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We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant 

and age of the Universe) for the local universe and compare them with local measurements of the same

quantities. We propose a way to quantify whether cosmological parameters constraints from two different 

experiments are in tension or not. Our statistic, T , is an evidence ratio and therefore can be interpreted

with the widely used Jeffrey ’ s scale. We find that in the framework of the �CDM model, the Planck inferred

two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in “strong ”

tension with the local measurements; the odds being ∼1:50. We explore several possibilities for explaining 

this tension and examine the consequences both in terms of unknown errors and deviations from the �CDM 

model. In some one-parameter �CDM model extensions, tension is reduced whereas in other extensions, 

tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino 

mass above 0.15 eV makes the tension “highly significant” (odds ∼1:150). A consequence of accepting this 

interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavored by cosmological 

data and the direct hierarchy is slightly favored over the inverse. 
c © 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-SA license.
. Introduction 

Cosmic Microwave Background (CMB) data have been crucial to 

efine and confirm the currently favored cosmological model: a flat 

osmological constant-dominated, cold dark matter model, �CDM. It 

s important to keep in mind that CMB observations predominantly 

robe the physics of the early Universe ( z � 1100). When these obser- 

ations are interpreted in terms of the standard cosmological parame- 

ers, defined at z = 0, an extrapolation is needed, which is done within 

 given cosmological model. In our previous work [ 1 ], we argued that 

ocal, model-independent measurements of cosmologically-relevant 

uantities can be used to test the self-consistency of the currently 

avored cosmological model and to constrain deviations from it. Di- 

ect measurements of the Hubble constant and age of the Universe 

re especially suited to this aim. In fact, these measurements have 

 long history and have now reached a level of precision and accu- 

acy that make them competitive with other cosmological observa- 

ions. If local and high-redshift measurements are to be combined 

o constrain cosmological parameters within a given model, the well 
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established framework of Bayesian parameter inference can be used. 

However, if the two sets of measurements are to be used to distin- 

guish between models then Bayesian model selection and Bayesian 

Evidence 1 (model-averaged likelihood) should be used [ 2 ]. Methods 

in cosmology have been used for almost two decades now (see [ 3 –11 ] 

and references therein). We refer the reader to these references for 

explanation and probabilistic interpretation of the Evidence. 

Ref. [ 1 ] used pre- Planck state of the art data, so it is a natural 

extension to that work to consider the post- Planck [ 9 ] state-of-the-art 

cosmological data. The Planck team official analysis pointed out that 

local direct measurements of the Hubble constant seem to be at odds 

with CMB data when interpreted within the context of the �CDM 

model. Post- Planck CMB data are however not at odds with other 

cosmological measurements (e.g., Baryon Acoustic Oscillations). This 

conclusion arises from a parameter-estimation analysis, where the 

best fit value of the Hubble constant extrapolated from CMB data is 

∼2.5 σ away from the direct measurement. 

We will examine these findings in the framework of Bayesian 

model selection and discuss their implications for cosmology. We will 

also consider measurements of the age of the Universe and investigate 

whether, from a model selection point of view, the tension between 

local and high redshift measurements disfavors the �CDM model in 

favor of a more complex model. 
1 Here we use capital ”Evidence” for the Bayesian quantity to distinguish it from the 

colloquial evidence . 

ense.
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This paper is organized as follows: In Section 2 , we present the

data sets and combinations of data sets we will use. In Section 3 , we

review different statistics that measure the “distance” or the “differ-

ence” between two distributions. We present our statistic of choice

that stems from the Bayesian evidence ratio and is suited to assess

whether two posterior distributions from two different experiments

are in tension or not. We present our results in Section 4 , where we

examine the tension between local and high redshift cosmological

measurements. We then explore several possibilities for this tension

and examine the consequences both in terms of unknown errors and

deviations from the �CDM model. Finally, we conclude in Section 5 .

In Appendix A , we report the Kullback–Leibler divergence between

Planck and WMAP for selected models and parameters. 

2. Data 

We consider the Planck mission CMB data with local measure-

ments of the Hubble parameter H 0 and of the age of the Universe

t U . 

2.1. CMB data 

The Planck collaboration, along with the nominal mission temper-

ature data, has also released the outputs of the Markov Chains Monte

Carlo (MCMC) used to sample from the space of possible cosmological

parameters. These MCMCs have been used by the team to generate

estimates of the posterior mean of cosmological parameters, along

with their confidence intervals [ 12 ]. Here, we use the publicly avail-

able outputs of the Planck team MCMCs. The Planck data have been

analyzed by the team in several ways: using only Planck tempera-

ture data on scales corresponding to multipoles � < 2500 ( Planck ),

using Planck data in conjunction with WMAP polarization data at

low � ( WP ), and using Planck data, WMAP data and also include the

measurement of the lensing potential, which was reconstructed from

the Planck temperature maps themselves through the measurement

of the four-point function ( lensing ). In some cases, data from high-

resolution but partial sky ground-based CMB experiments (ACT and

SPT) have also been included ( highL ). In combination with Planck

these data better constrain the foreground-model parameters. Here

however, we concentrate on the Planck + WP data combination. Ex-

cept in the Appendix A , we will not consider the lensing information

in line with the considerations presented in [ 13 ]; the combination

Planck + WP + highL predicts a value for the lensing amplitude

which is about 2 σ higher than the value measured from the conver-

gence power spectrum [ 12 , 14 ] and the origin of this tension is not yet

fully understood. 

