
Camp. & Maths. wiIh Appls., Vol. 5, PP. 163-167
Pergamon Press Lid.. 1979. Printed in Great Britain

EVALUATION OF FUNCTIONS ON MICROCOMPUTERS:
RATIONAL APPROXIMATION OF kth ROOTS

M. ANDREWS,? B. EISENBERG, S. F. MCCORMICK and G. D. TAYLOR
Department of Mathematics, Colorado State University, Fort CoIlins, CO 80523, U.S.A.

Communicated by R. B. Kelman

(Received January 1978; and in revised form August 1978)

Ah&act-This paper describes the implementation of rational approximation algorithms for evaluation of
kth roots in short wordlength machines. The emphasis is on maintaining full machine precision in
computers that use Exed point, truncated binary arithmetic with at most 16 bits of wordlength. Included is a
table of coe5cients for evaluation of kth roots on a 16 bit machine with 3 5 k zs 11.

1. INTRODUCTION

Keeping pace with external processes while maintaining full machine precision during com-
putation is a necessary and demanding task for microprocessor software used in real-time
applications. To be effective, numerical algorithms used in this environment must be carefully
designed and implemented. With real-time applications in mind, this paper describes several
ingredients that must be considered for rational approximation of kth roots (k h 3) on small
scale machines. (For purposes of discussion, the terms small scale machines and micro-
processors shall refer to binary computers using fixed point, truncated arithmetic with at most
16 bits of wordlength.) For motivation and a general comparison of small and large scale
machines and their uses, see [11.

It should be noted that techniques based on rational polynomial approximation are not the
best choice for every possible small scale machine or application. Of course, this can be said of
any algorithm used to compute kth roots, simply because special machine architectures and
application requirements, e.g., accuracy, may advantageously support other techniques such as
bit counting[2], local Taylor expansion, Newton’s method[3,4], table look-up, or hybrid
combinations of these techniques[5]. However, for most small scale machines presently in use
and for applications which require general root finders, a rational polynomial approximation is
probably the method of choice. As we shall see, such approximations achieving near machine
accuracy require relatively few arithmetic operations and data storage locations, and the
general structure of the algorithm may be used to reduce program length over a wide range of
desired values of k. For focus, the discussion concentrates on the values 3 5 k s 11.

For large computers, the choice of appropriate degrees and coefficients for rational ap-
proximation is generally a matter of considering tables of approximation error. For small
computers, as one would expect, the severe truncation effects of short wordlength computation
disrupt the theoretical values to the extent of requiring special care. Thus, computation of the
actual approximation error in the microcomputer environment is essential to the proper
selection of the degrees of the rational polynomial approximants as well as the correct selection
of coefficients. This is the subject of Section 3. We first discuss some ingredients in Section 2
that need to be considered for careful implementation of a kth root algorithm.

2. IMPLEMENTATION

In this section, short descriptions are given for mechanisms useful for computing kth roots in
small scale computers.

1. Argument reduction
(a) Inter&. The choice of the primary interval is an important part in designing a general

tcomputer Science Department.
This work was supported by the National Science Foundation under grant NSF MCS 76-12457.

163

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81136986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

164 M. ANDREWS et al.

root finding routine. Considerations analogous to those for square roots [l] might mislead one
into choosing the interval [l/2’, 1) for computing kth roots since no multiply is required in the
argument restoration phase. However, this would require the degrees of the polynomials in the
rational approximation to increase with increasing k in order to obtain the desired accuracy
over [l/2’, 1). Thus, for a general routine, [l/2, 1) is more suitable for accurate rational
polynomial approximation. Moreover, the interval [l/2, I) consists of left justified numbers so
that greater precision is maintained in this mode.

(b) Restoration. Assume that the input value is represented by f = x 9 2” where x E [l/2, 1).
Let m = nto - k + q, where mo, q are integers and 0 5 q < k (note that the signs of m and m. are
the same). Define 4(q, k) = 2’q’k’-‘. Then

*I/k =
X xuk * 2mo+r - c$(q, k). (1)

(Since 4(q, k) E [l/2, l), the product x”’ * &q, k) can be formed without concern for overflow.)
Restoration of the reduced argument now involves storage and multiplication by the quantities
{#(q, k): 0 5 q -C k - 1). This is somewhat of a disadvantage, but it is compensated by the low
degree approximations needed for kth roots over [l/2, 1).

