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Abstract

We study the quark mass dependence ofJP = 1/2− s-wave baryon resonances. Parameter free results are obtained in
of the leading order chiral Lagrangian. In the ‘heavy’ SU(3) limit withmπ = mK � 500 MeV the resonances turn into bou
states forming two octets plus a singlet representations of the SU(3) group. A contrasted result is obtained in the ‘ligh
limit with mπ =mK � 140 MeV for which no resonances exist. Using physical quark masses our analysis suggests to a
theS = −2 resonances�(1690) and�(1620) the quantum numbersJP = 1/2−.
 2003 Elsevier B.V.
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1. Introduction

The question what is the true nature of baryon r
onances has attracted considerable attention in re
modern constructions of effective field theories d
scribing meson–baryon scattering. Before the even
the quark-model it was already suggested by W
[1] and also by Dalitz, Wong and Rajasekaran
that a t-channel vector meson exchange model for
s-wave meson–baryon scattering problem has the
tential to dynamically generate s-wave baryon re
nances upon solving a coupled channel Schrödin
equation. In a more modern language the t-chan
exchange was rediscovered in terms of the Weinbe
Tomozawa (WT) interaction, the leading term of t
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chiral Lagrangian that reproduces the first term of
vector meson exchange in an appropriate Taylor
pansion [3]. This offers a unique opportunity to stu
the quark mass dependence of baryon resonances
of the goals of this work. Such studies may be u
ful to obtain a deeper understanding of baryon re
nances. Here we follow a scheme proposed in [4
based on the solution of the Bethe–Salpeter equa
(BSE), which incorporates two-body coupled cha
nel unitarity, as other approaches [6–10], but also
sists on an approximate crossing symmetry. Ind
the latter constraint led to a parameter free desc
tion of the
(1405) and N(1535) resonances in term
of the WT Lagrangian [5]. The goal of this Letter
to systematically unravel the SU(3) structure of
lowest lying s-wave baryon resonances. We show
two full octets plus an additional singlet of resonan
are dynamically generated within this framework.
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the SU(3) limit, with degenerate mesons and baryo
such a structure was already found in Ref. [11].

Of particular interest is theS(Strangeness) = −2
sector where we find a narrow state (with a wid
of about 5 MeV) with a strong coupling tōK� sug-
gesting the identification with the three star resona
�(1690). For the latter resonance only its isosp
quantum number was established experimentally.
analysis suggests the quantum numbersJP = 1/2−.
This complements the conclusion of the recent w
of Ref. [12]. The authors of this reference also us
scheme based on the solution of the BSE with a ke
determined by the WT term, and find just one re
nance in the s-waveS = −2 sector. The found reso
nance shows a large decay width and branching ra
(BR) which are incompatible with the empirical pro
erties of the�(1690) resonance, and instead it w
identified with the one star resonance�(1620) [12].
The main difference between the approach of Ref. [
and that followed here is the method used to ren
malize the BSE. In Ref. [12], a three-momentum
traviolet cutoff of natural size was introduced, thou
some channel dependence of its numerical value
allowed. Such a procedure turns out to work rema
ably well in theS = −1 sector at low energies, provid
ing a good description of the
(1405) resonance, but i
starts showing limitations at higher energies, where
description of the
(1670) and�(1620) is certainly
poorer [13]. Indeed, the procedure of [12,13] does
work in theS = 0 sector at all, and it fails even to pro
duce the lowest lying resonance (N(1535)) [14]. Our
scheme provides reasonable results in theS = 0,−1
sectors. In theS = −2 sector, we also find, besides t
resonance which we identify to the�(1690) and men-
tioned above, a resonance with the same feature
that described in [12], which can be identified with t
one star�(1620) resonance.

