On a multivariable extension of Jacobi matrix polynomials

Fatma Taşdelena, Bayram Çekimb, Rabia Aktaşa,*

a Ankara University, Faculty of Science, Department of Mathematics, Tandoğan TR-06100, Ankara, Turkey
b Gazi University, Faculty of Science and Arts, Department of Mathematics, Teknikokullar TR-06500, Ankara, Turkey

\textbf{Article history:}
Received 13 March 2010
Received in revised form 12 October 2010
Accepted 15 February 2011

\textbf{Keywords:}
Jacobi matrix polynomials
Generating matrix function
Recurrence relation
Multilinear and multilateral generating matrix functions

\textbf{Abstract}

The classical Jacobi matrix polynomials only for commutative matrices were first studied by Defez et al. [E. Defez, L. Jódar, A. Law. Jacobi matrix differential equation, polynomial solutions and their properties, Comput. Math. Appl. 48 (2004) 789–803]. The main aim of this paper is to construct a multivariable extension with the help of the classical Jacobi matrix polynomials (JMPs). Generating matrix functions and recurrence relations satisfied by these multivariable matrix polynomials are derived. Furthermore, general families of multilinear and multilateral generating matrix functions are obtained and their applications are presented.

\section{Introduction}

Special matrix functions seen on statistics, Lie group theory and number theory are well known in [1–3]. Recently, the classical orthogonal polynomials have been extended to the orthogonal matrix polynomials [4–8]. Furthermore, one can see more papers concerning orthogonal matrix polynomials (see [9–12]). In [13], these polynomials are orthogonal as examples of right orthogonal matrix polynomial sequences for appropriate right matrix moment functions of integral type. Hermite matrix polynomials have been introduced and studied in [14–17] for matrices in $\mathbb{C}^{N \times N}$ whose eigenvalues are all situated in the right open half-plane. In [18], the authors introduced and studied Jacobi matrix polynomials. Jódar and Cortés introduced and studied the hypergeometric matrix function $F(A, B; C; z)$ and the hypergeometric matrix differential equation in [19] and the explicit closed form general solution of it has been given in [20]. In [5], the authors introduced the Chebyshev matrix polynomials and gave some results with Chebyshev matrix polynomials. In [8], the authors studied a new system of matrix polynomials, namely the Gegenbauer matrix polynomials (see also [21]).

Throughout this paper, for a matrix $A \in \mathbb{C}^{N \times N}$, its spectrum is denoted by $\sigma(A)$. The two-norm of A, which will be denoted by $\|A\|$, is defined by

$$
\|A\| = \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2},
$$

where, for a vector $y \in \mathbb{C}^N$, $\|y\|_2 = (y^T y)^{1/2}$ is the Euclidean norm of y. I and θ will denote the identity matrix and the null matrix in $\mathbb{C}^{N \times N}$, respectively. For a matrix A in $\mathbb{C}^{N \times N}$, its spectrum $\sigma(A)$ denotes the set of all eigenvalues of A. We say that a matrix A in $\mathbb{C}^{N \times N}$ is a positive stable matrix, if $\text{Re}(\lambda) > 0$ for all $\lambda \in \sigma(A)$. If A_0, A_1, \ldots, A_n are elements of $\mathbb{C}^{N \times N}$ and $A_n \neq \theta$, then we call

$$
P(x) = A_n x^n + A_{n-1} x^{n-1} + \cdots + A_1 x + A_0
$$

* Corresponding author.
E-mail addresses: tasdelen@science.ankara.edu.tr (F. Taşdelen), bayramcekim@gazi.edu.tr (B. Çekim), raktas@science.ankara.edu.tr (R. Aktaş).

0898-1221/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
a matrix polynomial of degree \(n \) in \(x \). From \([19]\), one can see
\[
(P)_n = P(P + l)(P + 2l) \cdots (P + (n - 1)l); \quad n \geq 1; \quad (P)_0 = I.
\] (1.1)

From the relation (1.1), we see that
\[
\frac{(-1)^k}{(n-k)!} \frac{(-n!)_k}{n!} \quad 0 \leq k \leq n.
\]

The hypergeometric matrix function \(F(A; B; C; z) \) has been given in the form \([19]\)
\[
F(A; B; C; z) = \sum_{n=0}^{\infty} \frac{(A)_n(B)_n}{n!} [(C)_n]^{-1} z^n
\]
for matrices \(A, B \) and \(C \) in \(\mathbb{C}^{N \times N} \) such that \(C + nl \) is invertible for all integer \(n \geq 0 \) and for \(|z| < 1 \). For any matrix \(A \) in \(\mathbb{C}^{N \times N} \), the authors exploited the following relation due to \([19]\)
\[
(1-x)^{-A} = \sum_{n=0}^{\infty} \frac{(A)_n}{n!} x^n, \quad |x| < 1.
\]

If \(f(z) \) and \(g(z) \) are holomorphic functions of the complex variable \(z \), which are defined in an open set \(\Omega \) of the complex plane and \(A \) is a matrix in \(\mathbb{C}^{N \times N} \) with \(\sigma(A) \subset \Omega \), then from the properties of the matrix functional calculus in \([22]\), it follows that:
\[
f(A)g(A) = g(A)f(A).
\]

Hence, if \(B \in \mathbb{C}^{N \times N} \) is a matrix for which \(\sigma(B) \subset \Omega \) and \(AB = BA \) then
\[
f(A)g(B) = g(B)f(A).
\]

Furthermore, in \([18]\), the reciprocal scalar Gamma function, \(\Gamma^{-1}(z) = 1/\Gamma(z) \), is an entire function of the complex variable \(z \). Thus, for any \(C \in \mathbb{C}^{N \times N} \), the Riesz–Dunford functional calculus \([22]\) shows that \(\Gamma^{-1}(C) \) is well defined and is, indeed, the inverse of \(\Gamma(C) \). Hence: if \(C \in \mathbb{C}^{N \times N} \) is such that \(C + nl \) is invertible for every integer \(n \geq 0 \), then
\[
(C)_n = \Gamma(C + nl) \Gamma^{-1}(C).
\]

The Jacobi matrix polynomials have been given as in \([18]\) so that \(p_n^{(A,B)}(x) \) for parameter matrices \(A \) and \(B \) whose eigenvalues, \(z \), all satisfy \(\text{Re}(z) > -1 \). For any positive integer \(n \), the \(n \)th Jacobi matrix polynomials \(p_n^{(A,B)}(x) \) are defined by
\[
p_n^{(A,B)}(x) = \frac{(-1)^n}{n!} F \left(A + B + (n + 1)l, -nl; B + l; \frac{1+x}{2} \right) (B + l)_n
\]
or
\[
p_n^{(A,B)}(x) = \frac{1}{n!} F \left(A + B + (n + 1)l, -nl; A + l; \frac{1-x}{2} \right) (A + l)_n.
\]

