ (

FF ∗
)−1

,

and ��̄�= ��(F ′)∗(FF ∗)−1− (��)F ′� = ����+ (��)∗�F ′�.

Corollary 1.3. For the projection� defined above we have

��� = 0, (��)� = ��, (��)� = 0, ��� = �̄�.

The above identities are well-known in complex differential geometry, but we can
easily get them from Lemma1.2. Namely, since� is the orthogonal projection onto
kerF we haveF� = 0. Taking the adjoint we get�F ∗ = 0 which implies��� = 0.
The second identity is trivial, and the last two are obtained from the first two by taking
adjoints.

2. Embedding theorems and Carleson measures

As is well known, Carleson measures play a prominent role in the proof of the Corona
theorem, both in Carleson’s original proof and in T. Wolff’s proof and subsequent
modifications. It is also known to the specialists, that essentially all1 Carleson measures
can be obtained from the Laplacian of a bounded subharmonic function. We will
need the following well-known theorem, see [9], which was probably first proved by
Uchiyama.

1 By “essentially all” we mean here that a Carleson measure should first be mollified, to make it
smooth, and then it can be obtained from the Laplacian of a subharmonic function.
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Theorem 2.1 (Carleson Embedding Theorem). Let � be a non-negative, bounded,
subharmonic function. Then for anyf ∈ H 2(E)

∫
D

�̃�(z)‖f (z)‖2 d�(z)�e‖�‖∞‖f ‖2
2.

Here d� = 2
� log 1

|z| dx dy, and �̃ = 1
4� = ��.

Proof. Because of homogeneity, we can assume without loss of generality that
‖�‖∞ = 1. Direct computation shows that

�̃(e�(z)‖f (z)‖2) = e��̃�‖f ‖2+ e�‖��f + �f ‖2��̃�‖f ‖2.

Then Green’s formula implies∫
D

�̃� ‖f ‖2 d� �
∫

D
�̃(e�‖f ‖2) d� =

∫
T
e�‖f ‖2 dm− e�(0)‖f (0)‖2

� e

∫
T
‖f ‖2 dm = e ‖f ‖2

2. �

Remark 2.2. It is easy to see, that the above Lemma implies the embedding
∫

D ‖f ‖2 d�
�C

∫
T ‖f ‖2 dm (with C = e) for all analytic functionsf . Using the function 4/(2−

�) instead of e� it is possible to get the embedding for harmonic functions with
the constantC = 4. We suspect the constantse and 4 are the best possible for
the analytic and harmonic embedding respectively. We cannot prove that, but it is
known that 4 is the best constant in the dyadic (martingale) Carleson Embedding
Theorem.

We will need a similar embedding theorem for functions of form� = �h,
h ∈ H 2(E)⊥. Such functions are not analytic or harmonic,2 so the classical Car-
leson Embedding Theorem does not apply. As a result, the proof is more complicated,
and the constant is significantly worse.

We will need several formulas. Recall that�(z) = PkerF(z) is the orthogonal pro-
jection onto kerF(z), � = I − F ∗(FF ∗)−1F , and thatd� = 2

� log 1
|z| dx dy.

Lemma 2.3. Let � be a non-negative, bounded, subharmonic function inD satisfying

�̃�(z)�‖��(z)‖2, ∀z ∈ D,

2 To be precise, such functions are anti-holomorphic functions (with respect to the metric connection)
on the holomorphic hermitian vector bundle kerF(z).
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and letK = ‖�‖∞. Then for all � of the form� = �h, h ∈ H 2(E)⊥

∫
D

�̃�(z)‖�(z)‖2 d�(z)�eKeK‖�‖2
2

and ∫
D
‖��‖2 d��(1+ eKeK)‖�‖2

2.

Proof. Let us take an arbitrary non-negative bounded subharmonic function� and
compute�̃(e�‖�‖2). Corollary 1.3 implies that��� = 0 and��� = ��. Therefore,
using �h = 0 we get�� = �(�h) = ��h+��h = ��h = ���, and so

〈��, �〉 = 〈��,��〉 = 〈���,��〉 = 0.

Therefore

�(e�‖�‖2) = e���‖�‖2+ e�〈��, �〉 + e�〈�, ��〉 = e���‖�‖2+ e�〈�, ��〉.

Taking � of this equality (and again using〈�, ��〉 = 0) we get

�̃(e�‖�‖2) = e�(�̃�‖�‖2+ ‖���+ ��‖2+ 〈�, �̃�〉).

To handle〈�, �̃�〉 we take the� derivative of the equation〈�, ��〉 = 0 to get

〈��, ��〉 + 〈�, ���〉 = 0,

and therefore〈�, �̃�〉 = −‖��‖2 = −‖(��)�‖2. Since��0∫
D
(�̃�‖�‖2− ‖(��)�‖2) d�

�
∫

D
(�̃�‖�‖2− ‖(��)�‖2+ ‖�̄��+ �̄�‖2)e� d� =

∫
T
e�‖�‖2 dm; (2.1)

the equality is just Green’s formula (recall that�(0) = 0). In the last inequality replacing
� by t�, t > 1 we get

∫
D
(t�̃�‖�‖2− ‖(��)�‖2) d��

∫
T
et�‖�‖2 dm�etK‖�‖2

2.
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Now we use the inequalitỹ���‖��‖2. It implies �̃� ‖�‖2−‖���‖2�0, and therefore

(t − 1)
∫

D
�̃�‖�‖2 d��etK‖�‖2

2.

Hence

∫
D

�̃�‖�‖2 d�� min
t>1

etK

t − 1
‖�‖2

2 = eKeK‖�‖2
2

(minimum is attained att = 1+ 1/K), and thus the first statement of the lemma is
proved.

To prove the second statement, put� ≡ 0 in (2.1) (we do not use any properties of
� except that��0 in (2.1)) to get

∫
D
(‖��‖2− ‖(��)�‖2) d� =

∫
T
‖�‖2 dm = ‖�‖2

2.