2. Theoretical framework

We solve the coupled channel BSE with an
teraction kernel expanded in chiral perturbation t
ory as formulated in [15]. The solution for the co
pled channel s-wave scattering amplitude,T (

√
s) in

the so-calledon-shell scheme [5,16], can be express
in terms of a renormalized matrix of loop function
J (

√
s), and an effective on-shell interaction kern
V (
√
s), as follows

(1)T (
√
s)= 1

1− V (
√
s)J (

√
s)
V (

√
s).

Assuming the conservation of isospin and strangen
the scattering problem decouples into 9 differ
sectors((I, S) = (0,1), (1,1), (1

2,0), (
3
2,0), (0,−1),

(1,−1), (2,−1), (1
2,−2), (3

2,−2)). In each sector
there are several coupled channels, for instance
S = 0 sector requires four coupled channels in theI =
1/2 sector (πN, ηN, K
 and K�). The explicit form
of the interaction kernel and the loop functions c
be found in [5,9,10]. The latter ones logarithmica
diverge and one subtraction is needed to make t
finite. Such a freedom can be used to incorpo
approximate crossing symmetry in the scheme, by
renormalization condition

(2)T (
√
s = µ)= V (µ), µ= µ(I,S)

where the natural choice

µ(I,+1)= 1

2
(m
 +m�), µ(I,0)=mN,

µ(0,−1)=m
, µ(1,−1)=m�,

(3)µ(I,−2)=m�

is used as explained in detail in [5]. It is evident that
renormalization condition of Eq. (3) is implemented
a straightforward manner by imposing that the ren
malized loop functionsJ (

√
s) vanish at the appro

priate points
√
s = µ(I,S). The renormalization con

dition reflects the fact that at subthreshold energ
the scattering amplitudes may be evaluated in s
dard chiral perturbation theory with the typical e
pansion parametermK/(4πf ) < 1 with f � 90 MeV.
Once the available energy is sufficiently high to p
mit elastic two-body scattering a further typical d
mensionless parameterm2

K/(8πf
2) ∼ 1 arises. Since

this ratio is uniquely linked to two-particle reducib
diagrams it is sufficient to sum those diagrams ke
ing the perturbative expansion of all irreducible d
grams. This is achieved by Eq. (1). The subtract
points of Eq. (3) are the unique choices that p
tect the s-channel baryon-octet masses manifest
the p-waveJ = 1

2 scattering amplitudes. The me
of the scheme [4,5] lies in the property that for
stance the kaon–nucleon and antikaon–nucleon s
tering amplitudes match at

√
s ∼ m
,m� approxi-
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mately as expected from crossing symmetry. The s
traction points of Eq. (3) can also be derived if o
incorporates photon-baryon inelastic channels in
Then additional crossing symmetry constraints ar
For instance the reactionγ
→ γ
, which is subject
to a crossing symmetry constraint at threshold, m
go via the intermediate statēKN. Therefore the cor-
responding loop function must vanish identically√
s = m
 confirming Eq. (3). Here we assume th

this reaction is described by a coupled channel sca
ing equation (1) where the effective on-shell inter
tion kernelV is expanded in chiral perturbation th
ory. We use the leading order (LO) interaction k
nelV (

√
s), as determined by the WT interaction (s

Refs. [7,9,12]),

(4)V IS
ab (

√
s)=DIS

ab

2
√
s −Ma −Mb

4f 2 ,

where Ma (Mb) is the baryon mass of the initia
(final) channel. In Eq. (4) tadpole terms, of sublead
chiral order, arising from the on-shell reduction
the interaction kernel (see Refs. [5,9]) are neglec
A parameter free prediction arises if physical valu
for the meson and baryon masses are used. This
direct consequence of the chiral SU(3) symmetry
QCD that predicts the strength of the WT interact
in terms of the parameterf already determined by th
pion decay process.