Also, these matrix polynomials satisfy the following equality:
\[
\int_{-1}^{1} (1-x)^A (1+x)^B p_n^{(A,B)}(x)p_m^{(A,B)}(x) \, dx
\]
\[
= \begin{cases}
\frac{2^{A+B+1}}{n!} \Gamma(A + B + (2n + 1)l) \Gamma^{-1}(A + B + (n + 1)l) \\
\quad \times \Gamma(B + (n + 1)l) \Gamma(A + (n + 1)l) \Gamma^{-1}(A + B + 2(n + 1)l), & m = n \\
0, & m \neq n
\end{cases}
\]
(1.2)

where \(A \) and \(B \) belong to \(\mathbb{C}^{N \times N} \) satisfy
\[
\text{Re}(z) > -1 \quad \text{for} \quad z \in \sigma(A), \quad \text{Re}(\eta) > -1 \quad \text{for} \quad \eta \in \sigma(B), \quad AB = BA.
\]

We organize the paper as follows:

In Section 2, we construct a multivariable extension of Jacobis matrix polynomials which were first studied by Defez et al. only for commutative and show that these matrix polynomials are orthogonal with respect to weight matrix function. The special case of \(s = 1 \) in this extension gives Jacobis matrix polynomials given by Defez et al. In Section 3, generating matrix functions are obtained for the multivariable Jacobis matrix polynomials and with the help of generating matrix function, several recurrence formulas for the multivariable Jacobis matrix polynomials (MJMPs) are given. Multilinear and multilateral generating matrix functions are derived for MJMPs in Section 4. In Section 5, some applications of the results in Section 4 are presented. The special cases of \(s = 1 \) in Sections 3–5 give some recurrence relations, various bilinear and bilateral generating functions for the Jacobis matrix polynomials \(p_n^{(A,B)}(x) \).
2. Multivariable extension of Jacobi matrix polynomials

With the help of the Jacobi matrix polynomials, a systematic investigation of a multivariable extension of the Jacobi matrix polynomials $P_n^{(A,B)}(x)$ is defined by

$$
P_n^{(A,B)}(x) = P_{n_1}^{(A_1,B_1)}(x_1) \ldots P_{n_s}^{(A_s,B_s)}(x_s)
$$

(2.1)

where $x = (x_1, \ldots, x_s)$, $A = (A_1, \ldots, A_s)$, $B = (B_1, \ldots, B_s)$, A_i and B_i are matrices in $\mathbb{C}^{N \times N}$ satisfying the spectral conditions $\text{Re}(z_i) > -1$ for each eigenvalue $z_i \in \sigma(A_i)$ and $\text{Re}(\eta_i) > -1$ for each eigenvalue $\eta_i \in \sigma(B_i)$ for $1 \leq i \leq s$ and $n = n_1 + \cdots + n_s$; $n_1, \ldots, n_s \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and all matrices are commutative. The multivariable Jacobi matrix polynomials $P_n^{(A,B)}(x)$ (MJMPs) are orthogonal with respect to the weight function

$$
\omega(x, A, B) = \omega(x_1, \ldots, x_s; A_1, \ldots, A_s; B_1, \ldots, B_s)
$$

$$
= \omega_1(x_1, A_1, B_1) \ldots \omega_s(x_s, A_s, B_s)
$$

$$
= (1-x_1)^{A_1} (1+x_1)^{B_1} \cdots (1-x_s)^{A_s} (1+x_s)^{B_s}
$$

over the domain

$$
\Omega = \{(x_1, \ldots, x_s) : -1 < x_i < 1; \ i = 1, 2, \ldots, s\}
$$

In fact, by (1.2), we have

$$
\int_{\Omega} \omega(x, A, B) P_n^{(A,B)}(x) P_m^{(A,B)}(x) \, dx
$$

$$
= \int_{-1}^{1} (1-x_1)^{A_1} (1+x_1)^{B_1} P_{n_1}^{(A_1,B_1)}(x_1) P_{m_1}^{(A_1,B_1)}(x_1) \, dx_1
$$

$$
\times \cdots \times \int_{-1}^{1} (1-x_s)^{A_s} (1+x_s)^{B_s} P_{n_s}^{(A_s,B_s)}(x_s) P_{m_s}^{(A_s,B_s)}(x_s) \, dx_s
$$

$$
= \prod_{i=1}^{s} \left\{ \frac{2^{A_i+B_i+l}}{n_i!} \Gamma(A_i + B_i + (2n_i + 1) l) \Gamma^{-1}(A_i + B_i + n_i) \delta_{m_i,n_i} \right.
$$

$$
\left. \times \Gamma(B_i + (n_i + 1) l) \Gamma(A_i + (n_i + 1) l) \Gamma^{-1}(A_i + B_i + 2(n_i + 1) l) \right\}
$$

where $dx = dx_1, \ldots, dx_s$ and all matrices are commutative.

Thus, the following result has been established:

Theorem 2.1. The multivariable JMPS $P_n^{(A,B)}(x)$ are orthogonal with respect to the weight matrix function

$$
\omega(x, A, B) = (1-x_1)^{A_1} (1+x_1)^{B_1} \cdots (1-x_s)^{A_s} (1+x_s)^{B_s}
$$

over the domain

$$
\Omega = \{(x_1, \ldots, x_s) : -1 < x_i < 1; \ i = 1, 2, \ldots, s\}
$$

where A_i and B_i are matrices in $\mathbb{C}^{N \times N}$ satisfying spectral conditions $\text{Re}(z_i) > -1$ for each eigenvalue $z_i \in \sigma(A_i)$ and $\text{Re}(\eta_i) > -1$ for each eigenvalue $\eta_i \in \sigma(B_i)$ for $1 \leq i \leq s$ and all matrices are commutative.