But the second term can be estimated as

∫
D
‖(��)�‖2 d��

∫
D

�̃�‖�‖2 d��eKeK‖�‖2
2,

and therefore
∫

D ‖��‖2 d��(1+ eKeK)‖�‖2
2. �

3. Finding the correct subharmonic functions

There will be points in the proof where we would like to invoke Carleson’s Em-
bedding Theorem. To do so we will need a non-negative, bounded, subharmonic func-
tion. In this section we construct the necessary subharmonic functions so they will
be available when we finally estimate the integral in question. With this in mind
we define the two functions used and collect their relevant properties. First, we re-
call a basic fact that will aid in showing that the functions we construct are sub-
harmonic.

Lemma 3.1. Let A(t) be a differentiablen × n matrix-valued function. Define the
function f (t) = det(A(t)). Then

f ′(t) = det(A(t))tr(A−1(t)A′(t)).
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Proof. Fix a point t and for brevity of notation let us useA instead ofA(t). Since
A(·) is differentiable

det(A(t + h)) = det(A+ A′h+ o(h))= detAdet(I + A−1A′h+ o(h))

= detA
∏

(1+ h�k + o(h)),

where�k are the eigenvalues ofA−1(t)A′(t). Expanding this product we have

∏
(1+ h�k + o(h)) = 1+ h

∑
�k + o(h) = 1+ htr(A−1A′)+ o(h).

Then

det(A(t + h)) = det(A)+ hdet(A)tr(A−1A′)+ o(h),

which implies the desired formula for the derivative.�

Define the function� = tr(log(�−2FF ∗)) = log(�−2n det(FF ∗)). Then a straight
forward application of the above lemma gives

�̃�= ���

= �[tr((FF ∗)−1F(F ′)∗)]
= tr[(FF ∗)−1F ′�(F ′)∗]

with the last line following by substitution of�. For another approach to this compu-
tation see[16]. Using the identities�2 = �, tr(AB) = tr(BA), and recalling that

�� = −F ∗(FF ∗)−1F ′�

we get

�̃� = tr[(FF ∗)−1F ′�(F ′)∗]
= tr[F ∗(FF ∗)−1F ′��(F ′)∗(FF ∗)−1F ]
= tr[��(��)∗]
� ‖��‖2

with the last inequality following since tr[AA∗]�‖A‖2. This function will play a
prominent role in the estimation of certain integrals. We should also note that

0���K := log 1
�2n .
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We will also need another function to help in the estimation of the linear
functional L in question. Let � = tr((FF ∗)−1). A simple computation
gives,

�̃� = tr[�∗(F ′)∗(FF ∗)−1F ′�]
−tr[(FF ∗)−1F ′�(F ′)∗(FF ∗)−1]

� tr[�∗(F ′)∗(FF ∗)−1F ′�∗] − �−2tr[��(��)∗].

Now we define the function� = �+ �−2�. Then, recalling that� = F ∗(FF ∗)−1 we
get

�̃� � tr[�∗(F ′)∗(FF ∗)−1F ′�]
= tr[�F ′�(�F ′�)∗]
� ‖�F ′�‖2.

So � is subharmonic and 0��� n

�2 + 1
�2 log 1

�2n . We should note that the assumption

0 < �2� 1
e

implies log�−2�1. This gives

0���L := 2
�2 log 1

�2n .

4. Estimating the integral

Now we need to estimateL(�). Computing� of the inner product we get

L(�)=
∫

D
�
[
〈�̄�g, �〉

]
d�

=
∫

D
〈��̄�g, �〉 d�+

∫
D
〈�̄�g′, �〉 d�+

∫
D
〈�̄�g, �̄�〉 d�

= I + II + III .

We need to estimate each of the above integrals as closely as possible. Each integral
has a term involving derivatives of�, g and �. The idea is to separate the integrals
using Cauchy–Schwarz, giving one derivative to each term.

We now estimate the first integral. Recalling that��̄� = ���̄� + (��)∗�F ′�
we get

I =
∫

D
〈��̄�g, �〉 d� =

∫
D
{〈���̄�g, �〉 + 〈(��)∗�F ′�g, �〉} d�.
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Since (��)∗� = 0 we have(��)∗� = 0, and so〈���̄�g, �〉 = 0. Therefore

I =
∫

D
〈(��)∗�F ′�g, �〉 d� =

∫
D
〈�F ′�g, (��)�〉 d�,

and the Cauchy–Schwarz inequality implies

|I|�
(∫

D
‖�F ′�g‖2 d�

)1/2(∫
D
‖(��)�‖2 d�

)1/2

.

To estimate the second factor we use Lemma2.3. Recall that the function

� = log
(
�−2n det(FF ∗)

)
,

constructed in Section3 satisfies the inequalities

�̃��‖��‖2, and 0���K := log�−2n. (4.1)

Therefore, Lemma2.3 implies∫
D
‖(��)�‖2 d��eKeK‖�‖2

2 = e�−2n log�−2n‖�‖2
2.

To estimate the first factor, notice that the function� constructed in Section3 satisfies

�̃��‖�F ′�‖2, and 0���L := 2�−2 log�−2n.

Then the Carleson Embedding Theorem (Theorem2.1) implies∫
D
‖�F ′�g‖2 d��eL‖g‖2

2 = 2e�−2 log�−2n‖g‖2
2,

and thus

|I|�√KL‖�‖2‖g‖2 =
√

2e

�n+1
log�−2n‖�‖2‖g‖2.

Now we estimate II. By the Cauchy–Schwarz inequality, we have

|II | �
∫

D
|〈�̄�g′, �〉| d�

�
(∫

D
‖�̄�‖2‖�‖2 d�

)1/2(∫
D
‖g′‖2 d�

)1/2

.



S. Treil, B.D. Wick / Journal of Functional Analysis 226 (2005) 138–172 153

Observe that̃�‖g‖2 = ‖g′‖2 sinceg is holomorphic. So, applying Green’s Theorem to
the second factor we get∫

D
‖g′‖2 d� =

∫
T
‖g‖2 dm− ‖g(0)‖2�‖g‖2

2.

To estimate the first integral, notice, that

‖�‖2 = ‖�∗�‖ = ‖(FF ∗)−1‖��−2

(recall that� = F ∗(FF ∗)−1). Since �̄� = −(��)∗�, we can estimate

‖�̄�‖2 = ‖(�̄�)∗�̄�‖ = ‖�∗��(��)∗�‖�‖��(��)∗‖ · ‖�‖2��−2‖��‖2.