2.2. Local measures: H 0 and t U 

For the local data we follow exactly Ref. [ 1 ]. We combine the values

reported in Refs. [ 15 , 16 ] in a “world average” where the central value

is given by the variance-weighted mean and the error conservatively

given by the average of the errors: H 0 = 74.08 ± 2.25 Km s −1 Mpc −1 . 

Estimates of the age of the Universe can be obtained from the

ages of the oldest objects and in particular from the ages of the oldest

stars since these objects form very shortly after the Big Bang. Accurate

dating of globular clusters has been the subject of active investigation

for decades but the error bars were, for a long time, large. It is only

relatively recently that error-bars have become smaller due to better

estimates of their distances [ 17 ] or the use of distance independent

methods [ 18 ]. Recently, it has become possible to use single stars to

estimate t U ; accurate distances using direct parallax measurements

were obtained for nearby sub-giant stars. In particular the star HD

140283 is a sub-giant moving off the main sequence, so its luminosity

is a very good age-indicator. 
Consequently, in order to constrain the current age of the uni-

verse, we use recent determinations of the ages of the oldest stars

in the Milky Way. We use two kind of measurements: the age of

the nearby sub-giant HD-140283 and the ages of the oldest globular

clusters. The age of HD-140283 has been accurately measured by [ 19 ]

using HST parallaxes and spectroscopic determinations of its chemical

abundance. In addition, they have used state of the art stellar evolu-

tionary models and carried out a careful and extensive error budget.

The age of HD-140283 is determined to be 14.5 ± 0.8 Gyr (including

systematic errors, which dominate the error bar). Additionally, the

ages for some of the most metal poor Milky Way globular clusters

(NGC 6397, NGC 6752, and 47 Tuc) have been determined by Ref.

[ 20 ]. Taking into account the revised nuclear reaction rate for 14 N ( p ,

γ ) 15 O of the CNO burning cycle [ 21 ], we obtain an age 14.2 ± 0.6

( ± 0.8 systematics) Gyr. In what follows we will linearly add these

(random and statistics) two sources of errors. 

It is remarkable that age determinations for such different systems

are in such a good agreement. There are three main ingredients that

dominate the error budget of stellar ages: distance, chemical compo-

sition and theory of stellar evolution. The last one has been studied

with extreme care in the last decade and major improvements have

been made. It is very unlikely that stellar evolution theory needs any

further significant revisions; the contribution to the age error budget

from stellar evolution theory is now negligible contributing to about

1% to the total age uncertainty. The two dominant error sources re-

main distance and chemical composition. 

The distance uncertainty can be efficiently removed by obtaining

trigonometric parallaxes to the oldest stars or globular clusters. This

has been the case for HD-140283. However, for the globular clusters

it is not yet possible to obtain trigonometric parallaxes and distances

have to be obtained by indirect methods. Currently the uncertainty

budget in the age determination of galactic globular clusters is dom-

inated by its distance estimation, which is done via indirect methods

(sub-dwarf fitting). 

On the other hand, the dominant source of error of nearby

sub-giants is the chemical composition of the stars. Current 10-m

class telescope observations provide abundance with an accuracy of

0.1 dex, which translates into a ∼5% uncertainty when estimating the

age of the oldest stars. 

The ages determinations of nearby sub-giants and globular clus-

ters are dominated by different and independent systematics (chem-

ical abundance and distance respectively) and we therefore combine

the two above measurements by inverse variance weighting. Recall

that the ages of the oldest objects at z = 0 only provide a lower esti-

mate of t U . However, we know that the first generation of stars formed

at z > 20 [ 22 ]. At this redshift the age of the universe is only ∼0.1–

0.2 Gyr, which is much smaller than the current age estimation errors.

This formation time-lag will only play a role when age estimations un-

certainties are reduced by at least a factor of five, to the 0.7% level. In

our analysis we convert the age of the star to the age of the Universe

by adding to the stellar age 0.15 ± 0.05 Gyr, assuming a Gaussian

distribution (cutting negative tails when appropriate). We obtain the

following estimate for the age of the Universe: t U = 14.4 ± 0.7. Here

we assume Gaussian distributions for both H 0 and t U measurements. 

It is important to note that the error-budget in the age determina-

tion will change dramatically with the launch of the GAIA satellite in

October 2013. GAIA will obtain trigonometric parallaxes to globular

clusters and identify a large number of metal-poor sub-giants. There-

fore, the only dominant source of error remaining will be the chemical

composition of the stars. A way to improve on this will be to obtain

longer integrations or use different line diagnostic for the metallicity

in the infrared. Thus the dominant uncertainty in the error budget

for the age of the local universe, will be the chemical composition

reaching an error-floor of ∼2–3%; see [ 1 ] for discussion. 
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Table 1 

The slightly modified Jeffreys ’ scale we use for interpreting the tension T . 

L n T Interpretation Betting odds 

< 1 not worth a bare 

mention, not 

significant 

< 3:1 

1 −2.5 substantial ∼3:1 

2.5 −5 strong > 12:1 

> 5 highly significant > 150:1 

 

. Methods 

The questions we wish to address are the following. ( a ) We have 

wo measurements of cosmologically interesting quantities in the 

orm of a – two or higher dimensional – posterior distribution. In our 

pplication these two measurements are the high-redshift, model- 

ependent joint distribution of H 0 and t U , and the local, cosmological- 

odel-independent one. In the Bayesian framework, how would one 

uantify whether these two measurements are or not in agreement 

tension)? In other words, if the null hypothesis is that the two mea- 

urements are “sampled” from the base model adopted, when should 

he null hypothesis be abandoned? ( b ) If the answer to ( a ) is that the

wo measurements are in tension, then Bayesian model selection can 

e used to study extensions to the base model adopted and select 

hich is the favored model. Alternatively the detected tension might 

ndicate the presence of unaccounted for, residual systematic errors. 

ossible options at this point are: discredit the measurement most 

ikely affected by systematics or artificially increase its errors. If in- 

tead no tension is detected the measurements can be combined to 

erform, for example, joint parameter estimation. 