3. Generating matrix functions and recurrence relations for MJMPs

In [4], it was shown that Jacobi matrix polynomials (JMPs) are generated by

$$
\sum_{n=0}^{\infty} (A + B + I)_n P_n^{(A,B)}(x) \left[(A + I)_n\right]^{-1} t^n = (1-t)^{-(A+B+I)} F\left(\frac{A+B+I}{2}, \frac{A+B+2I}{2}; A+I; \frac{2t(x-1)}{(1-t)^2}\right)
$$

where all eigenvalues z of the matrices A and B of the Jacobi matrix polynomials $P_n^{(A,B)}(x)$ satisfy the condition $\text{Re}(z) > -1$ and $|t| < 1$. On the other hand, other generating matrix function for JMPs is as follows [4]:

$$
\sum_{n=0}^{\infty} P_n^{(A,B)}(x) t^n = F_4\left(I + B, I + A; I + A, I + B; \frac{(x-1)t}{2}, \frac{(x+1)t}{2}\right)
$$
where $AB = BA$. Here $F_4(A, B; C, D; x, y)$ is the matrix version of the Appell’s function of two variables which is defined by

$$F_4(A, B; C, D; x, y) = \sum_{n,k=0}^{\infty} (A)_{n+k} (B)_{n+k} (D)_{n}^{-1} (C)_{k}^{-1} \frac{x^k y^n}{k! n!} \left(\sqrt{x} + \sqrt{y} < 1 \right)$$

where $A, B, C, D \in C^{N \times N}$ and $C + nl$ and $D + nl$ are invertible for every integer $n \geq 0$. The other one is

$$\sum_{n=0}^{\infty} (C_{n+1})(D_{n})^{-1} p_{n}^{(A,B)}(x)(I + A)^{-1} t^n = F_4 \left(C, D; I + A, I + B; \frac{(x - 1) t}{2}, \frac{(x + 1) t}{2} \right)$$

where $|t| < 1, A_i$ and B_i are matrices in $C^{N \times N}$ satisfying spectral conditions $\Re(z_i) > -1$ for each eigenvalue $z_i \in \sigma(A_i)$ and $\Re(\eta_i) > -1$ for each eigenvalue $\eta_i \in \sigma(B_i)$ for $1 \leq i \leq s$, all matrices are commutative and

$$\prod_{i=1}^{s} \left((A_i + B_i + I)_{n} \left[(A_i + I)_{n} \right]^{-1} \right) = (A + B + I)_{n} \left[(A + I)_{n} \right]^{-1}.$$

Theorem 3.2. For the matrix polynomials $p_{n}^{(A,B)}(x)$, we have

$$\sum_{n_1, \ldots, n_s = 0}^{\infty} p_{n}^{(A,B)}(x) t_1^{n_1}, \ldots, t_s^{n_s} = \prod_{i=1}^{s} \left(F_4 \left(I + B_i, I + A; I + A_i, I + B_i; \frac{(x_i - 1) t_i}{2}, \frac{(x_i + 1) t_i}{2} \right) \right)$$

where A_i and B_i are matrices in $C^{N \times N}$ satisfying spectral conditions $\Re(z_i) > -1$ for each eigenvalue $z_i \in \sigma(A_i)$ and $\Re(\eta_i) > -1$ for each eigenvalue $\eta_i \in \sigma(B_i)$ for $1 \leq i \leq s$, all matrices are commutative.

Theorem 3.3. Assume that all eigenvalues λ of matrices $A_i, B_i, C, D_i \in C^{N \times N}$ for $i = 1, 2, \ldots, s$ satisfy the condition $\Re(\lambda) > -1$ and all matrices are commutative. For MJMPs $p_{n}^{(A,B)}(x)$, we have the following generating matrix function

$$\sum_{n_1, \ldots, n_s = 0}^{\infty} (C_{n})_{n} (D_{n})_{n}^{-1} p_{n}^{(A,B)}(x) t_1^{n_1}, \ldots, t_s^{n_s} = \prod_{i=1}^{s} \left(F_4 \left(C_i, D_i; I + A_i, I + B_i; \frac{(x_i - 1) t_i}{2}, \frac{(x_i + 1) t_i}{2} \right) \right)$$

where

$$(C_{n})_{n} (D_{n})_{n}^{-1} = \prod_{i=1}^{s} \left((C_i)_{n_i} (D_i)_{n}^{-1} \right)$$

and

$$\left(\sqrt{\frac{(x_i - 1) t_i}{2}} + \sqrt{\frac{(x_i + 1) t_i}{2}} < 1; \quad i = 1, 2, \ldots, s \right).$$

Theorem 3.4. For the multivariable Jacobi matrix polynomials $P_{n}^{(A,B_1,\ldots,B_s)}(x)$, we have for $|t| < 1$

$$\sum_{n=0}^{\infty} S_{n}^{(A_1, \ldots, A_s; B_1, \ldots, B_s)} (x_1, \ldots, x_s) t^n = \prod_{i=1}^{s} \left(1 - t \right)^{-(A_i + B_i + I)} F_4 \left(\frac{A_i + B_i + I}{2}, \frac{A_i + B_i + 2l}{2}; A_i + I; \frac{2t(x_i - 1)}{(1 - t)^2} \right)$$

using the above expressions, we can give the following results.

Theorem 3.1. Multivariable Jacobi matrix polynomials (MJMPs) $P_{n}^{(A,B)}(x)$ are generated by

$$\sum_{n_1, \ldots, n_s = 0}^{\infty} p_{n}^{(A,B)}(x) t_1^{n_1}, \ldots, t_s^{n_s} = \prod_{i=1}^{s} \left(F_4 \left(I + B_i, I + A; I + A_i, I + B_i; \frac{(x_i - 1) t_i}{2}, \frac{(x_i + 1) t_i}{2} \right) \right)$$

where $|t| < 1, A_i$ and B_i are matrices in $C^{N \times N}$ satisfying spectral conditions $\Re(z_i) > -1$ for each eigenvalue $z_i \in \sigma(A_i)$ and $\Re(\eta_i) > -1$ for each eigenvalue $\eta_i \in \sigma(B_i)$ for $1 \leq i \leq s$, all matrices are commutative and

$$\prod_{i=1}^{s} \left((A_i + B_i + I)_{n} \left[(A_i + I)_{n} \right]^{-1} \right) = (A + B + I)_{n} \left[(A + I)_{n} \right]^{-1}.$$
where
\[S_n^{(A_1, \ldots, A_k; B_1, \ldots, B_k)}(x_1, \ldots, x_n) = \sum_{n=0}^{\infty} \sum_{n\geq 0} \left\{ K(n_1, \ldots, n_{s-1}) \frac{p^{(A_1, \ldots, A_k; B_1, \ldots, B_k)}(n_1, \ldots, n_{s-1})}{n^\frac{1}{2}} \right\} ; \]
\[K(n_1, \ldots, n_{s-1}) = (A_1 + B_1 + I)_{n-(n_1+\cdots+n_{s-1})} \cdots (A_k + B_k + I)_{n_{s-1}}. \]
\[N(n_1, \ldots, n_{s-1}) = \left[(A_1 + I)_{n_{s-1}} \right]^{-1} \cdots \left[(A_k + I)_{n_{s-1}} \right]^{-1}. \]
and also A_i and B_i are matrices in \(\mathbb{C}^{N \times N} \) satisfying spectral conditions \(\Re(z_i) > -1 \) for each eigenvalue \(z_i \in \sigma(A_i) \) and \(\Re(\eta_j) > -1 \) for each eigenvalue \(\eta_j \in \sigma(B_i) \) for \(1 \leq i \leq s \), all matrices are commutative.