Therefore (see (4.1)), ‖�̄�‖2��−2�̃�, where� = log(�−2n det(FF ∗)) is the subhar-
monic function constructed in Section 3. Applying Lemma 2.3 we get∫

D
‖�̄�‖2‖�‖2 d���−2

∫
D

�̃�‖�‖2 d���−2eKeK‖�‖2
2,

whereK = log�−2n, see (4.1). Joining the estimates together, we get

|II |��−1
√
eKeK/2‖g‖2‖�‖2��−1√eKeK/2‖g‖2‖�‖2 =

√
e

�n+1
log�−2n‖g‖2‖�‖2

(since�2� 1
e
, the value ofK satisfiesK1/2�K).

Finally moving on to integral III. Using Cauchy–Schwarz, we have

|III | �
∫

D
|〈�̄�g, �̄�〉| d�

�
(∫

D
‖�̄�‖2‖g‖2 d�

)1/2(∫
D
‖�̄�‖2 d�

)1/2

.

As we already have shown above,‖�̄�‖2��−2�̃�. The Carleson Embedding Theorem
(Theorem2.1) implies∫

D
‖�̄�‖2‖g‖2 d���−2

∫
D

�̃�‖g‖2 d���−2eK‖g‖2
2.

Using Lemma2.3 we can estimate∫
D
‖�̄�‖2 d��(1+ eKeK)‖�‖2

2�(e−1+ e)KeK‖�‖2
2.
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Here we are using the fact thatK�1 for �2�1/e. Combining the estimates, we get

|III |�
√

1+ e2KeK/2‖g‖2‖�‖2 =
√

1+ e2

�n+1
log�−2n‖g‖2‖�‖2.

Joining the estimates for I, II, III we get

Proposition 4.1. Under the assumptions of Theorem0.1 the linear functionalL defined
by (1.4) satisfies the estimate

|L(�)|�C(r, �)‖�‖2, ∀� = �h, h ∈ H 2(E)⊥,

with

C(r, �) = C

�r+1 log 1
�2r ,

whereC = √1+ e2+√e +√2e.

Proposition 4.1 is just a restatement of Proposition 1.1, and this then proves
Theorem 0.1 for the case ofp = 2. Note, that the constantC is a bit better than
the constant 2

√
2e + 2

√
e ≈ 10.9859 obtained by Trent in [16].

5. The Hp corona problem in the disk

Now we indicate how we can use theH 2 result to figure out theHp result. We
can use much of the same approach as in theH 2(E) case. Our goal is to solve the
equation

Ff = g, f ∈ Hp(E)

for the given g ∈ Hp(E∗), with ‖g‖p = 1, and furthermore we want the estimate
‖f ‖p�C. Again we will have the obvious non-analytic solution to the problem

f0 := �g := F ∗(FF ∗)−1g.

To make this into an analytic solution we will need to find a functionv ∈ Lp(E) such
that f0− v ∈ Hp andv(z) ∈ kerF(z). This will be accomplished by duality. As in the
H 2(E) case we need ∫

T
〈f0, h〉 dm =

∫
T
〈v, h〉 dm
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to hold for all h ∈ Hp(E)⊥ = H
q

0 (E) (this uses the standard duality ofHp spaces

see[5] or [9]). Again we can ensure thatv ∈ kerF(z) since�� = ���. So we need
to get an estimate on the linear functional

L(�) = Lg(�) =
∫

D
�[〈��g, �〉] d�

with � = �h and h ∈ Hp(E)⊥. If we can then prove that

|L(�)|�C‖�‖q

then by the Hahn–Banach Theorem and duality inLp spaces with values in a Hilbert
space we would have the existence of a functionv ∈ Lp(E) with ‖v‖p�C, such that

L(�) =
∫

T
〈v, �〉 dm, ∀� = �h, h ∈ Hp(E)⊥.

Then replacingv by �v we can assume without loss of generality thatv(z) ∈ kerF(z)

a.e. onT. But then the construction would give,∫
T
〈v, h〉 dm =

∫
T
〈v,�h〉 dm = L(�h) =

∫
T
〈�g, h〉 dm, ∀h ∈ Hp(E)⊥,

so v − f0 ∈ Hp(E). So we only need to show how to prove the estimate

|L(�)|�C‖�‖q .

The main idea is to use theL2 result we just proved. Namely, if we replaceg by
g̃ = �−1g and � by �̃ = ��, where� is an appropriate (scalar) outer function, then

Lg(�) = Lg̃(̃�).

Suppose we are able to find the outer function� such that‖g̃‖2‖̃�‖2�‖g‖p‖�‖q .
Then, since� is analytic, g̃ ∈ H 2(E) and

�̃ ∈ K := closL2{�h : h ∈ H 2(E)⊥}.

Therefore we can apply theL2 result we have proved before to get

|Lg(�)| = |Lg̃(̃�)|� C

�n+1 log�−2n‖g̃‖2‖�̃‖2� C

�n+1 log�−2n‖g‖p‖�‖q . (5.1)

To find the function� we need to consider the casesp < 2 andp > 2 separately.
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First look at the casep < 2. Consider the outer part ofg, i.e. a scalar-valued outer
function gout such that

|gout(z)| = ‖g(z)‖ a.e. on T.

Define

g̃(z)= (gout)
p/2−1(z)g(z) and

�̃(z)= (gout)
1−p/2(z)�(z).

Then ‖g̃‖2 = ‖g‖p/2
p , and computation using Hölder’s Inequality gives and‖�̃‖2

�‖�‖q‖g‖1−p/2
p , where 1/p+1/q = 1. Therefore‖g̃‖2‖̃�‖2�‖g‖p‖�‖q and the main

inequality (5.1) is proved.
The case whenp > 2 is analogous, except in this case we need to construct a scalar

outer function�out such that

|�out(z)| = ‖�(z)‖ a.e. on T.

Note, that here we cannot say that�out is the outer part of�, because� is neither
holomorphic nor antiholomorphic. So, a little more explanation is needed.