We will also study the quark mass dependence
the baryon resonances that are dynamically gener
by using meson and baryon masses that deviate
their chiral SU(3) limit in Eq. (1). We use Goldston
boson masses as determined by the Gell-Mann, O
and Renner (GOR) relation [15] in terms of the qua
condensate〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 = −(280 MeV)3, the
current quark massesmu =md = 3.5 MeV andms =
85 MeV andf = 90 MeV (with these values w
getmπ = 137.73 MeV andmK = 489.74 MeV). The
masses of the baryon octet states are describe
terms of the chiral parametersb0 = −0.346 GeV−1,
bD = 0.061 GeV−1 andbF = −0.195 GeV−1 (in the
notation of Ref. [15],b1,2 = ∓(bF ± bD)). The above
values require a baryon octet mass of 823 MeV in
chiral limit with mu,d,s = 0. It is well known that at
this LO, all baryons and Goldstone boson masses
reproduced quite accurately (5%).
3. Results and concluding remarks

We look for poles in the second Riemann sh
(SRS) of our amplitudes. The positions of the po
determine masses and widths of the resonances, w
the residues for the different channels define the BR
10]. We find the resonances listed in Table 1 wh
only resonances with widths smaller than 250 M
are included. Since for a resonance placed slig
above a threshold the BR depends strongly on
exact position of the pole, we only quote coupli
constants (residues) that are much less sensitive t
pole position. We find a remarkable success predic
rather well the bulk of the features of the four sta
N(1535),
(1405) and
(1670) resonances.1 We also
find a resonance in the� channel, though its mas
is a bit small.2 Besides, in theS = −2 sector we

1 There exists a second nucleon resonance(MR = 1156,ΓR =
415) MeV. Its large [small] coupling to theπN [ηN] channel
(|g|2πN,ηN,K
,K� = 8.5,0.0,3.3,0.3) and its SU(3) trajectory, a
we will see, make us to think that, despite its mass and widt
might correspond to the four star N(1650) resonance. It is unc
whether next-to-leading chiral corrections take the position of
pole closer to that of the physical N(1650) resonance. A quantita
description may require the inclusion of further inelastic chann
like π" andρN [19].

2 We define a resonance as pole in an unphysical sheet, us
the SRS (the SRS is determined by continuity to the first Riem
sheet [FRS] [9]), with an appreciable influence into the phys
scattering line. In the� channel, the pole (MR = 1505 MeV) listed
in Table 1 is above the first three thresholds (π
, π� andK̄N), but
it appears in the unphysical 11000 sheet, instead of in the 11
one (each of the five digits counts for the number of turns aro
each of the branch points [9]). Between the third (K̄N) and fourth
(η�) thresholds, the 11100 sheet maps into the FRS, and thus i
sheet, the one which enters into the definition of SRS of Ref.
Despite of this, it is indeed the narrow (ΓR ≈ 20 MeV) pole located
in the unphysical 11000 sheet, with large couplings to theπ
, π�
and specially to thēKN channels, and placed very close above
K̄N threshold, the one which has an important influence on
scattering for energies in the neighborhood of theK̄N threshold.
Actually, the modulus of the scattering matrix, for all open chann
at these energies, presents a peak, with an appreciable gap
first derivative (since the pole is placed above the third thresh
(K̄N), but it is found in the 11000 sheet) which is clearly due to
narrow pole listed in the table. There exists also a pole in the 11
sheet (MR = 1466,ΓR = 574) MeV. It is above thēKN threshold
and has a large coupling to the K� channel. This very broad pol
is precisely the one quoted in Ref. [11], but it is placed so far fr
the scattering line, the K� threshold (≈ 1810 MeV) is also so far
from the region of about 1500 MeV, that it cannot compete with
narrow one found in the 11000 sheet, and it does not influence
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Table 1
Experimental data, from Ref. [17] (PDG), and theoretical results
several resonances. When possible we always quote PDG esti
for masses, widths and BR. If the latter ones do not exist, we q
results from the most recent paper among all quoted in [17].
following ratios, also given in PDG,Γ (K̄�)/Γ (K̄
)= 0.75± 0.39
and Γ (π�)/Γ (K̄�) < 0.09 for the�(1690) are of interest, as
well. For the case of the N(1535) resonance, we quote the PD
pole position. From the theoretical side, we look for poles in
SRS, as defined in [9] (see also footnote 2). Residues at the
for each meson–baryon channel give the respective couplings
branching ratios as defined in Section II.D of [10] (note that
T matrix define here (Eq. (1)), coincides with thet matrix used in
[10]). Finally, in the last column (gb