Theorem 3.5. For the matrix polynomials MJMPs \(p_n^{(A, B)}(x) \), we have hypergeometric matrix representations as follows:
\[
p_n^{(A, B)}(x) = \prod_{i=1}^{s} \left\{ \frac{(-1)^n}{n!} F \left(\frac{A_i + B_i + (n_i + 1) I}{2} \right) \right\}.
\]
or
\[
p_n^{(A, B)}(x) = \prod_{i=1}^{s} \left\{ \frac{1}{n!} F \left(\frac{A_i + B_i + (n_i + 1) I}{2} \right) \right\}.
\]
In order to obtain some recurrence relations, we need the following lemma.

Lemma 3.6. Let a generating matrix function for \(g_{n_1, \ldots, n_s}(x, C) \) be
\[
(1 - t_1)^{-C_1} \cdots (1 - t_s)^{-C_s} \Psi\left(\frac{-4x_1t_1}{1-t_1^2}, \ldots, \frac{-4x_st_s}{1-t_s^2} \right) = \sum_{n_1, \ldots, n_s=0}^{\infty} g_{n_1, \ldots, n_s}(x, C) \prod_{i=1}^{s} t_i^{n_i}.
\]
where \(x = (x_1, \ldots, x_s) \), \(C = (C_1, \ldots, C_s) \) and \(g_{n_1, \ldots, n_s}(x, C) \) is a matrix polynomial of degree \(n_i \) with respect to \(x_i \) (of total degree \(n = n_1 + \cdots + n_s \)), provided that
\[
\Psi(u_1, \ldots, u_s) = \Psi_1(u_1), \ldots, \Psi_s(u_s), \quad u_i = \frac{-4x_1t_1}{1-t_1^2}, \quad \psi \neq 0.
\]
Then we have
(i) \(x_i \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_s}(x, C) - \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_s}(x, C) \)
\[
= -C_i \prod_{k=0}^{n_i-1} g_{n_1, \ldots, n_s}(x, C) + 2x_i \prod_{k=0}^{n_i-1} \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_s}(x, C), \quad n_i \geq 1
\]
(ii) \(x_i \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_s}(x, C) - \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_s}(x, C) \)
\[
= -C_i \prod_{k=0}^{n_i-1} g_{n_1, \ldots, n_s}(x, C) + 2x_i \prod_{k=0}^{n_i-1} \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_s}(x, C), \quad n_i \geq 1
\]
(iii) \(x_i \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_s}(x, C) - \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_s}(x, C) \)
\[
= \sum_{k=0}^{n_i-1} (-1)^{n_i-k} C_i^{k} \prod_{k=0}^{n_i-1} g_{n_1, \ldots, n_s}(x, C), \quad n_i \geq 1
\]
where \(C_i C_j = C_j C_i \) for \(i, j = 1, \ldots, s \).

Proof. In order to derive (3.1)-(3.3), if we differentiate
\[
G(x, t, C) = (1 - t_1)^{-C_1} \cdots (1 - t_s)^{-C_s} \Psi\left(\frac{-4x_1t_1}{1-t_1^2}, \ldots, \frac{-4x_st_s}{1-t_s^2} \right)
\]
with respect to \(x_i \) and \(t_i \), we have
\[
x_i (1 + t_i) \frac{\partial G}{\partial x_i} - t_i (1 + t_i) \frac{\partial G}{\partial t_i} = -C_i t_i G.
\]
Eq. (3.4) can be rewritten in the forms
\[\frac{\partial G}{\partial x_i} - t_i \frac{\partial G}{\partial t_i} - t_i \frac{\partial G}{\partial t_i} G - x_i \frac{\partial G}{\partial x_i} = -C_i t_i G - \frac{t_i^2}{2} \frac{\partial G}{\partial t_i} G, \]
(3.5)
\[\frac{\partial G}{\partial x_i} - t_i \frac{\partial G}{\partial t_i} = -C_i t_i G - 2x_i t_i \frac{\partial G}{\partial x_i}, \]
(3.6)
\[\frac{\partial G}{\partial x_i} = -\frac{C_i t_i}{1 + t_i} G - \frac{2t_i^2}{1 + t_i} \frac{\partial G}{\partial x_i}. \]
(3.7)

Since
\[G(x, t, C) = \sum_{n_1, \ldots, n_t=0}^{\infty} g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_s^{n_s}, \]
(3.5) yields that
\[
\begin{align*}
\sum_{n_1, \ldots, n_t=0}^{\infty} \left[x_i \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_t}(x, C) - n_i g_{n_1, \ldots, n_t}(x, C) \right] t_1^{n_1} \ldots t_s^{n_s} \\
= -C_i \sum_{n_1, \ldots, n_t=0}^{\infty} g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_s^{n_s} - x_i \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_s^{n_s} \\
&+ \sum_{n_1, \ldots, n_t=0}^{\infty} n_i g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_s^{n_s} \\
&+ \sum_{n_1, \ldots, n_t=0}^{\infty} \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_s^{n_s}
\end{align*}
\]
which leads to (3.1).
Eq. (3.6) implies that
\[
\begin{align*}
\sum_{n_1, \ldots, n_t=0}^{\infty} \left[x_i \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_t}(x, C) - n_i g_{n_1, \ldots, n_t}(x, C) \right] t_1^{n_1} \ldots t_s^{n_s} \\
= -C_i \left(\sum_{k=0}^{\infty} t_1^{k+1} \right) \left(\sum_{n_1, \ldots, n_t=0}^{\infty} g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_s^{n_s} \right) - 2x_i \left(\sum_{k=0}^{\infty} \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_s^{n_s} \right)
\end{align*}
\]
\[
\begin{align*}
= -C_i \sum_{n_1, \ldots, n_t=0}^{\infty} \sum_{k=0}^{\infty} g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_1^{n_{t-1}} \frac{n_i}{1+k} t_1^{n_1+1} \frac{n_i}{1+k} t_1^{n_1+1} \ldots t_s^{n_s} \\
- 2x_i \sum_{n_1, \ldots, n_t=0}^{\infty} \sum_{k=0}^{\infty} \frac{\partial}{\partial x_i} g_{n_1, \ldots, n_t}(x, C) t_1^{n_1} \ldots t_1^{n_{t-1}} \frac{n_i}{1+k} t_1^{n_1+1} \frac{n_i}{1+k} t_1^{n_1+1} \ldots t_s^{n_s}
\end{align*}
\]
which leads to (3.2).
From (3.7), we obtain
\[
\sum_{n_1, \ldots, n_s=0}^{\infty} \left[x_i \frac{\partial}{\partial x_i} \mathbf{g}(x, C) - n_i \mathbf{g}(x, C) \right] t_i^{n_i} = 0, \quad i = 1, \ldots, s.
\]
\[
= C \left(\sum_{k=0}^{\infty} (-1)^{k+1} \mathbf{t}^k \right) \left(\sum_{n_1, \ldots, n_s=0}^{\infty} \mathbf{g}(x, C) t_i^{n_i} = 0 \right)
\]
\[
= 2 \left(\sum_{k=0}^{\infty} (-1)^{k+1} \mathbf{t}^k \right) \left(\sum_{n_1, \ldots, n_s=0}^{\infty} n_i \mathbf{g}(x, C) t_i^{n_i} = 0 \right)
\]
which gives (3.3). □