Clearly to address this type of question a measure of distance 

r difference between two distributions should be used. There are 

any statistics that quantify the difference between two distribu- 

ions. The most widely used are the Kullback–Leibler divergence [ 23 ], 

he Jeffrey ’ s divergence [ 26 ], and Jensen–Shannon divergence [ 28 ]. 

hese are well rooted in information theory and they measure the 

ifference between two probability distributions, say P and Q , and 

herefore are suited to quantify how well P approximates Q or the 

nformation content that Q adds to P . In fact the Kullback–Leibler 

ivergence is not symmetric (clearly, the information content that 

 adds to P is not the information content that P adds to Q ) and 

he Jeffrey ’ s divergence and Jensen–Shannon divergence are two ap- 

roaches to symmetrize it. We will explore the application to cos- 

ology of the entropy-based Kullback–Leibler divergence measure 

n the Appendix A. For our question ( a ) at hand we know a priori that 

e will be comparing two different distributions (in fact we are com- 

aring different experiments). We want to know whether the best fit 

alues are consistent given the shape of the respective distributions, 

n other words we need the Bayesian (multi-dimensional) parallel of 

he standard equivalency test. 2 We argue that this is given by the 

vidence ratio as follows. 

.1. Evidence for tension 

Imagine we have performed two experiments: A , B and for each 

xperiment we produce a posterior P A , B ( θ | D A , B ) where θ represents 

he parameters of the model and D A , B represents the data from ex- 

eriments A , B respectively. Let us also assume that for producing 

oth posteriors we have used the same, uniform priors over the same 

support”, x , i.e., πA = πB = π , π = 1 or 0 and therefore πA πB = π . 

Let H 1 be the (null) hypothesis that both experiments measure the 

ame quantity, the models are correct and there are no unaccountable 

rrors. In this case, the two experiments will produce two posteri- 

rs, which, although can have different (co)variances, and different 

istributions, have means that are in agreement. The alternative hy- 

othesis, H 1 is when the two experiments, for some unknown reason, 

o not agree, either because of systematic errors or because they are 

ffectively measuring different things or the model (parameteriza- 

ion) is incorrect. In this case, the two experiments will produce two 

osteriors with two different means and different variances. 

To distinguish the two hypothesis we use the Bayes factor, that is 

he ratio of the Evidences. The Bayes factor has been extensively used 
2 Say that we have two measurements ( A and B ), with errors ( �A and �B ) of the 

ame quantity, the standard equivalency test says that A and B are consistent within 

he errors if | A − B | ≤ √ 

�A 2 + �B 2 . 
in cosmology, predominantly to perform model comparison between 

models with different number of parameters, mostly nested models. 

However, it has been used in a similar context before to quantify the 

consistency of different data sets in [ 24 , 25 ]. 

In any practical application, the absolute normalization of the pos- 

teriors is often unknown, but we can still work as follows. We define 

Table 1 : ∫ 
P A P B dx = λ

∫ 
L A L B πA πB dx = λ

∫ 
L A L B πdx = λE = E , (1) 

where L denotes the likelihood and λ−1 = 

∫ 
L A πA dx 

∫ 
L B πB dx ′ . E is 

the Bayesian Evidence for the joint distribution, thus E is akin to an 

unnormalized Evidence. This quantity per se is therefore of limited 

use. However we are interested in an evidence ratio between the 

null hypothesis and the alternative hypothesis, and the (difficult to 

compute) normalization factor will cancel if a suitable ratio is taken. 

Operationally, let us now imagine that we can perform a translation 

(shift) of (one or both of) the distributions in x and let us define 

P A the shifted distribution. This translation changes the location of 

the maximum but does not change the shape or the width of the 

distribution. If the maxima of the two distributions coincide then ∫ 
P A P B dx = E | max A = max B . (2) 

This can be considered our “straw man” null hypothesis ( H 1 ). As the 

distance between the maxima increases (but the shape of the distri- 

butions remains the same), ∫ 
P A P B dx = e < E , (3) 

and eventually e −→ 0 as the two distributions diverge. Clearly the 

Evidence ratio for the (null) hypothesis E 1 is E/ E | max A = max B , as the 

normalization factors λ cancel out, and the Evidence ratio for the 

alternative H 1 is its reciprocal. We therefore introduce: 

T = 

E | max A = max B 

E , (4) 

which denotes the degree of tension that can be interpreted in the 

widely used (slightly modified, [ 27 ]) Jeffrey ’ s [ 26 ] scale ( Table 1 ). 

T indicates the odds: 1 : T are the chances for the null hypothe- 

sis. In other words, a large tension mens that the null hypothesis 

(max A = max B ) is unlikely. 

In this scale, ln T < 1 is not significant , if 1 < ln T < 2 . 5 the evi-

dence is substantial , becomes strong only if 2 . 5 < ln T < 5 and highly 

significant if ln T > 5. 

This scale is empirically calibrated, and should be used only as 

a guide as it introduces sharp decision-making boundaries. Here we 

use the boundaries as a loose classification of the degree of tension; 

we also use Jeffreys ’ nomenclature. 