i
) we give the couplings of the

resonances to each channel close to the heavy SU(3) limit (x = 0.98,
in Eq. (5)), where all of them become bound states. Besides to
states presented in the table, in the heavy SU(3) limit there are
more bound states: additionalN and� states. Their couplings to th
different channels (we keep the ordering established in the table
(2.6,−0.5,1.5,−0.5) and(−1.1,1.5,0.7,−1.1,2.1) respectively

(I, S) MR [MeV] |gi |2 φi BR(exp) gb
i

Resonance [MeV] ΓR [MeV] [Rad] [%]

( 1
2 ,0) [πN] 0.1 1.1 45±10 −0.2

N(1535)**** [ηN] 4.7 2.7 42±13 −1.6
M = 1505± 10 1500 [K
] 4.2 6.2 0 0.7
Γ = 170± 80 64 [K�] 11.4 6.0 0 2.5

(0,−1) [π�] 2.3 4.4 100 2.0

(1405)**** [K̄N] 9.3 0.3 0 2.0
M = 1406± 4 1409 [η
] 2.6 0.1 0 1.1
Γ = 50± 2 34 [K�] 0.1 4.3 0 0.5

(0,−1) [π�] 0.04 1.9 40±15 −1.3

(1670)**** [K̄N] 0.29 5.1 25±5 1.2
M = 1670± 10 1663 [η
] 0.99 3.4 17±7 −0.8
Γ = 35± 15 12 [K�] 9.69 0.1 0 2.4

(0,−1) [π�] 8.2 5.7 100 2.4

(?) ? [K̄N] 5.0 2.2 0 −2.0
M =? 1363 [η
] 0.5 1.6 0 −1.4
Γ =? 115 [K�] 0.3 5.5 0 2.0

(1,−1) [π
] 4.6 6.1 seen 0.8
�(1620)** [π�] 3.1 0.6 seen 2.1
M ≈ 1620 1505 [K̄N] 12.3 3.7 22±2 −2.0
Γ = 87± 19 21 [η�] 3.9 6.1 0 0.8

see footnote 2[K�] 0.5 3.5 0 0.1

( 1
2 ,−2) [π�] 7.5 5.6 seen 2.6

�(1620)* [K̄
] 5.2 2.8 seen −1.5
M ≈ 1620 1565 [K̄�] 0.7 2.6 0 −0.8
Γ = 23 247 [η�] 0.3 4.9 0 0.3

( 1
2 ,−2) [π�] 0.02 0.1 seen −0.1

�(1690)*** [K̄
] 0.16 6.0 seen 0.9
M = 1690± 10 1663 [K̄�] 5.15 3.1 seen −2.5
Γ = 10± 6 4 [η�] 2.28 3.2 0 −1.7
find two resonances, which can clearly be identified
the�(1690) and�(1620) resonances. Of particula
interest is the signal for the�(1690) resonance
where we find a quite small (large) coupling to t
π� (K̄�) channel, which explains the smallness
the experimental ratio,Γ (π�)/Γ (K̄�) < 0.09 [17]
despite of the significant energy difference betwe
the thresholds for theπ� andK̄� channels. Thus, thi
work widely improves the conclusions of Ref. [12
since we also address here the�(1690) resonance
and determine its spin-parity quantum numbers (JP =
1/2−). On the other hand, we also find a third

resonance, not included in the PDG yet, placed a
below theK̄N threshold and with a large couplin
to theπ� channel. This confirms the findings of th
recent work of Ref. [11], where the chiral dynami
of the two
(1405) states is studied. The existen
of the second
(1405) was firstly pointed out in
Refs. [10,18].