If we choose
\[
C_i = A_i + B_i + I; \quad \gamma_{n_i} = \frac{(I + A_i + B_i)_{2n_i} (I + A_i)^{-1}}{2^{2n_i} n_i !}
\]
in Lemma 3.6, we see that the matrix polynomial \(g_n \) is
\[
g_n(v) = (I + A + B)_n P_n^{A,B}(1 - 2v)(I + A)_n^{-1}
\]
\[
= \prod_{i=1}^{s} \left[\left(A_i + B_i + I \right)_{n_i} P_n^{A_i,B_i}(1 - 2v) \left((A_i + I)_{n_i} \right)^{-1} \right]
\]
where \(A_i \) and \(B_i \) (\(i = 1, 2, \ldots, s \)) are commutative matrices in \(C^{N \times N} \). Hence, Theorem 3.1 gives following results, when put in terms of \(x \) rather than \(v \). Under the light of the Lemma 3.6 and also considering (3.8), one can easily obtain the next results.

Theorem 3.7. For the matrix polynomials \(P_n^{A,B}(x) \), we have

(i) \((x_i - 1) \left[(A_i + B_i + n_i I) \frac{\partial P_n^{A,B}(x)}{\partial x_i} + \frac{\partial P_n^{A,B}(x)}{\partial x_i} \right] \)

\[
= (A_i + B_i + n_i I) \left[n_i P_n^{A,B}(x) - P_n^{A,B}(x) (A_i + n_i I) \right].
\]

(ii) \((x_i - 1) \frac{\partial P_n^{A,B}(x)}{\partial x_i} - n_i P_n^{A,B}(x) \)

\[
= - (A_i + B_i + I)^{-1} \sum_{k=0}^{n_i-1} \left[(A_i + B_i + I)_k \left((A_i + B_i + I)_k \right)^{-1} \right] \left((A_i + B_i + I)_k \right)
\]

\[
+ 2 \left(x_i - 1 \right) \frac{\partial P_n^{A,B}(x)}{\partial x_i} \left((A_i + B_i + I)_k \right)
\]

(iii) \((x_i - 1) \frac{\partial P_n^{A,B}(x)}{\partial x_i} - n_i P_n^{A,B}(x) = (A_i + B_i + I)^{-1} \sum_{k=0}^{n_i-1} \left[(A_i + B_i + I)_k \right], \)

where \(A_i \) and \(B_i \) are matrices in \(C^{N \times N} \) satisfying spectral conditions \(\text{Re}(z_i) > -1 \) for each eigenvalue \(z_i \in \sigma(A_i) \) and \(\text{Re}(\eta_i) > -1 \) for each eigenvalue \(\eta_i \in \sigma(B_i) \), all matrices are commutative and \(A_i + B_i + kI \) is invertible for every integer \(k \geq 0 \) for \(1 \leq i \leq s \).
Remark 3.1. For the case of \(s = 1 \) in (2.1), Jacobi matrix polynomials \(p_n^{(A,B)}(x) \) satisfy the following equations [4]:

\[
(x - 1) \left[(A + B + nI) \frac{d p_n^{(A,B)}(x)}{dx} + \frac{d p_n^{(A,B)}(x)}{dx} (A + nI) \right] = (A + B + nI) \left[n p_n^{(A,B)}(x) - p_{n-1}^{(A,B)}(x) (A + nI) \right],
\]

\[
(x - 1) \frac{d p_n^{(A,B)}(x)}{dx} - n p_n^{(A,B)}(x) = -(A + B + I)^{-1} \sum_{k=0}^{n-1} \left\{ (A + B + I) \left[(A + B + I) p_k^{(A,B)}(x) + 2(x - 1) \frac{d p_k^{(A,B)}(x)}{dx} \right] (I + A)^{-1} (A + I)^{-1} \left[(A + B + I) p_{n-k}^{(A,B)}(x) (I + A)^{-1} (A + I)^{-1} \right] \right\},
\]

where all eigenvalues \(z \) of the matrices \(A \) and \(B \) of the Jacobi matrix polynomials \(p_n^{(A,B)}(x) \) satisfy the condition \(\text{Re}(z) > -1 \) and \(A + B + nI \) is invertible for every integer \(n \geq 0 \).

4. Multilinear and multilateral generating matrix functions

In recent years, by making use of the familiar group-theoretic (Lie algebraic) method a certain mixed trilateral finite-series relationships have been proved for orthogonal polynomials (see, for instance, [23]). In this section, we derive several families of multilinear and multilateral generating matrix functions for the MJMPs without using Lie algebraic techniques but, with the help of the similar method as considered in [4,44].