To give an intuition about the meaning of ln T values, consider 

two Gaussian distributions with unit variance: a shift of the central 

value of one of the two distributions of 2 σ would give ln T = 1 which 

is the threshold between not significant and substantial ; a shift of more 

than 3 σ would yield ‘ strong tension and of more than > 4.5 σ to give 

highly significant tension. 

E 1 can be seen as the Evidence for the joint distribution i.e., the 

joint likelihood integrated over the – uniform – prior and thus T as its 
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reciprocal. As such, it addresses the question: “of all the values of the

parameters allowed by the prior in a given model, how well on average

the model fits the (combined) data?” Of course, if we now interpret the

likelihood of one data set (say, the data set from experiment B ) times

the uniform prior as the (new) prior, this Evidence would say: how

well on average the parameters allowed by this (new) prior within

the model, fit the data from experiment A?” If the fit is bad then the

Tension is high. As such it gives additional information compared to

the more widely used Bayes factor between two cosmological models:

Model 1 could be favored over Model 2 by the standard Bayes factor,

but the Bayes factor will not tell if one (or both) models are bad fit to

the (combined) data. A high value of the Tension on the other hand

would indicate that the model does not fit well the data. As such it

gives additional information compared to the more widely used Bayes

factor between two cosmological models: Model 1 could be favored

over Model 2 by the standard Bayes factor, but the Bayes factor will

not tell if one (or both) models are bad fit to the (combined) data. A

high value of the Tension on the other hand would indicate that the

model in question does not fit well the data. 

In some practical applications the shift needed to compute the

numerator of T may be slightly incorrect or at least misleading. For

example, we know that for CMB data the covariance matrix depends

on the assumed cosmology because of cosmic variance. Therefore a

rigid translation of the distribution is strictly incorrect. One could

in principle imagine an extreme case where shifting P A so that the

maximum coincides with that of P B gives a highly significant Evidence

but instead shifting P B does not. 

However, for the practical applications we can think of, in the era

of precision cosmology, this effect is small, or if it is large it means

that the shift is large and the Evidence for tension will be highly sig-

nificant anyway. Therefore this effect will not drastically change the

interpretation of the T value. Nevertheless, in what follows, we shift

the local measurements distribution, which is not affected by cosmic

variance and thus does not depend (too strongly) on cosmology. 

When computing T in a practical application, there is a delicate

point to bear in mind: the above relies on having a uniform prior on

H 0 and t U . Here we wish to use the output of MCMCs which were per-

formed with uniform priors on other parameters 3 (not H 0 and t U ). The

relation between these parameters and H 0 , t U is non-linear, thus in

the MCMCs the prior in not uniform in H 0 , t U . As a consequence, the

MCMC outputs in principle, cannot simply be importance-sampled

and then used to perform the above integrals by Monte Carlo integra-

tion i.e., simply adding up the MCMC (updated) weights. Of course, a

change of variables can be made by re-weighting the chains outputs

by the Jacobian of the transformation. This effect for the data sets con-

sidered here is, however, small. Alternatively the posterior surface in

the H 0 , t U sampled by the MCMC can be fit by a smooth surface using

the likelihood values instead of the weights. This surface provides

then a functional form for the posterior which can be integrated to

compute E and T . We use the latter approach. 

With this type of analysis we are entering the regime of “meta

analysis” which has an extensive literature mostly in the medical

field. 

Logically, if T is small and the tension is not significant the results

of the experiments can be combined and a joint analysis can be safely
3 We use the MCMCs made public by the Planck collaboration: a detailed discussion 

on the priors used on cosmological parameters can be found in [ 12 ]. Uniform priors 

were used on the physical densities of baryons and cold dark matter, on the angular size 

distance to the last scattering surface, on the logarithm of the amplitude of primordial 

perturbations, on the primordial power spectrum spectral slope, on the logarithm of 

the integrated optical depth to the last scattering surface, on the density parameter of 

dark energy, on the total neutrino mass, on the equation of state parameter of dark 

energy and on the number of effective neutrino species. The width of these priors do 

not matter in the Tension calculation because of the empirical normalization choice 

and because the prior ranges always encompass the region where the likelihood is 

significantly non-zero. 

 

 

 

 

 

 

 

 

 

 

performed. However if T is large (e.g., strong or highly significant ),

then it is an indication that either ( a ) one of the two experiments

is affected by errors (systematic or statistical) that are unaccounted

for or that ( b ) the underlying model used is incorrect and must be

extended. 

The situation described in case ( a ) has been considered before

in the cosmology literature [ 4 , 29 ]. The authors advocate introducing

“meta parameters” describing possible systematic shifts or statistical

errors and marginalize over them. The detailed implementation in

the Bayesian context is numerically very heavy, but the upshot is that

in practice such an approach leads to down-weighting the discrepant

measurements (i.e., effectively increasing the corresponding error-

bars) but still combining them. A simplified approach (which is the

one we will pursue here) is to increase the error-bars of the discrepant

measurement(s) until the tension T is not significant. After that we

can analyze jointly the data sets. We will refer to this case as “blame

the measurements”. 

The situation described in ( b ) is similar to what is being done ex-

tensively in cosmology when implementing model selection in the

Bayesian framework. There is a simpler model (typically the 6 pa-

rameters, flat, �CDM – “base” – model) and simple extensions of it,

where one or two quantities, which have fixed values in the “base”

model, are promoted to parameters of the model. In this case model

selection is carried out by computing the Bayes factor, or evidence ra-

tio, between the two models. The question this approach addresses is

the model selection question: “is the introduction of the extra param-

eter(s) warranted by data?”. However, there is also another question

we can ask (and we are interested in addressing here): “Does the in-

troduction of the extra parameter reduces the tension as defined in

Eq. (4) ?” And further, “what are the fixed values (if any) of the extra

parameter that would make the tension not significant?”. In this pa-

per we will concentrate on the last two questions. We will refer to

this case as “blame the model”. 