To explore the quark mass dependence of
resonances, we increase the averagedup and down
quark masses, but keep fixed the antikaon m
A parameterx is introduced in terms of which the pio
mass varies as

(5)m2
π

∣
∣
SU(3) =m2

π + x
(
m2

K −m2
π

)
, x ∈ [0,1].

A pair (m2
K,m

2
π |SU(3)) determines theη meson mass

via the GOR relation. Given the SU(3) symme
breaking parametersb0, bD and bF , the masses o
the baryon octet (N(940),
(1115), �(1190) and
�(1320)) are also determined. In the limitx = 1 our
SU(3) pion is as heavy as the real kaon, while wh
x = 0 the physical world is recovered, up to som
minor mass differences due to imprecisions of
GOR and baryon splitting formulas.

For the SU(3) symmetricx = 1 case, where al
baryons (mesons) have a common massM (m),
the T matrix has poles in the FRS (bound state
For each IS channel, the position of the pole

physical scattering at all (chiral corrections reduce its width and
its mass closer to the K� threshold indicating that it is the�(1750)
resonance [5]). There exists a third pole also in the 11000 s
(MR = 1446,ΓR = 343) MeV, with a large coupling toπ�, and
located also just above thēKN threshold. Its influence on physica
scattering processes is limited due to the presence of the narr
pole listed in the table, but it might be identified to the�(1480)
bump [17].
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Fig. 1. Masses and decay widths of two octets and a single
baryon states for several values of the pion mass. For each ba
state we plot eleven points, which correspond to eleven equ
spaced values ofx (Eq. (5)) ranging from 1 (first point from th
right) to 0 (first point from the left). Widths of different baryo
resonances are presented multiplied or divided by the factor give
brackets, in the legend of the plots. To disentangle among diffe
states, for some of them, the widths have been shifted by cons
factors. Lines have been plotted just to guide the eye.

sb , is such that the dimensionless functionβ(s) =
2f 2/(J (

√
s)(

√
s −M)), ats = sb, becomes an eigen

value of the real and symmetric matrixDIS . The
eigenvalues of the latter matrices are 2,0,−3,−3
for both IS = (1/2,0) and IS = (1/2,−2), and
2,−6,−3,−3 and 2,0,0,−3,−3 for IS = (0,−1)
and IS = (1,−1), respectively. Sinceβ(s) is nega-
tive between(M −m)2 and(M +m)2, only negative
eigenvalues can be matched. Thus, we end up,
two degenerate octets of massM8 = 1691.83 MeV
(eigenvalue−3, which has a multiplicity of two in al
IS sectors) and a singlet of massM0 = 1604.21 MeV
(eigenvalue−6 in the 
 channel). Thus, we con
firm here the findings of Ref. [11] on the nature
the third
 listed in Table 1. Slightly away of th
SU(3) symmetric world (x ≈ 0.98), we can determin
the couplings of the baryon states to each bary
meson channel (last column of Table 1). The s
of the squared of the couplings is given byg2

8,0 =
λ8,0/(2M8,0J (M8,0)β

′(M2
8,0)), whereλ8,0 = −3 and

−6, respectively. We findg2
8 = 9.65 andg2

0 = 15.83.
In Fig. 1 we show the chiral behavior of each of t
members of the two octets and a singlet states.
mentioned above, forx = 0 one recovers the phys
cal world, though the results presented in the fig
(specially for the widths) do not coincide with tho
given in Table 1. The differences are produced by
ative changes between the position of thresholds
the location of the resonances, due to small differen
among the real meson and baryon masses (used i
ble 1) and those predicted by the GOR and bar
splitting formula. Besides, the identification in Fig.
of the N(1650) and the�(1480) bump is subject to
all uncertainties discussed so far. Finally in the ‘lig
SU(3) limit with mπ = mK � 140 MeV, the function
β(s), defined above, is smaller than−6 in the whole
interval [(M − m)2, (M + m)2] and therefore boun
states do no exist.
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