Theorem 4.1. Corresponding to a non-vanishing function \(\Omega_\mu(y_1, \ldots, y_r) \) of \(r \) complex variables \(y_1, \ldots, y_r (r \in \mathbb{N}) \) and of complex order \(\mu \), let

\[
A_{\mu,v}(y_1, \ldots, y_r; z) := \sum_{k=0}^{\infty} a_k \Omega_{\mu+k}(y_1, \ldots, y_r) z^k
\]

(\(a_k \neq 0, \mu, v \in \mathbb{C} \)) and

\[
\Theta_{n,p,\mu,v}(x; y_1, \ldots, y_r; \zeta) := \sum_{k=0}^{[n/p]} a_k \cdot \left(\begin{array}{c} n_k p_k \ldots \eta_k \end{array} \right) \Omega_{\mu+k}(y_1, \ldots, y_r) \zeta^k
\]

where \(n = n_1 + \cdots + n_s \), \(n_1, \ldots, n_s, p \in \mathbb{N}, x = (x_1, \ldots, x_s), A = (A_1, \ldots, A_s), B = (B_1, \ldots, B_s) \) and \(A_i \) and \(B_i \) are matrices in \(\mathbb{C}^{n_i \times n_i} \) satisfying the spectral conditions \(\text{Re}(z_i) > -1 \) for each eigenvalue \(z_i \in \sigma(A_i) \) and \(\text{Re}(\eta_i) > -1 \) for each eigenvalue \(\eta_i \in \sigma(B_i) \) for \(1 \leq i \leq s \). All matrices are commutative. Then we have

\[
\sum_{n_1, \ldots, n_s=0}^{\infty} \Theta_{n,p,\mu,v}(x; y_1, \ldots, y_r; \frac{\eta_i}{t_i}) t_1^{n_1} \ldots t_s^{n_s} = \prod_{i=1}^{s} F_d \left(I + B_i, I + A_i; I + A_i, I + B_i; \frac{(x_i - 1) t_i}{2}, \frac{(x_i + 1) t_i}{2} \right)
\]

\[
\times A_{\mu,v}(y_1, \ldots, y_r; \eta) \left(\sqrt{\frac{(x_i - 1) t_i}{2}} + \sqrt{\frac{(x_i + 1) t_i}{2}} < 1; \ i = 1, 2, \ldots, s \right)
\]

provided that each member of (4.3) exists.

Proof. For convenience, let \(S \) denote the first member of the assertion (4.3) of Theorem 4.1. Then, plugging the polynomials

\[
\Theta_{n,p,\mu,v}(x; y_1, \ldots, y_r; \frac{\eta}{t_i})
\]
from the definition (4.2) into the left-hand side of (4.3), we obtain

\[S = \sum_{n_1, \ldots, n_t=0}^{\infty} \left(\sum_{k=0}^{[n/p]} a_k \Omega_{\mu+v_k}(y_1, \ldots, y_r) \eta^k t_1^{n_1} \cdots t_t^{n_t} \right). \]

Upon changing the order of summation in (4.4), if we replace \(n_t \) by \(n_t + pk \), we can write

\[S = \sum_{n_1, \ldots, n_t=0}^{\infty} \left(\sum_{k=0}^{[n/p]} a_k \Omega_{\mu+v_k}(y_1, \ldots, y_r) \eta^k t_1^{n_1} \cdots t_t^{n_t} \right). \]

which completes the proof of Theorem 4.1. □

Theorem 4.2. Corresponding to an identically non-vanishing function \(\Omega_{\mu}(y_1, \ldots, y_r) \) of \(r \) complex variables \(y_1, \ldots, y_r (r \in \mathbb{N}) \) and of complex order \(\mu \), let

\[A_{\mu, v}(y_1, \ldots, y_r; z) := \sum_{k=0}^{\infty} a_k \Omega_{\mu+v_k}(y_1, \ldots, y_r) z^k \quad (a_k \neq 0, \mu, v \in \mathbb{C}) \]

and

\[\Theta_{n, p, \mu, v}(x_1, \ldots, x_s; y_1, \ldots, y_r; \xi) := \sum_{k=0}^{[n/p]} a_k S_n^{(A_1, \ldots, A_s; \xi)}(x_1, \ldots, x_s) \Omega_{\mu+v_k}(y_1, \ldots, y_r) \xi^k \quad (n, p \in \mathbb{N}). \]

Then we have

\[\sum_{n=0}^{\infty} \Theta_{n, p, \mu, v} \left(x_1, \ldots, x_s; y_1, \ldots, y_r; \frac{\eta}{t^p} \right) t^n \]

\[= \prod_{i=1}^{s} \left(1 - t^{-(A_i + B_i + 1)} \right) F \left(A_i + B_i + l, A_i + B_i + 2l, \frac{2t(x_i - 1)}{(1-t)^2} \right) A_{\mu, v}(y_1, \ldots, y_r; \eta) \]

provided that each member of (4.7) exists where

\[S_n^{(A_1, \ldots, A_s; B_1, \ldots, B_s)}(x_1, \ldots, x_s) = \sum_{n_1=0}^{n} \sum_{n_0=0}^{n} \cdots \sum_{n_{s-1}=0}^{n-n_1-\cdots-n_{s-2}} \times \left\{ K(n_1, \ldots, n_{s-1}) p^{(A_1, \ldots, A_s; B_1, \ldots, B_s)}_{n-(n_1+\cdots+n_{s-2})}(x_1, \ldots, x_s) N(n_1, \ldots, n_{s-1}) \right\}; \]

and

\[K(n_1, \ldots, n_{s-1}) = (A_1 + B_1 + l)_{n-(n_1+\cdots+n_{s-1})} (A_2 + B_2 + l)_{n_1} \cdots (A_s + B_s + l)_{n_{s-1}}, \]

\[N(n_1, \ldots, n_{s-1}) = [(A_1 + l)_{n_{s-1}}]^{-1} [(A_2 + l)_{n_{s-2}}]^{-1} \cdots [(A_s + l)_{n_1}]^{-1} [(A_1 + l)_{n-(n_1+\cdots+n_{s-1})}]^{-1} \]

and all matrices are commutative.

Proof. For convenience, let \(T \) denote the first member of the assertion (4.7) of Theorem 4.2. Then, upon substituting for the polynomials

\[\Theta_{n, p, \mu, v} \left(x_1, \ldots, x_s; y_1, \ldots, y_r; \frac{\eta}{t^p} \right) \]

from the definition (4.6) into the left-hand side of (4.7), we obtain

\[T = \sum_{n=0}^{\infty} \sum_{k=0}^{[n/p]} a_k S_n^{(A_1, \ldots, A_s; B_1, \ldots, B_s)}(x_1, \ldots, x_s) \Omega_{\mu+v_k}(y_1, \ldots, y_r) \eta^k t^{n-pk}. \]