4. Results 

We begin by repeating some of the key steps of the analysis of

Ref. [ 1 ] using the updated state-of-the-art data. Fig. 1 shows con-

straints on the t U –H 0 plane from local measurements and from CMB

in the framework of the standard �CDM model; both WMAP and

Planck constraints are shown. In Appendix A we quantify how much

information Planck has added to WMAP for this particular parameter

combination within the �CDM model. For now, we can appreciate

that the Planck central value has shifted compared to WMAP ’ s. This

shift is well within the WMAP 1 σ confidence region, but the reduced

Planck error-bars mean that now the 1 σ confidence regions of CMB

and local measures do not overlap (only the 2 σ joint still do). This

represents the above mentioned “tension”. We will return on this in

Section 4.1 below. 

The smallness of the Planck allowed region on this plane is due

to the assumption of the �CDM model. In Fig. 2 we show how

this changes for simple (one or two parameters) extensions to the

�CDM model. Among the extensions considered, non-standard effec-

tive neutrino species and non-standard equation of state parameter

for dark energy, bring the CMB and the local measures closer. 

This is further illustrated in Fig. 3 (top panels) for the effective

number of neutrino species ( N eff ) extension to �CDM. A N eff value

larger than the standard 3.046 brings in better agreement the H 0

determinations, but the agreement worsens for t U . 

Similarly the bottom left panel of Fig. 3 shows the effect for the

(total) neutrino mass, M ν , extension and the bottom right panel for

the non-standard equation of state parameter, w , extension of �CDM.

Clearly the constraints on M ν obtained using the local H 0 determina-

tion are very tight thanks to the (local) H 0 central value. Also values

of w < −1 bring the two H 0 estimates in better agreement, in this

case, the t U constraint is not useful given the direction of the CMB



170 L. Verde et al. / Physics of the Dark Universe 2 (2013) 166–175 

Fig. 1. Constraints (1 and 2 σ joint) in the t U –H 0 plane from local measurements (black 

solid contours, the dashed contours corresponds to the single parameter, marginalized 

1 − σ constraint; � ln L = 0 . 5) and CMB data (blue). The transparent set of contours 

correspond to WMAP and the filled contours to Planck. 
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egeneracy. 

.1. Is there Evidence for tension? 

We can use the method outlined in Section 3.1 to quantify if there 

s Evidence for tension between the local and CMB measurements 

n the H 0 –t U plane. For the “base” �CDM model we obtain T = 53, 

n T = 3 . 95, i.e. that the null hypothesis, H 1 , is disfavored with odds 

f roughly 1 to 50. This indicates a strong evidence for tension. We 

stimate 4 that the numerical error on ln T , due to the fact that the 

MB posterior is not known with infinite precision but sampled by 

CMC, is 0.1. 

To gain a physical intuition about this result, let us assume that the 

lanck ’ s one-dimensional posterior distribution for H 0 (marginalized 

ver all other parameters) and that for t U are Gaussian. This is a good 

pproximation for the �CDM model. The local age determination is in 

ood agreement with Planck ’ s : ln T = 0 . 34. However for H 0 we obtain 

n T = 3 . 5 5 Thus the tension between CMB and local measurements 

s entirely due to H 0 . 

This strong evidence for tension is a signal that caution must be 

xercised if the results of the two experiments are to be combined, 

nd the result of this combination should be interpreted with care. 

e will proceed examining the two cases ( a ) and ( b ) outlined above 

n turn. 

It is important to note that this measurement of tension is model- 

ependent and the value reported here applies only to the �CDM 

odel. Even in simple extensions of the models, T can differ widely. 

e will return to this in Section 4.3 . 

.2. Option “Blame the measurement”: Interpretation in terms of 

nknown errors 

Discarding measurements (or combining measurements) can be 

een as two special cases of the use of hyper-parameters, as described 

n [ 29 ]. The Planck team noticed some tension between Planck data 

nd the H 0 measurement and argued that the local measurement is 

ore likely to be affected by some unknown systematic than the CMB. 

or this reason they discard H 0 when combining Planck with other 

easurements. They nevertheless also provided results and MCMC 
4 We have performed several tests: We have both performed integrals on fits to the 

urface, on Gaussian approximations and using directly the MCMC outputs. We have 

one so both using the full MCMC ’ s samples of the posterior surface and splitting the 

CMC ’ s. 
5 L n T = 3 . 5 
outputs for data combinations that include H 0 . There could however 

be a spectra of intermediate possibilities where the H 0 measurement 

is combined but downweighted by a factor α (or equivalently its error 

increased by 1 /α). Clearly α = 1 corresponds to doing the standard 

joint analysis and α = 0 to excluding the measurement. 

Here we follow this train of thoughts and increase the H 0 errors to 

find out what correction would be needed to reduce the tension ln T 
in the H 0 −t U plane, to a more “comfortable” level. This is shown in Fig. 

4 . Of course we could have decided to downweight the CMB and / or 

the age measurements. The age measurements and the CMB are in 

good agreement with each other – but t U has still large error-bars – so 

we would have had to downweight both. We decided here to follow 

the reasoning of the Planck team, downweight H 0 and interpret the 

consequences. Another possibility is to model an unknown systematic 

error by shifting the H 0 measurement by �H 0 and see what shift is 

needed to significantly reduce the tension. This is also shown in Fig. 