First of all recall that we assumed in Section1 (without loss of generality) that
F is an analytic function in a slightly bigger disk thanD, so the projection� =
I − F ∗(FF ∗)−1F is real analytic on the unit circleT. Second, we only need to
estimate the functionalL on a dense set, so we can assume that the test functionh is a
trigonometric polynomial in(H 2)⊥. Therefore the function� = �h is real analytic on
T, and so

∫
T log‖�(z)‖dm(z) > −∞ which guarantees existence of the outer function

�out.
Similarly to the above reasoning for the casep < 2 define for our casep > 2

(q < 2),

�̃ := (�out)
q/2−1� and

g̃ := (�out)
1−q/2g,

where 1/p + 1/q = 1. Then ‖̃�‖2 = ‖�‖q/2
q and applying Hölder inequality tõg

we get‖g̃‖2�‖g‖p‖�‖1−q/2
q (note, that the computations are the same as in the case

1 < p < 2 if we interchangep with q andg with �). Then again‖g̃‖2‖̃�‖2�‖g‖p‖�‖q ,
so (5.1) holds.

As we discussed in the beginning of this section, the main estimate (5.1) implies
(via duality) the solution of theHp corona problem for 1< p�∞.

The casep = 1 requires just a little more work sinceL1 is not the dual ofL∞, and
a bounded linear functional onL∞ is generally a measure. Namely, the main estimate
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(5.1) implies thatL is a bounded conjugate-linear functional, and by Hahn–Banach
Theorem it can be extended to a bounded conjugate-linear functional onL∞(E). Since
any bounded linear functional onL∞ is a bounded linear functional on the space of
continuous functions on the unit circle, there exists a vector-valued measure� such that

L(�) =
∫

T
〈 d�, �〉.

Without loss of generality one can replace� with ��, then∫
T
〈d�, h〉 =

∫
T
〈d�, �〉 = L(�h) =

∫
T
〈f0, h〉 dm.

Then rewriting this, and treatingf0 dm as a vector-valued measure we have∫
T
〈(f0 dm− d�), h〉 = 0

for any anti-analytic polynomialh. Then applying the F. & M. Riesz Theorem, see[9],
we can conclude that the measuref0 dm − d� is absolutely continuous with respect
to Lebesgue measure, and moreover it is an analytic measure meaningf0 dm − d� =
(f0 − v) dm with f0 − v ∈ H 1(E) (Of course, the F. & M. Riesz Theorem is usually
stated for scalar measures, but applying it to the “coordinate” of the measure with
respect to some orthonormal basis, one can easily see that it holds for measures with
values in a separable Hilbert space as well).�

6. The H 2 corona problem in the polydisk

In the following sections we will be considering operator- and vector-valued functions
on the polydiskDn. We begin with theH 2(E) case. The general goal from previous
sections has not changed. We want, for a givenF ∈ H∞(Dn;E→E∗) and g ∈ H 2 :=
H 2(Dn;E∗) with ‖g‖2 = 1, to solve the equation

Ff = g, f ∈ H 2(Dn;E) (6.1)

with the estimate‖f ‖2�C. Again by a normal families argument it is enough to
suppose thatF and g are analytic in a neighborhood ofDn because any estimate
obtained can be used to get an estimate whenF is only analytic inDn. It is still easy
to find a non-analytic solutionf0 of (6.1),

f0 := �g := F ∗(FF ∗)−1g,

because we have�2I �FF ∗�I . We will again need to find av ∈ L2(Tn;E) such
that f := f0 − v ∈ H 2(Dn;E) with v(z) ∈ kerF(z) a.e. onTn. Our approach is
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straightforward reduction to the one variable case, unfortunately this approach will not
yield a proof of theH∞ Corona problem on the polydisk since the projections are not
bounded whenp = ∞.

We will denote a point inDn or Tn by z= (z1, z2, . . . , zn). We will use the symbol
zj for z without the coordinatezj and, slightly abusing notation, we can then write
z= (zj , zj ) = (zj , zj ).

Let H
p
j = H

p
j (D

n;E) be a subspace ofLp(Tn;E) consisting of all functions
analytic in zj , i.e.

H
p
j (D

n;E) := {f ∈ Lp(Tn, E) : f (zj , ·) ∈ Hp(D;E) for almost allzj ∈ Tn−1}. (6.2)

6.1. Lemmas about decompositions

Lemma 6.1. Any h ∈ H 2(Dn;E)⊥ can be written as h = ∑n
j=1 hj with

hj ∈ H 2
j (D

n;E)⊥.

Proof. Let Pj := PH2
j

be the orthogonal projection ontoH 2
j := H 2

j (D
n;E). We can

decomposeh in the following way:

h = P1h+ (I − P1)h = h1+ h1 h1 ∈ H 2
1 (D

n;E)⊥, h1 = P1h.

Similarly,

h1 = P2h
1+ (I − P2)h

1 = h2+ h2 h2 ∈ H 2
2 (D

n;E)⊥, h2 = P2P1h.

Continuing the procedure we get

hk−1 = Pkh
k−1+ (I − Pk)h

k−1 = hk + hk hk ∈ H 2
k (D

n;E)⊥, hk = Pk · · ·P2P1h.

Combining everything we get

h = h1+ h2+ · · · + hn + hn, hn = PnPn−1 · · ·P1h

which proves the lemma, because the assumptionh ∈ H 2(Dn;E)⊥ implies that
hn = Pn · · ·P2P1h = 0 �

We also are going to need an analogue of Lemma6.1 dealing with the decomposition
of functions on the holomorphic vector bundle�H 2, i.e. for the functions of the form
� = �h, h ∈ H 2(Dn;E)⊥. To state this lemma we need some auxiliary definitions.
Let

K(Dn;E) := clos(�(H 2(Dn)⊥)), (6.3)
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and

Kj(D
n;E) := clos(�(H 2

j (D
n)⊥)), ∀j = 1, . . . , n, (6.4)

Lemma 6.2. Let � ∈ K, then � =∑n
j=1 �j with �j ∈ Kj for j = 1, . . . , n and

‖�‖2
2 =

n∑
j=1

‖�j‖2
2.

To prove Lemma6.2 we will need a few other lemmas. The first one is a simple
fact about the geometry of a Hilbert space.

Lemma 6.3. Let X be a subspace of a Hilbert spaceH , and let � be some orthog-
onal projection inH . Then Ran� = �H is decomposed into the orthogonal sum

�H = clos(�X)⊕ (X⊥ ∩�H).

