field-in-field (FIFP) plan was addressed by Wilcoxon test. Endpoints selected were V95, V105, Maximum Dose within PTV, Maximum Dose .

Results: We analyzed 33 patients. Overall, Patient mean setup errors were: Longitudinal (LNG) 4 mm; Lateral (LAT) 3 mm; Vertical (VRT) 3 mm. Values of misalignment of CMF versus FIF during the treatment delivery were as follows. Mean: LNG 0.8 (range 0-6; SD 0.11) mm, LAT 0.6 (range 0-7; SD 0.09) mm, VRT 0.8 (range 0-6; SD 0.11) mm. Median LNG 0 mm, LAT 0 mm, VRT 0 mm. A perfect matching of FIF to CMF (i.e. misalignment= 0 mm) was reported in 52.34% for LNG, 55.47% for LAT and 50.00% VRT for all analyzed patients overall. Misalignment of 1 mm was reported in 28.11% for LNG, 35.16% for LAT and 34.38% for VRT. Misalignment of 2 mm was reported in 10.16% for LNG, 7.03% for LAT and 10.16% for VRT. Misalignment of ≥ 3 mm was reported in 9.37% for LNG, 2.34% for LAT and 5.47% for VRT.

The field-in-field plan was significantly superior to the conventional tangential one for V95 (p=0.003), Maximum Dose within PTV (p=0.033), Maximum Dose (p=0.002); it was not significantly superior for V105 (p=0.201) although the mean V105 value was overall inferior for the field-in-field plan (4.01% field-in-field plan vs 4.42% conventional)

Conclusions: Adjuvant radiotherapy with field-in-field technique seems useful to optimize the planning, without major drawbacks for the RTT routine practice and presents a good geometrical stability during the delivery. The presented evaluation, offers, with the collaboration of the RTTs a source of information to deepen geometrical, setup and planning issues and stimulate the cooperation between clinicians, RTT and physics.

Electronic Poster: RTT track: Image guided radiotherapy, adaptive radiotherapy, geometric uncertainties and margins

EP-1655
Changes of tumour volume and motion in oesophageal cancer during radiotherapy based on repeated 4D-CT scans
J.Z. Wang1, J.B. Li1, H.P. Qi1, W. Wang1, Y.J. Zhang1
1Shandong Tumor Hospital, Department of Thoracic Radiation Oncology, Jinan, China

Purpose/Objective: To investigate the variation in volume, position and the target overlap ratio of the oesophageal cancer in response to conventional fractioned radiotherapy with four-dimensional computed tomography (4D-CT) during radiotherapy.

Materials and Methods: A total of 109 enhanced 4D-CT datasets were acquired for 38 patients throughout treatment. The recorded tumour motion was applied to the original planning CT and the plan recalculated to evaluate the dosimetric effect on surrounding OARs using cumulative dose volume histograms (DVHs).

Results: The tumour volumes decreased significantly in GTV (26.99%, P<0.001) and in IGTV (27.78%, P<0.001) at the twentieth fraction, respectively. The intrafraction GTV centroid displacements in superior-inferior (SI) direction were greater (P<0.001), with median values of 3.1mm, compared with 1.6mm and 1.4mm in the right-left (RL) and anterior-posterior (AP) direction during treatment. However, no significant variations were observed in intrafractional GTV centroid during radiotherapy in any direction. The IGTV centroid displacement in each direction and the 3D vector were all<0.8cm, and no significant variations in the centroid position were observed for IGTV during radiotherapy. The overlap ratios of the targets were decreased for GTV and IGTV.

Conclusions: The variations of GTV centroid displacement and IGTV centroid positions were not significant throughout treatment. However, the tumour volume decreased significantly at the twentieth fraction. The target displacement, deformation and regression result in the decrease of the overlap ratio relative to the initial target for GTV and IGTV. Repeated 4D-CT scans might be beneficial for target correction and planning modification.

EP-1656
Lung tumour motion within deep inspiration breath hold delivered SBRT: an evaluation of its cause and effect
A. Taylor1, L. Rock2, S. Barrett2
1Sheffield Hallam University, Radiotherapy and Oncology, Sheffield, United Kingdom
2The Beacon Hospital, Radiotherapy, Dublin, Ireland Republic of

Purpose/Objective: Deep inspiration breath hold (DIBH) delivered stereotactic body radiotherapy (SBRT) has been shown to be a desirable method of motion management in lung tumours. An external fiducial marker can be used as a tumour motion surrogate, however, inter-fraction tumour motion within DIBH is observed on daily imaging. This study evaluates if this motion relates to minor changes in breath hold (BH) and the fiducial marker. A secondary aim is to evaluate the effect of this motion on surrounding organs at risk (OARs).

Materials and Methods: 121 cone beam computed tomography scans (CBCTs) from 22 patients who were treated for lung cancer using DIBH SBRT were retrospectively evaluated and the magnitude of tumour motion calculated for each fraction delivered. This data was analysed to review if any correlation was observed between tumour motion and variation in the fiducial marker position on the patient, the amplitude of BH at planning CT, the amplitude of BH at treatment and the tumour location.

The recorded tumour motion was applied to the original planning CT and the plan recalculated to evaluate the dosimetric effect on surrounding OARs using cumulative dose volume histograms (DVHs).

Results: It was found that the magnitude of tumour motion within BH ranged from 0 to 1.52 cm (0.41 cm ± 0.28 cm (mean ± standard deviation)). Motion in the superior-inferior (SI), anterior-posterior (AP) and left-right (LR) planes were 0.31cm ± 0.26 cm, 0.16 cm ± 0.18 cm and 0.07 cm ± 0.12 cm respectively.