4 . 

This figure shows that an increase in the H 0 error by 30–40% would 

be needed to reduce ln T to substantial but a factor 2.5 would be 

needed for not significant . On the other hand a shift of the central 

value by little less than 1 σ would bring ln T to substantial but a shift 

of almost ∼2 σ would be needed for it to become not significant . 

4.3. Option “blame the model”: Extending the “base” model 

The values of the tension obtained so far are valid within the �CDM 

model. There may be simple extensions of this model that reduce or 

remove tension. 

4.3.1. Does tension decrease in ΛCDM extensions? 

In the first line of Table 2 we report ln T for simple extensions of 

the �CDM model. We see that including the curvature, K as a pa- 

rameter or including a parameter for non-zero neutrino mass, M ν , 

increases ln T , thus disfavoring these model extensions. The two 

model extensions, however, should not be considered on the same 

footing: inflation strongly motivates the assumption that the Uni- 

verse is flat (and therefore there is no need for the extra curvature 

parameter). On the other hand neutrino oscillations indicate that neu- 

trinos have a non-zero mass, M ν must be larger than about 0.05 eV 

and the cosmologically-independent upper limit is ∼ 2eV. Therefore 

assuming a �CDM model with massless neutrinos, or with M ν fixed at 

a value close to its lower limit, is not really motivated and one could 

argue that �CDM + M ν model should be the “base” model. 

The addition of the effective number of neutrino species N eff as a 

parameter brings the tension down to substantial , and the addition 

of the equation of state for dark energy parameter w brings it to not 

significant . This indicates that these model extensions are particularly 

interesting and warrant more investigation (under case ( b ), of course). 

Contrary to the �CDM + M ν case, these model extensions do not have 

other strong experimental motivations. 

It is interesting to compare these findings with the standard 

Bayesian model selection. 

4.3.2. Bayesian model selection 

We carry out the standard Bayesian model selection computing 

the Bayes factor (i.e. the Evidence ratio) between the “base” �CDM 

model and its extensions. We start by producing versions of the rel- 

evant MCMC chains importance-sampled with the local constraints. 

We then follow Ref. [ 11 ] to compute the Evidence ratio between two 

nested models from an MCMC output via the Savage–Dickey den- 

sity ratio. The Evidence ratio for �CDM extensions involving neutrino 

properties differ from those in Ref. [ 11 ] because here we also include 

the t U determination. The results are reported in Table 2 (second line). 

We see that even combining Planck with local universe measure- 

ments, there is never substantial or strong evidence for the model 
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Fig. 2. Left panel: Blue: curvature extension to the �CDM model, magenta: equation of state parameter for the dark energy w extension to the �CDM model. Right panel: Non 

standard neutrino properties. Green: neutrino mass and primordial helium content extension and Orange: number of effective neutrino species and primordial helium content 

extension. The plot range and color scheme have been chosen so these figures can be compared directly, at a glance, with Fig. 3 of Ref. [ 1 ] for a direct comparison with WMAP. 

Fig. 3. Posterior distributions in the t U –H 0 plane for local and CMB measurements. A random sub-sample of the CMB MCMC points has been shown color-coded by the value of 

the effective number of neutrino species N eff on the top panels. In the left panel the primordial helium fraction is kept fixed at the nucleosynthesis value while on the right it is 

left as a parameter which is then marginalized. A larger N eff value brings in better agreement the H 0 determinations (but the agreement worsens for t U ). On the bottom panels we 

show the M ν (left) and w (right) extension to the �CDM model. 
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Fig. 4. L n T for Planck and the local measurements as a function of the factor downweighting the measurement of H 0 or as a function of a shift in H 0 . 

Table 2 

Tension ( ln T ) between Planck and the local measurements in �CDM extensions and Evidence ratio between the �CDM model and its extensions. For the tension, numbers above 

2.5 signify strong tension and above 5 highly significant tension. The last column reports the �CDM numbers for reference. For the Evidence ratio positive numbers mean that the 

simpler model is preferred, negative numbers that the more-complicated model is preferred; | �ln E | should be at least 2.5 to be strong . The errors on the evidence ratios are in 

most cases about ± 0.02, reaching ± 0.1 for thinned, post-processed chains (indicated by P). 

Model extension w k N eff M ν N eff + Y P �CDM 

L n T 0.74 5.24 1.94 4.5 2.2 3.95 

ln E �CDM / E extension -0.72 3.70 −0.27(P) 3.45 1.93(P) 0 
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xtension and in some cases the simpler model �CDM is strongly 

avored. 

This is not necessarily in contradiction with the findings of Section 

.3.1 as the two quantities measure different things and address dif- 

erent questions. In particular the Bayesian Evidence is not concerned 

ith whether at least one of the two models considered provides a 

ood fit to all the data simultaneously. But this is exactly what ln T 
oes. 

Qualitatively however the trends of the two statistics are similar: 

he models more disfavored by the Bayesian Evidence are those for 

hich the tension increases with respect to the �CDM case. The mod- 

ls that decrease the tension most are those that favor (only ever so 

lightly) the more complex model. 

.3.3. Tension and its implications for models and parameters 

The fact that for some �CDM extensions tension is reduced (or 

ven eliminated) but not for others, suggest that we can use the 

uantity ln T for deriving constraints on the parameters of the model 

xtension. 

For example we can ask: “if we had a compelling reason to fix 

he extra parameter to a given value, what would the tension be?”

learly, parameters values that yield “very strong” tension should be 

isfavored. In other words, if the �CDM model showed negligible or 

o tension, this plot would indicate what offset from the LCDM value 

f the parameter in question would give tension. This is what we 

how in Figs. 5 and 6 . 