(4.8)
Upon inverting the order of summation in (4.8), if we replace \(n \) by \(n + pk \), we can write
\[
T = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_k S_{n+k}(A_1, \ldots, A_s; B_1, \ldots, B_s) (x_1, \ldots, x_s) \Omega_{\mu+vk}(y_1, \ldots, y_t) \eta^k t^n
\]
\[
= \sum_{n=0}^{\infty} S_{n+k}(A_1, \ldots, A_s; B_1, \ldots, B_s) (x_1, \ldots, x_s) t^n \sum_{k=0}^{\infty} a_k \Omega_{\mu+vk}(y_1, \ldots, y_t) \eta^k
\]
\[
= \prod_{i=1}^{s} (1 - t)^{-(A_i + B_i + l)} F \left(\frac{A_i + B_i + l}{2}, \frac{A_i + B_i + 2l}{2}; A_i + l; \frac{2t(\eta_1 - 1)}{1-t} \right) \Lambda_{\mu,v}(y_1, \ldots, y_t),
\]
which completes the proof of Theorem 4.2. □

5. Further consequences

By expressing the multivariable function \(\Omega_{\mu+vk}(y_1, \ldots, y_t) \), \(k \in \mathbb{N}_0, r \in \mathbb{N} \) in terms of a simpler function of one and more variables, we can give further applications of Theorems 4.1 and 4.2. For example, consider the case of \(r = 1 \) and \(\Omega_{\mu+vk}(y) = L^{(C, \lambda)}_n(y) \) in Theorem 4.1. Here, the Laguerre matrix polynomials \(L^{(C, \lambda)}_n(y) \) are defined by [7] as:
\[
L^{(C, \lambda)}_n(y) = \sum_{k=0}^{n} \frac{(-1)^k \lambda^k}{k! (n-k)!} (C + \lambda)^n (C + \lambda)^{-1} y^k
\]
in which \(C \) is a matrix in \(\mathbb{C}^{N \times N} \), \(C + nl \) is invertible for every integer \(n \geq 0 \) and \(\lambda \) is a complex number with \(\text{Re}(\lambda) > 0 \). Notice that Laguerre matrix polynomials are generated by as follows:
\[
\sum_{n=0}^{\infty} L^{(C, \lambda)}_n(y) t^n = (1 - t)^{-\mu} \exp \left(\frac{-\lambda yt}{1-t} \right), \quad |t| < 1, \quad 0 < y < \infty.
\]
Then we obtain the following result which provides a class of bilateral generating matrix functions for the MJMPs and the Laguerre matrix polynomials.

Corollary 5.1. Let \(A_{\mu,v}(y; z) \) \(:= \sum_{k=0}^{\infty} a_k L^{(C, \lambda)}_k(y) z^k \) where \(a_k \neq 0, \mu, v \in \mathbb{N}_0 \) and
\[
\Theta_{n,p,v}(x; \eta) := \sum_{k=0}^{[n/p]} a_k p^{(A,B)}_{n_1-pk,n_2-\ldots,n_s} (x) L^{(C, \lambda)}_k(y) \eta^k
\]
where \(x = (x_1, \ldots, x_s) \), \(A = (A_1, \ldots, A_s) \), \(B = (B_1, \ldots, B_s) \), \(n = n_1 + \ldots + n_s \), \(n_1, \ldots, n_s \), \(p \in \mathbb{N} \), and \(A_i \) and \(B_i \) are matrices in \(\mathbb{C}^{N \times N} \) satisfying spectral conditions \(\text{Re}(z_i) > -1 \) for each eigenvalue \(z_i \in \sigma(A_i) \) and \(\text{Re}(\eta_i) > -1 \) for each eigenvalue \(\eta_i \in \sigma(B_i) \) for \(1 \leq i \leq s \). Then we have
\[
\sum_{n_1, \ldots, n_s=0}^{\infty} \Theta_{n,p,v} (x; \eta) \frac{t_1^{n_1}}{t_1!} \ldots \frac{t_s^{n_s}}{t_s!} = \prod_{i=1}^{s} F_4 \left(I + B_i, I + A_i; I + A_i, I + B_i; \frac{(x_i - 1) t_i}{2}, \frac{(x_i + 1) t_i}{2} \right) \Lambda_{\mu,v}(y; \eta) \frac{t_1^{n_1}}{t_1!} \ldots \frac{t_s^{n_s}}{t_s!}
\]
provided that each member of (5.2) exists.

Remark 5.1. Using the generating matrix function (5.1) for the Laguerre matrix polynomials and taking \(a_k = 1, \mu = 0, v = 1 \), we have
\[
\sum_{n_1, \ldots, n_s=0}^{\infty} \sum_{k=0}^{[n_1/p]} p^{(A,B)}_{n_1-pk,n_2-\ldots,n_s} (x) L^{(C, \lambda)}_k(y) \eta^k t_1^{n_1} t_2^{n_2} \ldots t_s^{n_s} = \prod_{i=1}^{s} F_4 \left(I + B_i, I + A_i; I + A_i, I + B_i; \frac{(x_i - 1) t_i}{2}, \frac{(x_i + 1) t_i}{2} \right) (1 - \eta)^{-\mu} \exp \left(\frac{-\lambda yt}{1-t} \right)
\]
where \(|\eta| < 1, 0 < y < \infty \) and \(\sqrt{\frac{(x_i - 1) t_i}{2}} + \sqrt{\frac{(x_i + 1) t_i}{2}} < 1 \) for \(i = 1, \ldots, s \).
Choose \(r = 1 \), and \(\Omega_{\mu + v}(y) = C^D_{\mu + v}(y) \) where \(\mu, v \in \mathbb{N}_0 \) and \(D \) is a matrix in \(\mathbb{C}^{N \times N} \) satisfying \(\left(\frac{1}{r} \right) \notin \sigma(D) \) for all \(\forall z \in \mathbb{Z}^+ \cup \{0\} \) in Theorem 4.2. Here, Gegenbauer matrix polynomials are generated by as follows [8]:

\[
\sum_{n=0}^{\infty} c_n^D(y)t^n = (1 - 2yt + t^2)^{-D}, \quad |y| < 1.
\]

(5.3)

Then we obtain the following bilaterally generating matrix function for the MJMPs and Gegenbauer matrix polynomials.