2. Sign bit
The bit set aside in each arithmetic word to indicate sign is not needed in the kth root

routine since the sign of a legitimate result is the same sign as the input value of x, and it is
possible to ensure that all intermediate results are positive quantities. Thus, to reduce error, it is
important to perform arithmetic operations internal to the kth root routine in the full
wordlength of the machine. The commonly used sign bit position should therefore be employed
as a significant bit of each operand and unsigned arithmetic should be performed.

3. Carry bit
Microcomputers do not exhibit guard bits attached to each word, but in general have a carry

or overflow bit resident on the CPU chip that is set to one when and only when the proceeding
arithmetic operation resulted in overtlow. Such a capability is assumed in this paper.

4. A transformation
Since x E [l/2, l), then .81k E [l/2, 1). Thus its leading bit must be 1 and precision can be

extended to approximating 2x”’ - 1 instead of x1”.

5. Rational approximation
(a) Parameter choice. The selection of the appropriate form and specific coefficients

required for the desired accuracy of approximation must be done carefully. Theoretical results
for real number systems are useful only as guidelines for these choices. In the next section, we
present these guidelines and provide examples for 16-bit machines with the values k = 3, 4,
5 ,a**, 11, assuming full machine precision is desired. In any event, for a general root finding
subroutine, the degrees of the rational fit should be the same for all k so as to minimize program
length. The apparent relative insensitivity of the rational approximation error to variations in k
is an important feature in this regard.

(b) Evaluation. The order of operations in evaluating the chosen rational approximation is
critical to maintaining accuracy and avoiding overflow. The ldbit example given in section 3
[see eqn (3)J assumes that the polynomials in the numerator and denominator are evaluated
first by Homer’s method followed by a divide. This sequence facilitates the avoidance of
overhow as discussed in part (c). Other methods such as Product, Classical Orthogonal,
Newton or PAN are not competitive since they require more arithmetic operations (cf. 16, p.
671).

(c) Avoiding ouerjIow. Protection against overflow in the rational polynomial evaluation
routine is first a matter of the proper choice of coefficients once the evaluation procedure is
selected. Here we assume that Horner’s method is used to evaluate the polynomials, so that
suitable coefficients for the numerator and denominator may be chosen a priori by constraining
their respective absolute sums to be smaller than unity.This constraint may be relaxed when all

Evaluation of functions on microcomputers 165

but the constant term is positive as shown in Section 3. This has the tendency to reduce
accuracy since this restriction lessens information carried in the significant bits in the evalua-
tion. However, the other mechanisms described in this section overcome this loss so that roots
to full machine precision are obtained.

The reader should be cautioned that intermediate evaluation of the polynomials (see
equation (3) below) can result in overflow. However, this can occur only in evaluating
expressions of the form azx + al and it is always intermediate to forming (azx + a,)~, which is
theoretically less than one. Thus, a temporary fix is necessary to account for overflow by
testing the carry bit and, if necessary, correcting after the post multiplication by x simply by
adding x to the result. This is equivalent in principle to forming (azx - (1 - a,))~ + x.

The reader will note in the following section that the true value of the numerator in the
rational approximant when k = 2 or 3 is always larger than unity for the coefficients given in
Table 1. Specifically, the last add in the expression (azx + a,)x + a0 will cause an overflow for
such values of k. This overflow should be ignored! That is, the correct expression for the
numerator is (azx + a,)x - (1 - ao), but since this would require a subtraction or an addition of a
negative number, we have chosen instead to use the overflow feature as an artificial means of
forming [(a2x + ai)x + a01 - 1. Note that the coefficients in Table 1 are expressed as integers.
Actually, considered as real numbers, they must each be divided by 216. Thus, for example, with
k = 3 we have a2 = (0.1000001001000010)2.

Finally, for some values of x very near unity, the machine evaluation of the rational
approximation of 2x”’ - 1 can in fact exceed unity. For such values of x, output from the kth
root routine should be the largest machine representable number less than unity.This can be
done either a priori by testing for such values of x on input or a posterion’ by comparing the
numerator and denominator before the divide (or checking the carry bit afterward).

Table 1. Coefficients for evaluation of equation (3) (See text for full details.)