Proof. The proof is a simple exercise in functional analysis, and we leave it to the
reader. �

Define the subspaces

Q(Dn;E) := H 2 ∩�L2, Qj (D
n;E) := H 2

j ∩�L2. (6.5)

Applying the above lemma toH = L2 and X = (H 2)⊥ or X = (H 2
j )
⊥ we get the

following result.

Corollary 6.4. The subspace�L2 = �L2(Dn;E), n = 1,2,3, . . . admits the orthog-
onal decompositions

�L2 = K ⊕Q, �L2 = Kj ⊕Qj,

with the subspacesK := K(Dn;E), Kj := Kj(D
n;E), Q := Q(Dn;E) and Qj :=

Qj(D
n;E) defined by(6.3), (6.4)and (6.5), respectively.

Remark 6.5. Note, that the orthogonal projectionsPKj
andPQj

are essentially “one-
variable” operators. Namely, to perform the projectionPQj

on the function� ∈ �L2 we

simply need to perform for eachzj ∈ Tn−1 (recall thatz= (zj , zj )) the “one-variable”
projectionPQ(zj ) onto the subspace

Q(zj ) := H 2(D;E) ∩�(·, zj )L2(D;E) ⊂ H 2 = H 2(D;E),

and similarly for the projectionPKj
.
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Indeed, if

�1(·, zj ) := PQ(zj )�(·, zj ) for almost allzj ∈ Tn−1,

then clearly

�1(·, zj ) ∈ H 2(D;E) ∩�(·, zj )L2(T) for almost allzj ∈ Tn−1,

so�1 ∈ H 2(Dn;E)∩�L2(Dn;E). Moreover, for�1 := �−�1 and any	 ∈ H 2(Dn;E)∩
�L2

∫
T
〈�1(zj , zj ), 	(zj , zj )〉 dm(zj ) = 0 for almost allzj ∈ Tn−1,

and integrating over other variableszk we get that�1 ⊥ 	.

The following two lemmas says that in many respects the projectionPQj
behaves

like the projectionI − Pj from Lemma6.1.

Lemma 6.6. Let H 2 = H 2(D2;E) and letQ andQj , j = 1,2, be the subspaces as
defined above in(6.5). Then for the orthogonal projectionsPQj

onto the subspacesQj

we have

PQ1PQ2 = PQ2PQ1 = PQ.

Proof. It follows from the definition ofQ and Qj and from the inclusionH 2 ⊂ H 2
j

that

Q = �L2 ∩H 2 ⊂ �L2 ∩H 2
j = Qj

we can conclude that for� ∈ Q we havePQj
� = �, j = 1,2.

Since by Corollary6.4 we have the orthogonal decomposition�L2 = K ⊕ Q, to
prove the lemma we need to show that the equalitiesPQ2PQ1� = 0, PQ1PQ2� = 0
hold for all � ∈ K. Clearly, it is sufficient to prove only one, say the first as the second
can be obtained by interchanging indices.

Consider the orthogonal decomposition of� ∈ K,

� = PK1�+ PQ1� =: �1+ �1.

To prove thatPQ2PQ1� = 0 we need to show that�1 ∈ K2.
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By definition �1 ⊥ K1 := clos(�((H 2
1 )
⊥)), and since�((H 2

1 )
⊥) ⊃ (H 2

1 )
⊥ ∩�L2,

we can conclude that

�1 ⊥ (H 2
1 )
⊥ ∩�L2.

We know that�, �1 ∈ K (�1 ∈ K becauseK1 ⊂ K), so �1 ∈ K. By Corollary 6.4,

�1 ⊥ Q := H 2 ∩�L2.

Combining the above two orthogonality relations we get

�1 ⊥
(
(H 2

1 )
⊥ +H 2

)
∩�L2,

and since in the bidiskH 2
2 ⊂ (H 2

1 )
⊥ +H 2, we get that

�1 ⊥ �L2 ∩H 2
2 =: Q2

i.e. that�1 ∈ K2. �

As an important corollary we get the following lemma.

Lemma 6.7. On �L2 := �L2(Tn;E) we have

PQk
PQj

= PQj
PQk

= PQk∩Qj
= PH2

jk∩�L2 ∀1�k, j �n,

whereH 2
jk(D

n) := H 2
j (D

n) ∩H 2
k (D

n). Furthermore, this implies

PQ1 . . . PQn = PQn . . . PQ1 = PH2∩�L2.

One can think of the spaceH 2
jk(D

n) as the space of functions inL2(Tn) which are,
upon fixing the other variables, holomorphic in both thej th andkth variable.

Proof. The first part of the lemma follows immediately from Lemma6.6, because we
can just “freeze” all variables exceptzj andzk. Namely, to perform the projectionPQj

on the function� ∈ �L2 we simply need to perform for eachzj ∈ Tn−1 (recall that
z= (zj , zj )) the “one variable” projectionPQ(zj ) onto the subspace

Q(zj ) := H 2(D;E) ∩�(·, zj )L2(D;E) ⊂ H 2 = H 2(D;E),

see Remark6.5.
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To prove the second statement of the lemma let us notice that a product of commuting
orthogonal projections is an orthogonal projection. ThereforeP = PQ1PQ2 . . . PQn is
an orthogonal projection.

Since for� ∈ H 2(Dn;E) ∩�L2 = Q ⊂ Qj

PQj
� = � ∀j = 1,2, . . . , n,

we can conclude that

Q = H 2(Dn;E) ∩�L2 ⊂ RanP.

On the other hand, since the projectionsPQj
commute and RanPQj

= H 2
j ∩�L2

RanP ⊂ H 2
j ∩�L2 = Qj ∀j = 1,2, . . . , n,

so

RanP ⊂
n⋂

j=1

Qj =
n⋂

j=1

H 2
j ∩�L2 = H 2 ∩�L2 = Q.

Therefore RanP = Q, i.e. P is the orthogonal projection ontoQ. �

We can now move onto proving Lemma6.2.

Proof of Lemma 6.2. We will follow the argument in Lemma 6.1. For� ∈ K consider
the orthogonal decomposition

� = PK1�+ PQ1� =: �1+ �1, �1 ∈ K1(D
n;E).