No statistically significant correlation was detected between tumour motion within DIBH and the factors investigated. The range of variation in OAR dose was -7.06Gy to +3.6Gy. The chest wall and oesophagus maximum and mean doses were
the only OARs to be significantly affected by applying these moves and in these cases no clinically significant deviations were observed.

Conclusions: Variations in the factors investigated, do not correlate with tumour motion within DIBH. The diaphragm is not stable within BH. Applying soft tissue moves is safe to surrounding OARs once due clinical attention is paid to close critical structures.

EP-1657
Inter-observer variability study for daily CBCT registration of VMAT prostate treatment
N. Zahra1, C. Monnet1, E. Bartha1, M. Courbis1, M. Le Grévellec1, M. Bossel1, M. Zouai1, B. Fleury1
1Marie Curie Radiotherapy Center, Radiation Oncology, Valence, France

Purpose/Objective: This work evaluated the inter-observer variability in CBCT registration for prostate patients treated with IMRT (Intensity Modulated Radiation Therapy). We also demonstrated the importance of daily CBCT registration for this treatment.

Materials and Methods: In the first study VMAT plans were produced for 2 prostate cancer patients and a voluntary shift of the isocenter was introduced in the anterior/posterior direction. A total of 22 different VMAT plans were evaluated with 13 plans for the first patient and 9 plans for the second. In the second study, 12 technologists each registered 22 CBCT for 22 different prostate patients. Medical doctors have done the same registrations that was considered as the Gold Standard reference. Registration was done using bony anatomy and adjustments made on by the user on evaluation of the rectum and prostate. Shifts in all three axis were documented for a total of 286 CBCT. Two statistical methods were used to analyse the results. The first was the 95 percentile to calculate the minimum threshold under which the users found similar values. The second was the ANOVA test, followed by the Post-Hoc/Bonferroni test. These tests were used to find differences in inter-observer registration variability and determine whether any individual users performed registrations which differed significantly from those of the other users.

Results: The dosimetric study showed that a shift of 5 mm in the posterior direction was enough to deliver a higher dose than acceptable to the rectum in both cases. A different threshold was found by shifting anteriorly, ranging from 5 mm for patient B to 12 mm for patient A. On the other hand, the statistical analysis of the registration study showed that using the 95 percentile, threshold values were demonstrated of 2.1, 3.5 and 7.3 mm in the left/right, target/gun and anterior/posterior respectively. The Anova test showed a low p-value in the target/gun axis but using the Post-Hoc analysis there were no significant differences between the technologists and the medical doctors.

Conclusions: This study showed the importance of a daily CBCT/CT registration in prostate radiation treatment. The different studies also showed that partial delegation of the prostate registration fto the technologists is feasible under some security thresholds. However, regular training and evaluation should be done by the medical doctors and physicists.

EP-1658
The need for quality assurance of the image guidance process in radiotherapy
M. Frank1, M. Kamphuis1, R. De Jong1, A. Bel1, M. Hulshof1, N. Van Wieringen1
1Academic Medical Center (AMC)/ University of Amsterdam, Radiotherapie, Amsterdam, The Netherlands

Purpose/Objective: A higher awareness of changing anatomy has resulted in an increased complexity and a continuous change of the image guided radiotherapy (IGRT) process. To guarantee the quality of this process we developed a quality assurance (QA) program which involves 1) Inspection of the clinical IGRT process; 2) A check to assess if certain structural abnormalities occur in specific patient groups. This study describes the methodology of our QA program and the results after the first 8 months.

Materials and Methods: Each member of the IGRT group performed QA tasks once a week for 4 hours. A checklist was used to assess whether the IGRT process was performed according to protocol and to verify whether there were other abnormalities present. This checklist was developed within an interdisciplinary group discussion. Results of the QA program were documented in an in-house developed computer program.

The following items were monitored: 1) The number of errors in the IGRT preparation and execution process. 2) Anatomical and other potential dose altering changes that occurred during treatment. Monthly, results were discussed with the members of the IGRT group and, if necessary, feedback is given to the department. After the first 8 months, all QA findings were presented on a departmental level.

Results: In an 8 month period 5 dedicated RTTs, all IGRT working group members, reviewed 154 patients with a total of 609 CBCTs, including breast, lung, rectum, oesophagus, gynaecological, bladder and central nervous system patients.

• In 12% of the patients (n=43) anatomical changes were found, mainly in patients treated for lung or oesophagus cancer. 3% of the whole reviewed population needed replanning during treatment.
• 17% of the patients showed a change in body contour larger than 1 cm because of weight difference or seroma change.
• 17% of the patients showed irregularities in the IGRT preparation process. E.g. registration areas, defining the correct clipbox, correction reference point or match algorithm, were not defined according to protocol. These figures gave us a better insight regarding the IGRT process.
• In 3% of all the CBCTs rotation values were more than 4 degrees (the upper limit for acceptable rotations) the majority (77%) around the left-right axis.
• In 1.6% of the CBCTs a part of the CTV was outside the PTV as a result of tumor progression, tumor shift, or changes in seroma.
• 5 patients showed undetected lesions in the lung. In 2 patients after further examination these proved to be malignant.

Conclusions: The results of the QA program indicates that a substantial part of the treated population show changes which potentially alter dose delivery. In 3% of the investigated population rescanning and replanning was considered necessary.