Corollary 5.2. Let \(A_{\mu, v}(y; z) := \sum_{k=0}^{\infty} a_k C^D_{\mu + v}(y)z^k \) where \((a_k \neq 0, \mu, v \in \mathbb{N}_0) \) and

\[
\Theta_{n, \mu, \nu}(x; y; \zeta) := \sum_{k=0}^{[n/p]} a_k C_{n-pk}^{(A_1; A_1; \ldots; A_1; B_1; \ldots; B_1)}(x) C^D_{\mu + v}(y) \zeta^k
\]

where \(x = (x_1, \ldots, x_s) \), \(D \) is a matrix in \(\mathbb{C}^{N \times N} \) satisfying \(\left(\frac{1}{r} \right) \notin \sigma(D) \) for all \(\forall z \in \mathbb{Z}^+ \cup \{0\} \) and \(A_1 \) and \(B_1 \) are matrices in \(\mathbb{C}^{N \times N} \) satisfying the spectral conditions \(\text{Re}(z_i) > -1 \) for each eigenvalue \(z_i \in \sigma(A_i) \) and \(\text{Re}(\eta_i) > -1 \) for each eigenvalue \(\eta_i \in \sigma(B_i) \) for \(i = 1, 2, \ldots, s \). Then we have

\[
\sum_{n=0}^{\infty} \Theta_{n, \mu, \nu}(x; y; \zeta) t^n = \prod_{i=1}^{s} (1 - t)^{-(A_i + B_i + 1)} F \left(\frac{A_i + B_i + I}{2}, \frac{A_i + B_i + 2I}{2}; A_i + I; \frac{2t(x_i - 1)}{(1 - t)^2} \right) A_{\mu, v}(y; \eta)
\]

(5.4)

provided that each member of (5.4) exists.

Remark 5.2. Using (5.3) and taking \(a_k = 1, \mu = 0, v = 1 \), we have

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{[n/p]} D_{n-pk}^{(C_1; \ldots; C_1; D_1; \ldots; D_1)}(x) C^D_{\mu + v}(y) \eta^k t^{n-pk}
\]

\[
= \prod_{i=1}^{s} (1 - t)^{-(A_i + B_i + 1)} F \left(\frac{A_i + B_i + I}{2}, \frac{A_i + B_i + 2I}{2}; A_i + I; \frac{2t(x_i - 1)}{(1 - t)^2} \right) (1 - 2y \eta + \eta^2)^{-D}.
\]

Setting \(r = s \) and \(\Omega_{\mu + v}(y_1, \ldots, y_s) = s^{(C_1; \ldots; C_1; D_1; \ldots; D_1)}(y_1, \ldots, y_s) \) in Theorem 4.2 where \(\mu, v \in \mathbb{N}_0 \), we obtain the following result which provides a class of bilinear generating matrix functions for the MJMPs.

Corollary 5.3. Let \(A_{\mu, v}(y_1, \ldots, y_s; z) := \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} a_k s_n^{(C_1; \ldots; C_1; D_1; \ldots; D_1)}(y_1, \ldots, y_s)z^k \) where \(a_k \neq 0, \mu, v \in \mathbb{N}_0 \) and

\[
\Theta_{n, \mu, \nu}(x; y; \zeta) := \sum_{k=0}^{[n/p]} a_k s_n^{(C_1; \ldots; C_1; D_1; \ldots; D_1)}(x) C^D_{\mu + v}(y) \zeta^k
\]

(5.5)

where \(x = (x_1, \ldots, x_s), y = (y_1, \ldots, y_s), C_i \) and \(D_i \) are matrices in \(\mathbb{C}^{N \times N} \) satisfying the spectral conditions \(\text{Re}(\mu_i) > -1 \) for each eigenvalue \(\mu_i \in \sigma(C_i) \) and \(\text{Re}(\nu_i) > -1 \) for each eigenvalue \(\nu_i \in \sigma(D_i) \) for \(i = 1, 2, \ldots, s \) and all matrices are commutative. Then we have

\[
\sum_{n=0}^{\infty} \Theta_{n, \mu, \nu}(x; y; \zeta) t^n = \prod_{i=1}^{s} (1 - t)^{-(A_i + B_i + 1)} F \left(\frac{A_i + B_i + I}{2}, \frac{A_i + B_i + 2I}{2}; A_i + I; \frac{2t(x_i - 1)}{(1 - t)^2} \right) A_{\mu, v}(y_1, \ldots, y_s; \eta)
\]

provided that each member of (5.5) exists.

Remark 5.3. Taking \(a_k = 1, \mu = 0, v = 1 \) and using Theorem 3.4, we have

\[
\sum_{n=0}^{\infty} \sum_{k=0}^{[n/p]} D_{n-pk}^{(C_1; \ldots; C_1; D_1; \ldots; D_1)}(x) s_n^{(C_1; \ldots; C_1; D_1; \ldots; D_1)}(y) \eta^k t^{n-pk}
\]

\[
= \prod_{i=1}^{s} (1 - t)^{-(A_i + B_i + 1)} F \left(\frac{A_i + B_i + I}{2}, \frac{A_i + B_i + 2I}{2}; A_i + I; \frac{2t(x_i - 1)}{(1 - t)^2} \right)
\]

\[
\times \prod_{i=1}^{s} \left(1 - \eta \right)^{-(C_i + D_i + 1)} F \left(\frac{C_i + D_i + I}{2}, \frac{C_i + D_i + 2I}{2}; C_i + I; \frac{2\eta(y_i - 1)}{(1 - \eta)^2} \right)
\]
where

\[S_{n}^{(A_1, \ldots, A_s; B_1, \ldots, B_s)}(x_1, \ldots, x_s) = \sum_{n_1=0}^{n} \sum_{n_2=0}^{n-n_1} \cdots \sum_{n_{s-1}=0}^{n-n_1-\cdots-n_{s-2}} A_{n_1} B_{n_2} \cdots B_{n_{s-1}} \]

\[\times \left\{ \mathbf{K} \left(n_1, \ldots, n_{s-1} \right) \mathbf{P}^{(A_1, \ldots, A_s; B_1, \ldots, B_s)}_{n_1} \left(x_1, \ldots, x_s \right) \mathbf{N} \left(n_1, \ldots, n_{s-1} \right) \right\} ; \]

and

\[\mathbf{K} \left(n_1, \ldots, n_{s-1} \right) = (A_1 + B_1 + I)_{n-(n_1+\cdots+n_{s-1})} (A_2 + B_2 + I)_{n_1} \cdots (A_s + B_s + I)_{n_{s-1}} , \]

\[\mathbf{N} \left(n_1, \ldots, n_{s-1} \right) = \left[(A_1 + I)_{n_{s-1}} \right]^{-1} \left[(A_2 + I)_{n_{s-2}} \right]^{-1} \cdots \left[(A_s + I)_{n_1} \right]^{-1} \left[(A_1 + I)_{n-(n_1+\cdots+n_{s-1})} \right]^{-1} . \]

Furthermore, for every suitable choice of the coefficients \(a_k \) (\(k \in \mathbb{N}_0 \)), if the multivariable function \(\Omega_{m+n}^{k}(y_1, \ldots, y_r) \) (\(r \in \mathbb{N} \)), is expressed as an appropriate product of several simpler functions, the assertions of Theorems 4.1 and 4.2 can be applied in order to derive various families of multilinear and multilateral generating matrix functions for the MJMPs.

References