Since�1 ⊥ �1,

‖�‖2
2 = ‖�1‖2

2+ ‖�1‖2
2.

Decomposing�1 as

�1 = PK2�
1+ PQ2�

1 =: �2+ �2, ‖�1‖2
2 = ‖�2‖2

2+ ‖�2‖2
2

we get the decomposition of�

� = �1+ �2+ �2, �j ∈ Kj , �2 = PQ2PQ1�,
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and

‖�‖2
2 = ‖�1‖2

2+ ‖�2‖2
2+ ‖�2‖2

2.

Repeating the procedure of decomposing on each step�k usingPKk+1 we finally obtain

� = �1+ �2+ · · · + �n + �n, �j ∈ Kj , j = 1,2, . . . , n, �n = PQn . . . PQ2PQ1�,

and

‖�‖2
2 = ‖�1‖2

2+ ‖�2‖2
2+ · · · + ‖�n‖2

2+ ‖�n‖2
2.

But according Lemma6.7 �n = 0, so the lemma is proved. �

6.2. Proof of theH 2 corona for the polydisk

The idea of the proof is quite simple, we want to reduce everything to one-variable
estimates. In the one-variable case we defined the functionalL on functions of the
form �h whereh ∈ (H 2(D))⊥ by

L(�) =
∫

D
�[〈��g, �〉] d�,

whered� = 2
� log 1

|z| dx dy, see (1.4). We have also proved (see Proposition 1.1) that

the functionalL is bounded in theL2 norm on clos{�h : h ∈ (H 2(D))⊥} ( this is the
one-variable analogue of the spaceK defined for the polydisk).

For the polydisk, define (conjugate linear) functionalsLj on Kj by

Lj (�) :=
∫

Tn−1
Lg(·,zj )(�(·, zj )) dmn−1(zj ).

Since�(·, zj ) ∈ K for almost allzj ∈ Tn−1 if � ∈ Kj (see Remark6.5) the functionals
Lj are well defined and bounded,‖Lj‖ = ‖L‖. Note also, that on a dense set of� of
the form � = �h, h ∈ (H 2

j )
⊥ we can represent

Lj (�) =
∫

Tn−1

∫
D

�j [〈�j�g, �〉] d�(zj ) dmn−1(zj ).

Define a conjugate linear functionalL on K by decomposing� ∈ K as

� = �1+ �2+ · · · + �n, �j ∈ Kj , j = 1,2, . . . , n (6.6)
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and putting

L(�) :=
n∑

j=1

Lj (�j ).

We will show later that the functionalL is well defined, i.e. that it does not depend
on the choice of decomposition of� (note that by Lemma6.2 one can always find at
least one such decomposition).

Assuming for now thatL is well defined, let us prove Theorem 0.2 forp = 2. First
of all, by Lemma 6.2 any function� ∈ K can be decomposed as

� =
n∑

j=1

�j , where�j ∈ Kj , and
n∑

j=1

‖�j‖2 = ‖�‖2.

Therefore, using the fact that‖Lj‖ = ‖L‖ we get for� ∈ K

|L(�)|�
n∑

j=1

‖Lj‖ · ‖�j‖ = ‖L‖
n∑

j=1

‖�j‖�‖L‖
√
n

(
n∑

k=1

‖�j‖2

)1/2

= √n ‖L‖ · ‖�‖,

so

‖L‖�√n ‖L‖�
√
nC

�r+1 log 1
�2r ,

whereC = √1+ e2+√e +√2e ≈ 8.38934 is the constant from Theorem0.1.
Take h ∈ (H 2)⊥, and decompose it according to Lemma 6.1 as

h =
n∑

j=1

hj , hj ∈ (H 2
j )
⊥.

Denote

� := �h, �j = �hj .

Repeating the reasoning with the Green’s Formula from the one-variable case we can
easily show that

∫
Tn
〈�g, hj 〉 dmn(z) =

∫
Tn−1

∫
D

�j [〈�j�g, �j 〉] d�(zj ) dmn−1(zj ) = Lj (�j ),
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so ∫
Tn
〈�g, h〉 dmn(z) = L(�h) = L(�).

By the Hilbert space version of the Hahn–Banach Theorem the linear functionalL
can be extended to a bounded functional on all ofL2, i.e., we can findv ∈ L2 =
L2(Tn;E) such that

L(�) =
∫

Tn
〈v, �〉 dmn(z) ∀� ∈ K.

Replacingv by �v if necessary, one can assume without loss of generality thatv(z) ∈
Ran�(z) = kerF(z) a.e. onTn, so Fv ≡ 0 on Tn. Since by the construction∫

Tn
〈v, h〉 dmn(z)=

∫
Tn
〈v,�h〉 dmn(z) = L(�h)

=
∫

Tn
〈�g, h〉 dmn(z) ∀h ∈ H 2(Dn;E)⊥,

the functionf := f0−v := �g−v is analytic. SinceFv = 0, it satisfiesFf = Ff0 = g,
so f is the analytic solution we want to find. �

6.3. The functionalL is well defined

Let us consider first the case of the bidiskD2. To show thatL is well defined in
this case, it is sufficient to show that if

0= �1+ �2, �j ∈ Kj

then L1(�1) + L2(�2) = 0 (simply take the difference of two representations of the
same function inK). This holds if and only if

L1(�) = L2(�) ∀� ∈ K1 ∩K2.

Thus, the following lemma shows thatL is well defined in the case of bidiskD2.

Lemma 6.8. Let � ∈ K1 ∩K2 ⊂ �L2(T2;E). Then

L1(�) = L2(�)

Proof. The proof of this lemma is really nothing more than repeated applications of
Green’s Formula, and using thatK1 ∩ K2 = clos(�H 2) whereH 2 are the functions
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which are anti-holomorphic in both variables. To see thatK1 ∩ K2 = clos(�H 2) we
use Lemma6.3. Since(K1∩K2)

⊥ = Q1+Q2 = K⊥
1 +K⊥

2 = (H 2
1 +H 2

2 )∩�L2, then
by Lemma 6.3 we have the result.