Minimum Average
k a2 01 a0 62 h bo accuracy accuracy

3 33346 32156 61283 8340 41343 11566 15.555 17.735
4 2%95 35522 63947 10128 42848 10651 15.263 18.012
5 26087 36190 140 10757 41889 9771 15.033 17.665
6 25349 38847 1341 11923 43858 9756 15.049 17.456
7 21732 35851 1997 11260 29775 8544 15.299 17.%5
8 20735 36258 2587 11570 3%% 8313 15.072 17.881
9 20036 36523 3021 11866 3%25 8088 15.193 17.943

10 21137 40699 3791 13099 43578 8859 15.167 18.017
11 20245 41053 4238 13014 43601 8921 15.091 17.586

6. Recommended sequence of steps
Here we assume k, x and m are given, ,where 2 = x 0 2”, the left bit of x is used for the sign,

and l/2 5 lx/< 1. All shift operations are arithmetic; that is, zeros are entered into the vacated bit
positions. The returned result is represented by y and mo, where y ~2% - ivk.

(a) Access the sign bit in x and error trap if k is even and x is negative. Store the sign bit as
s and single left shift x.

(b) Compute the integers m. and q so that m = mo. k + q, 0 I q < k.
(c) Select the appropriate coefficients for the given k from Table 1.
(d) Evaluate the rational form based on the coefficients for approximating 2 * x1” - 1, calling

the result r.
(e) Evaluate y = t + r * t, where t is the stored value of &q, k). Test for overflow after the

addition and, in the event it occurs, replace y by (y/2) + (l/2) and increment m. by one. In either
event, complete this step with a single right shift of y.

(f) Convert the most significant bit of y to agree with s. (Note that the right shift in step e
guarantees that the leading bit of y is zero.) Output y and mo.

I. Rounding
For evaluation of the rational approximation according to the implementation suggested in

166 M. ANDREWS et al.

the next section, it is important that only truncated arithmetic operations be performed. Since
the coefficients were chosen assuming truncated arithmetic, it would actually be less accurate to
perform rounding after each operation. On the other hand, in other parts of the kth root routine,
namely, the argument reduction and restoration phases and step (e) above, it is recommended
that rounding be used provided the application will permit the added computation.

3. SELECTION OF RATIONAL APPROXIMATIONS

Standard techniques of uniform rational approximation theory may be modified to select the
appropriate rational approximation for 2x”k - 1 on

X 2 [l/2, 1) f~
1

x : x = $, j an integer
>

for k = 3,4,. . . , 11. Each case is treated separately. For example, in the construction of Table
1, we first approximate 2x”k - 1 on a subset T of X using the differential correction
algorithm[7] applied to various different classes of rational functions R,“(T), m, n nonnegative
with n + m = 1, I= 2, 3,4, 5, where

R,“(T) = (r(X) = (s u,d)/(& bz’) : 2 b,x' > 0, x E T}. (2)

This is done to estimate the error of approximation as a function of the particular classes
R,“(T). (For a FORTRAN listing of the differential correction algorithm and additional
references concerning this algorithm see[7, 91.) Based upon these results, a class R,” is then
selected as a candidate for approximating 2x”’ - 1. For instance, this leads to the choice R2*
that yields a “theoretical” error of 8.7 x IO-’ for k = 3 in the worst case based upon calculation
on a CDC CYBER 172. We remark that R2* gave full machine precision results with the least
number of primitive operations (+ , - , *, I) using a CDC CYBER 172. See Table 2 for a

Table 2. Comparison of maximum approximation error for Rz2 based on precise and actual 16-bit truncated arithmetic
evaluation of the rational approximants

k 3 4 5 6 7 a 9 IO 11

Theoretical error &lE-7 7.2E-I 6.1E-7 5.2E-7 4.5E-7 4.OE-7 3.6E-7 3.2E-7 2.9E-7
Actual error 2.1E-5 2.5E-5 3.OE-5 2.9E-5 2.5E-5 2.7E-5 2.7E-5 2.7E-5 2.9E-5

summary of these computational results. Next, the theoretically best approximation is pertur-
bed to provide a sufficiently good approximation for the desired application. The need for this
step arises from the severe effects of truncation (or rounding) in a short wordlength environ-
ment. To accomplish this, we applied a modified version of the differential correction algorithm
for computing a “best” approximation from R:(T) to 2~“~ - 1, k fixed, k = 3, 4,. . . , 11.
Basically, this version is simply the standard algorithm modified to do pertinent calculations in a
sixteen bit truncated mode to seek coefficients that are best relative to the mode (fixed or
floating point) of arithmetic in which the approximation would be evaluated. Running this
algorithm (at most two iterations were required) for fixed k and R2*(T) resulted in