In Fig. 5 we show results for �CDM model extensions involving 

on-standard neutrino properties. In the two panels we fix M ν or 

 eff at a different fiducial value than the standard �CDM model then 

reat the resulting model as a modified �CDM for the purpose of 

omputing the tension. We find that the lower the neutrino mass 

he lower ln T . For values of M ν higher than 0.15 eV, the tension 

etween local measurements and Planck derived values increases to 

ighly significant (odds ∼ 1:150). This indicates that the degenerate 

ierarchy for the neutrino mass spectrum is highly disfavored and 

hat normal hierarchy is preferred over the inverted one (although no 

alue for M ν yield not significant or even substantial tension). 

Values of N larger than the standard value (3.4 < N < 4.1) 
eff eff 
reduce ln T , but values N eff > 4.6 make it highly significant . Note that 

for no range of N eff values the tension is not significant . This is because 

among all the N eff values that are a good fit to Planck data, values 

higher than the fiducial improve the fit to H 0 data but worsen the fit 

to t U . 

In Fig. 6 we show results for the dark energy equation of state 

parameter w , and curvature k , �CDM model extensions. Both these 

model extensions have parameter values that make the tension not 

significant . A slightly “phantom” ( w < −1) value for the equation of 

state parameter brings the tension to more comfortable substantial 

and values around w = −1.2 to not significant . Alternatively a slightly 

positive curvature 5 × 10 −3 < k < 1.5 × 10 −2 brings the tension to 

a more comfortable ( substantial ) level. 

5. Discussion and conclusions 

We have analised cosmology independent, local measurements of 

H 0 and t U and the Planck derived values for these quanities within the 

�CDM model and in simple extensions of it. We started by introducing 

and developing a statistic, the tension T , to determine when two 

posterior distributions of parameters are in tension and to quantify 

the level of tension. We argue that the tension is based on the Bayesian 

evidence and the Bayes factor and, as such, it can be interpreted using 

the popular Jeffreys ’ scale. To give an intuition about the meaning of 

ln T values we should bear in mind that if we have two 1-dimensional 

Gaussian distributions with unit variance, a shift of the central value 

of one of the two distributions of 2 σ would give ln T = 1 which is the 

threshold between not significant and substantial ; a shift of more than 

3 σ would yield strong tension and of more than 4.5 σ to give highly 

significant tension. 

We then have shown that, in agreement with the(recently) com- 

monly accepted wisdom, in the framework of the �CDM model, these 

two determinations are in strong tension (odds ∼ 1 : 50). In our naive 

Gaussian interpretation above these odds corresponds to a shift of 

one of the two unit-variance Gaussians if ∼4 σ . 

We recognize that two broad classes of explanations for this re- 

sult are possible. “Blame the measurement”: one (or more) of the 

measurements have errors that are unaccounted for or “blame the 
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Fig. 5. L n T as a function of M ν (top panel) and as a function of N eff (bottom panel). The black solid line corresponds to the �CDM value, odds ∼ 1: 50. Note that for values of M ν

higher than 0.15 eV, the tension between local measurements and Planck derived values increases to highly significant (odds ∼ 1:150). This indicates that the degenerate hierarchy 

for the neutrino mass spectrum is highly disfavored and that normal hierarchy is preferred over the inverted one. However no value of M ν yields non-significant ’ or even substantial 

tension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model”: extensions of base �CDM model should be considered. 

Following the interpretation suggested by the Planck team we have

then explored how to alleviate the tension by exploring by how much

the errors and / or the central value of H 0 needs to be changed in order

to alleviate the tension to tolerable levels, odds > 1:3 ( > 1:10). We

found that this can be achieved if the error bars have been underes-

timated by a factor 2.5 (30–40%) or the central value is wrong by 4

( ∼2) km s −1 Mpc −1 . Having quantified this, we leave it to the experts

in the field of the H 0 measurements to judge whether this is a realis-

tic possibility, keeping in mind that two independent measurements,

in excellent agreement with each other, were suitably combined to

obtain the adopted H 0 constraint. 

We have then explored extensions to the �CDM that can al-

leviate this tension. We found that several extra parameters can

achieve this: allowing for phantom values of the equation of state

of dark energy ( w ∼ −1.2) or allowing a small positive curvature

(7 × 10 −3 < k < 1.5 × 10 −2 ). 

No values of the effective number of species reduces the tension to
not significant, but values around 3.6–3.8 get close to that. An inter-

esting finding is that when using the neutrino mass as an additional

parameter for the �CDM model, although no values for the total neu-

trino mass reduce the tension to not significant (odds 1 : 3), a total mass

above 0.15 eV makes the tension highly significant (odds ∼ 1:150). A

consequence of accepting this interpretation of the tension is that the

degenerate neutrino hierarchy is highly disfavored by cosmological

data and the direct hierarchy is slightly favored over the inverse one.

Of course, if we accept this interpretation of the “blame the model”

option, this could be the first indication from cosmology for a neutrino

hierarchy (e.g., [ 30 ] and references therein). 