By density we can work with� of the form � = �h with h anti-holomorphic in
both variables. So applying Green’s Formula twice gives

L1(�)=
∫

T

∫
D

�1〈�̄1�g, �〉 d�(z1) dm(z2)

=
∫

T

∫
T
〈�g, h〉 dm(z1) dm(z2)

=
∫

T

∫
D

�2〈�̄2�g, �〉 d�(z2) dm(z1)

=L2(�).

Since this result holds on a dense set of�, and the functionalsL1 andL2 are continuous
we have the result for all� ∈ K1 ∩K2. �

For the polydisk the lemma has the following important corollary

Corollary 6.9. Let � ∈ Kj ∩Kk ⊂ L2(Tn;E). Then

Lj (�) = Lk(�).

Proof. To prove the corollary one needs to apply Lemma6.8 to the bidisk in variables
zj andzk and then integrate the obtained equality overTn−2 (with respect to Lebesgue
measure in all other variables). �

Now we are ready to prove thatL is well defined. To prove this it is sufficient to
show for any representation of 0

0=
n∑

j=1

�j , �j ∈ Kj (6.7)

the equality
n∑

j=1

Lj (�j ) = 0

holds.
We will use induction inn. The casen = 2 is already settled, so let us assume the

functional L is well defined for the polydiskDn−1. It follows from (6.7) that

�n ∈ Kn ∩ (K1+K2+ · · · +Kn−1) = (K1 ∩Kn)+ (K2 ∩Kn)+ · · · + (Kn−1 ∩Kn),
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so �n can be represented as

�n =
n−1∑
j=1

	j , 	j ∈ Kj ∩Kn, j = 1,2, . . . , n− 1.

On the other hand we know that�n = −
∑n−1

j=1 �j . Using the induction hypothesis and
integrating it overT with respect todm(zn) we obtain that

n−1∑
j=1

Lj (	j ) = −
n−1∑
j=1

Lj (�j ).

Since	j ∈ Kj ∩Kn, Corollary 6.9 implies thatLj (	j ) = Ln(	j ). Therefore

Ln(�n) =
n−1∑
j=1

Ln(	j ) =
n−1∑
j=1

Lj (	j ) = −
n−1∑
j=1

Lj (�j ),

and so
∑n

j=1Lj (�j ) = 0. �

7. The Hp corona problem in the polydisk

A simple idea of proving theHp corona problem in the polydisk is to try to mimic
the proof of theH 2 case. However, there is a much easier way: just use objects which
are already defined, and modify the crucial estimates.

First of all notice, that replacing the Corona dataF and g by F(rz) and g(rz),
r < 1 and using the standard normal families argument one can assume without loss
of generality (as long as we are getting the same uniform estimates on the norm of
the solution) that bothF andG are holomorphic in a slightly bigger polydisk. So we
can always assume that, for example, the right hand sideg is not only inHp, but is
also bounded, smooth, etc.

As in the H 2 case we first construct a smooth solutionf0 := �g, where � :=
F ∗(FF ∗)−1, of the equationFf = g and then correct it to be analytic. To do that it
is sufficient to show that the conjugate linear functionalL introduced in the previous
section isLq bounded, 1/p + 1/q = 1, i.e. that

|L(�)|�C‖�‖q
for all � of form � = �h, whereh is a trigonometric polynomial inH 2(Dn;E)⊥.

If this estimate is proved, the linear functionalL can be extended by the Hahn–
Banach Theorem to a linear functional onLq , so there will exist a functionv ∈
Lp(Tn;E), ‖v‖p = ‖L‖p such that

L(�) =
∫

Tn
〈v, �〉 dmn(z) ∀� = �h, h ∈ H 2(Dn;E)⊥ ∩ Pol.
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Again, replacingv by �v we can always assume without loss of generality thatv(z) ∈
Ran�(z) = kerF(z) a.e. onTn. As in the previous section, decomposingh as

h =
n∑

j=1

�j , �j ∈ H 2
j

(h is a trigonometric polynomial, so we can use Lemma6.1 here), we can show that∫
Tn〈�g, h〉 dmn(z) = L(�h) = L(�) so∫

Tn
〈v, h〉 dmn(z) =

∫
Tn
〈v,�h〉 dmn(z) = L(�h) =

∫
Tn
〈�g, h〉 dmn(z),

for all h ∈ H 2(Dn;E)⊥∩Pol. Therefore, the functionf = f0−v = �g−v is analytic,
and it clearly solves the equationFf = g (on Tn, and therefore onDn).

7.1. Main estimates

Let us introduce some notation. Denote

Kq := clos(�((Hp)⊥)) ⊂ �Lq, Qq := Hq ∩�Lq,

so for K andQ introduced in the previous sectionK = K2 andQ = Q2. Let also

H
q
j = H

q
j (D

n;E) := {f ∈ Lq(Tn;E) : f (·, zj ) ∈ Hq(D;E)}

be the spaces of functions analytic in variablezj , and let

K
q
j := clos(�(H

p
j (D

n;E)⊥)) ⊂ �Lq(Tn;E), Q
q
j := H

q
j (D

n;E) ∩�Lq(Tn;E).

To estimate the functionalL we need the following analogue of Lemma6.2

Lemma 7.1. Any function� ∈ Kq can be decomposed as

� =
n∑

j=1

�j , �j ∈ K
q
j , ‖�j‖q �C(q)j‖�‖q,

whereC(q) = 1/ sin(�/q) is the norm of the scalar Riesz ProjectionP+ from Lq(T)

onto Hq(D) (note thatC(p) = C(q) for 1/p + 1/q = 1).

Let us show how this lemma implies the estimate forL . In Section5 we have proved
the Lp bound for the functionalL (in the one-variable case),

|L(�)|�C(r, �)‖�‖p, C(r, �) = C
1

�r+1
log

1

�2r
,
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where C = √
1+ e2 + √e + √2e. That would imply the same estimates for the

functionalsLj on Lq(Tn;E), so applying Lemma7.1 we get

|L(�)|�C(r, �)
n∑

j=1

‖�j‖q �C(r, �)‖�‖q
n∑

j=1

C(q)j �C(r, �)nC(q)n‖�‖q .