Rktx) = (a2x + al)x + ai,
(b2x + b,)x + bo (3)

for approximating 2x”’ - 1. Since this function is unique up to a scalar multiple of both the
numerator and denominator, one can scale the coefficients uo, al, u2, bo, b, and b2, if necessary,
so that for all x E X, both the numerator and denominator are strictly bounded below by unity.
Observe that if one expands t&x) as a partial fraction, an additional multiply can be saved. Yet,
caution is advised since this approach may introduce additional scaling difficulties. See Table 1
for a listing of the coefficients corresponding to different values of k.

Evaluation of functions on microcomputers 167

As noted earlier, due to the small number of machine representable numbers in the interval
[l/2, l), the error of approximation should actually be calculated at each of these values. One
efficient procedure for accomplishing this is to simulate the particular mode of computation
under consideration for the evaluation of Q(X) on a high speed large scale computer and to
compare the evaluation so obtained to the large scale machine value of 2x”’ - 1. Observe that if

then

Irk(X) - (2X1/k - l)[= 2-”

producing an extra bit of precision as claimed.
In the event that the desired accuracy of approximation of 2x’” - 1 by r&) is not achieved,

we suggest the following procedures for generating an improved approximation. First, one
should examine the error curve corresponding to the current approximation carefully. If there
appears to be hope for improvement within the class of approximants being considered, e.g. the
error curve has constant sign, points of maximum modulus all have the same sign, or the
maximum modulus is attained only a few times, then start a local search (directional or
otherwise) in a neighborhood of the current approximation for an improved approximation.
Another strategy here would be to replace T by a larger subset of X and find a good
approximation on this larger subset. If these strategies fail, then one should enlarge the class of
approximants. With regard to this last possibility, it should be noted that proceeding to a larger
class of approximants does not a priori guarantee increased accuracy. The larger class may give
better theoretical accuracy in precise arithmetic; however, even in such cases where theoretic-
ally increased accuracy occurs, the truncation effects of the extra arithmetic operations needed
to evaluate these theoretically better approximations can be deleterious and may fail to improve
the approximation. Thus, additional care is needed for this option.

In the specific cases of this paper, we achieved an acceptable error of approximation for all
values of k considered. As noted, we simulated 16bit truncated arithmetic for the evaluation of
each rk(x) on a CDC CYBER 172. Evaluating r&) in this mode and approximating xi” with
(r&)/f) + (l/2) (where this last expression was also evaluated using 16 bit truncated arithmetic
yielded the results shown in Table 2, where the accuracy is measured as

- log*(x”l’ - @+;)I.

REFERENCES
1. M. Andrews, S. F. McCormick and G. D. Taylor, Evaluation of Functions on Computers: Square Root. Comput. Math.

Applic. 4(4), 359-367 (1979).
2. T. C. Chen. Efficient Arithmetic Apnaratus and Methods. U.S. Pot. 3.631230. December. (1971).
3. D. L. Phillips, Generalized Logarithmic Error and Newton’s Methods fbr the mth Root: Math. Comput. 24, 383-389

(1970).
4. G. D. Taylor, Optimal Starting Approximations for Newton’s Method. Z. Approx. Theory, 3, 156-163 (1970).
5. P. W. Baker, More Efficient Radix-2 Algorithms for Some Elementary Functions. IEEE Trans. Computers. (X4(11),

1049-1054 (1975).
6. J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice, H. C. Thacher and C. WitzgaU,

Computer Appmximations, SIAM Series in Applied Mathematics, Wiley, New York, 67-69 (1968).
7. I. Bar&ale, M. J. D. Powell and F. D. K. Roberts, The Differential Correction Algorithm for Rational 1, Ap

proximation. SIAM J. Numer. Anal. 9,493-504 (1972).
8. C. M. Lee and F. D. K. Roberts, A Comparison of Algorithms for Rational 1, Approximation. Math. Comput. 27,

11 l-121 (1973).
9. E. H. Kaufman, Jr and G. D. Taylor, Uniform Rational Approximations of Functions of Several Variables. Inremat. J.

numer. Methods Engrg. 9, 297-323 (1975).