There is one possible explanation for the tension that lies in-

between “blame the data” and “blame the model” options, that is

that we are in a local underdensity. Ref. [ 31 ] shows that measure-

ments of the local Hubble constant are subject to a cosmic variance

error with can be as high as 2%. If, simply by cosmic variance, we

happen to live inside an underdensity, the local values of H 0 could be

higher than the cosmological value by this amount. As we have seen
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Fig. 6. Same as Fig. 5 but now changing the equation of state parameter for dark energy w (top panel) and the curvature parameter k (bottom panel). A slightly “phantom” ( w 

< −1) value for the equation of state parameter bring the tension to more comfortable “substantial” and and values around w = −1.2 to “not significant”. Alternatively a slightly 

positive curvature k > 8 × 10 −3 brings the tension to “not significant”. 
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situation. 
n Fig. 4 , such shift would certainly reduce the tension but not remove 

t. The larger shift needed for this, the authors of [ 31 ] argue, would 

owever require a very rare (i.e., unlikely) fluctuation for the model. 

Tantalizingly, observations of the luminosity density as function of 

edshift [ 32 ] suggest that we might be located in a ∼300 Mpc / h local 

nder density. It remains to be assessed whether such under density is 

ue to cosmic variance, can be accommodated in the �CDM scenario 

nd thus only adds a (small) systematic correction to the local H 0 

easurement (case “blame the measurement”). On the other hand, if 

he underdensity is large enough, it could eliminate the tension but 

t the expense of requiring indeed an (interesting) extension to the 

CDM model (case “blame the model”). 

We have focused our analysis only on local, cosmology indepen- 

ent, measurements and the CMB derived local universe within a 

iven model. We have chosen not to use other cosmological probes as 

AO or Supernova as they are not local measurements and not as ma- 

ure from a theoretical point of view (and not as powerful when used 
alone) as the CMB to be used as high-redshift measurements. More- 

over we have not used the high- � CMB data ( highL ) nor the CMB lens- 

ing information because of possible internal tension with the Planck 

temperature data (although we have checked that adding highL data 

does not change significantly or qualitatively our findings). The Planck 

experiment statistical power will improve drastically when polariza- 

tion data will be included in the analysis over the next year. The 

inclusion of these extra Planck data will cement the CMB constraints 

(strengthening or weakening the above findings). 

After that, if tension remains, a way forward is to improve local 

data to the % level. The ages of the oldest stars show no tension with 

Planck CMB data, but error-bars are still relatively large; thus much 

more accurate ages from the GAIA mission will help elucidate the 
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Appendix A. How many bits of information has Planck added to 

WMAP? 

The Kullback–Leibler divergence [ 23 ] D KL ( P ‖ W), as mentioned

in Section 3 , quantifies the information content that one distribution

( P) adds to the other one ( W); in other words, how many bits of

information are needed if we are given the second distribution ( W)

and we want to recover the first one ( P), or, how many bits are lost

if one were to use W to approximate P . Here we are interested in

using this statistic to quantify how much new information has Planck

added to WMAP. We will use D KL ( P ‖ W), where P , W denote the

Planck ( + WP) and WMAP posterior distributions, 

D KL ( P ‖ W ) = 

∫ 
x 
log 2 

( P ( x ) 

W ( x ) 

)
P ( x ) dx . (5)

The logarithm in base 2 means that the information is expressed in

bits. The above equation can be interpreted and applied in several

ways for example it can be applied to the one dimensional distribu-

tion for one parameter marginalized over all the other ones, or as

the joint distribution of two parameters or as the joint, multivari-

ate distribution of all the cosmological parameters. Here we present

only few selected cases, see Table A.1 . In the first block we report

the D KL parameter by parameter in the “base” �CDM model. The one

dimensional posterior used has been marginalized over all other pa-

rameters. The second block includes the D KL for simple extensions of

the �CDM model. We report the one dimensional posterior of the ex-

tra parameter marginalized over all other parameters. First we report

the results for Planck + WP, then the addition of highL and the further

addition of lensing . 

These numbers should be interpreted as follows: they represent

the extra bits of information added, which do not need to be whole

numbers, by Planck over WMAP in bits in base 2. So, for example, if

1 is added, the information is multiplied by a factor 2 1 . In the case of

N eff , Planck has increased the information of WMAP by a factor 2 1.7 =
3.2. This is the parameter for which most information has been added,

while for the other parameters Planck has increased information by

about a factor 2. If we include Planck ’ s highL , the one-parameter �CDM

numbers are mostly unchanged except for the (scalar) power spec-

trum spectral slope, n s , which becomes 1.36. Including also lensing

does not add significant information for this model. This is not the

case for the �CDM model extensions. The effect of the previously

mentioned “tension” between Planck + WP + highL and lensing can
be seen in the M ν column. 
Table A.1 

Kullback–Leibler divergence of Planck from WMAP, D KL ( P ‖ W). Here w b denotes the

physical density of baryons, w c the physical density of cold dark matter, n s the primor-

dial matter power spectrum spectral slope, H 0 the Hubble constant, t U the age of the

Universe, k the curvature parameter, w the dark energy equation of state parame-

ter, N eff the effective number of neutrino species and M ν the total neutrino mass. The

“base” data set corresponds to Planck + WP ; the addition of highL and lensing are also

considered. 

�CDM w b w c n s H 0 t U 

1D for 

parame- 

ter 

1.35 1.63 1.09 1.21 0.83 

�CDM 

Exten- 

sion 

k w N eff M v 

1D for 

parame- 

ter 

0.67 1.05 1.70 0.39 

+ highL 0.82 1.18 1.90 0.91 

+ lensing 1.07 1.15 1.94 0.38 

Table A.1 should not be interpreted as that Planck has improved

over WMAP by a factor 2. In fact the reported numbers are for indi-

vidual parameters, but the experiment measures all the parameters

of the model (typically 6 or 7) as well as non-cosmological but never-

theless astrophysically interesting parameters, and all are improved. 
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