Recalling thatC(p) = C(q) we get the desired estimate of the solution.
There is a little detail here as the functionalL was defined initially only onK2. So

formally, if q < 2 (i.e. if p > 2) the functional is not defined onKq . However this
is not a big problem and the simplest way of dealing with it is to use the standard
approximation arguments. Since the polynomials in(H 2

j )
⊥ ∩ Pol are dense in(Hp

j )
⊥,

the functions of form�h, h ∈ H 2
j ∩Pol are dense inKq

j . So, approximating functions
�j from Lemma7.1 by functions of this form, we will get the desired estimate. Note,
that we are estimatingL(�) on a dense set of functions� = �h, h ∈ (H 2)⊥ ∩ Pol, so
we do not need it be formally defined onKq .

The main step in proving Lemma 7.1 is the following result that states that in the
one-variable case the norm of the orthogonal projectionsPK andPQ in Lq is the same
as the norm of the Riesz projectionP+ in Lq . See [6] for the norms ofP+ in Lp.

Lemma 7.2. Let H 2 = H 2(D;E) and letK,Q ⊂ H 2 be the subspaces defined above
in (6.3) and (6.5). Then for1 < q <∞

‖PK�‖q �C(q)‖�‖q, ‖PQ�‖q �C(q)‖�‖q ∀� ∈ �L2 ∩�Lq,

whereC(q) = 1/ sin(�/q) is the norm of the Riesz ProjectionP+ in Lq (or in Lp,
1/p + 1/q = 1).

Note that since�L2∩�Lq is dense in�Lq , the projectionsPK andPQ extend to
bounded operators on�Lq .

Proof. Take � ∈ �L2 ∩�Lq and decompose it as

� = PK�+ PQ� =: �K + �Q.

Since Q is a z-invariant subspace ofH 2(D, E), by the Beurling–Lax theorem, see
[10], it can be represented asQ = �H 2(D;E∗), where� ∈ H∞(E∗→E) is an inner
function (i.e.�(z) is an isometry a.e. onT) andE∗ is an auxiliary Hilbert space. So
�Q can be represented as

�Q = �	, 	 ∈ H 2(E∗) ∩Hq(E∗).
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By duality

‖�Q‖q = ‖	‖q = sup
h∈Lp∩L2:
‖h‖q=1

∣∣∣∣∫
T
〈	, h〉 dm

∣∣∣∣ .
Let h+ = P+h. Since	 ∈ H 2

∫
T
〈	, h〉 dm =

∫
T
〈	, h+〉 dm=

∫
T
〈�	,�h+〉 dm

=
∫

T
〈�Q,�h+〉 dm =

∫
T
〈�,�h+〉 dm;

the second equality holds because� is an isometry a.e. onT, and the last one
holds because�K ∈ K ⊥ �h+. Therefore, since‖h+‖p�C(p)‖h‖p, we can
conclude ∣∣∣∣∫

T
〈	, h〉 dm

∣∣∣∣ � ∣∣∣∣∫
T
〈�,�h+〉 dm

∣∣∣∣ �‖�‖q‖h+‖p�C(p)‖�‖q‖h‖p

so ‖�Q‖q �C(p)‖�‖q . Thus we get the desired estimate for the norm ofPQ.
SincePK + PQ = I we can estimate the norm ofPK by C(p) + 1 for free. Note,

that unlike the case of Hilbert spaces, complementary projections in Banach spaces
do not necessarily have equal norms. So, to get rid of the 1 some extra work is
needed.

It is easy to see that∩n>0zK = {0}, so the decomposition�L2 = K ⊕Q implies
that the set ⋃

n>0

znQ =
⋃
n>0

zn�H 2(E∗)

is dense in�L2. Thus �L2 = �L2, and since� is an isometry a.e. onT we can
conclude thatK = �(H 2(E)⊥). Therefore we can represent�K as

�K = �	, 	 ∈ H 2(E∗)⊥ ∩ Lq(E∗).

Performing the same calculations as in the case of�Q, only usingh− = P−h, P− =
I − P+ instead ofh+ we get the estimate‖PK‖Lq �‖P−‖Lq . But the isometry
,


(zk) = z−k−1, k ∈ Z

interchangesH 2 and (H 2)⊥, and since
 is an isometry in allLp, we conclude the
‖P−‖Lq = ‖P+‖Lq . �
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Corollary 7.3. Let H 2 = H 2(Dn;E) and let Kj ,Qj ⊂ H 2 be the subspaces defined
in (6.4) and (6.5). Then for1 < q <∞ and 1�j �n we have

‖PKj
�‖q �C(q)‖�‖q, ‖PQj

�‖q �C(q)‖�‖q ∀� ∈ �L2 ∩�Lq,

whereC(q) = 1/ sin(�/q) is the norm of the(one-dimensional) Riesz ProjectionP+
in Lq (or in Lp, 1/p + 1/q = 1).

Proof. This corollary follows directly from Lemma7.2. Since by Remark 6.5 we
can view PKj

and PQj
as “one-variable” operators. Then we “freeze” all variables

except thezj variable and apply Lemma 7.2 and then integrate in the “frozen”
variables. �

It only remains to prove Lemma 7.1.

Proof of Lemma 7.1. The proof is almost the same as the proof of Lemma 6.2,
only here we cannot use the fact that thePkj are orthogonal projections. However,
according to Corollary 7.3 the projectionsPKj

are bounded, and this allows the proof
to go through.

Take � ∈ Kq . Repeating the proof of Lemma 6.2 we can write

� = PK1�+ PQ1� =: �1+ �1.

By Corollary7.3 we have that�1∈Kq

1 with ‖�1‖q �C(q)‖�‖q and‖�1‖q �C(q)‖�‖q .
Decomposing�1 in the same manner we have

�1 = PK2�
1+ PQ2�

1 =: �2+ �2,

so

� = �1+ �2+ �2, �j ∈ K
q
j , �2 = PQ2PQ1�.

Corollary 7.3 applied twice gives‖�2‖q �C(q)‖�1‖q �C(q)2‖�‖q , and thus‖�j‖q
�C(q)j‖�‖q . Continuing this decomposition at each step we find

� = �1+ �2+ · · · + �n + �n, �j ∈ K
q
j , �n = PQn . . . PQ2PQ1�,

and ‖�j‖q �C(q)j‖�‖q by applying Corollary7.3 j times. Finally, by Lemma 6.7
PQn · · ·PQ1 = 0 on the dense setKq ∩K2. �
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