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� Neither pH adjustment nor chloride introduction facilitated Hg removal from soil.
� No correlation was found between Hg and total/dissolved soil organic matter.
� Hg was firmly bound to soil making washing insufficient for soil clean-up.
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a b s t r a c t

Feasibility of soil washing to remediate Hg contaminated soil was studied. Dry sieving was performed to
evaluate Hg distribution in soil particle size fractions. The influence of dissolved organic matter and chlo-
rides on Hg dissolution was assessed by batch leaching tests. Mercury mobilization in the pH range of 3–
11 was studied by pH-static titration. Results showed infeasibility of physical separation via dry sieving,
as the least contaminated fraction exceeded the Swedish generic guideline value for Hg in soils. Soluble
Hg did not correlate with dissolved organic carbon in the water leachate. The highest Hg dissolution was
achieved at pH 5 and 11, reaching up to 0.3% of the total Hg. The pH adjustment was therefore not suf-
ficient for the Hg removal to acceptable levels. Chlorides did not facilitate Hg mobilization under acidic
pH either. Mercury was firmly bound in the studied soil thus soil washing might be insufficient method to
treat the studied soil.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Accumulation of Hg in soil originating from both natural and
anthropogenic sources poses a major hazard for soil ecosystem
and biosphere (Frohne et al., 2012). Due to the high risks to the hu-
man health and the environment (Clarkson et al., 2003; Canuel
et al., 2009), Hg is among the priority contaminants to be remedi-
ated at the global level (USEPA, 2007).

Methods such as stabilization/solidification, vitrification, elec-
tro-remediation, soil washing, thermal desorption, immobilization,
phytostabilisation and phytoextraction have been tested to treat
Hg contaminated soils (Wang et al., 2012). Soil washing is one of
the widely used techniques for Hg contaminated soil allowing for
the reduced soil volume to be further treated or disposed of (Abu-
maizar and Smith, 1999; Dermont et al., 2008; Sierra et al., 2010). It
is a physical separation process that utilizes water to concentrate
contaminants into a smaller soil volume by means of particle size
separation, specific-gravity separation, attrition scrubbing, froth
flotation or magnetic separators (Vik and Bardos, 2003; USEPA,
2007). The ability to separate fractions with low contamination
from those having high contaminant concentrations varies for dif-
ferent soils due to different origin of contamination (e.g., mining
related contaminants that occur in mineral phases versus soil con-
taminated with chemical spillage where contaminants occur as
soluble salts and particle coatings). Chemical extraction where sol-
vents such as acids or alkalis are applied can be used to assist phys-
ical separation (FRTR, 2001; Bollen and Biester, 2011). The soil
remediation method is then called chemical extraction. Generally,
acids and alkalis release Hg pollutants from soil by solubilizing Hg
compounds or/and soil components that sorb Hg (Schuster, 1991;
Dermont et al., 2008).

Properties of contaminated soil might differ substantially from
those of natural soil. Soil characterization is therefore necessary
to estimate the practical and economic feasibility of soil
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washing/chemical extraction for each remediation case (Mann,
1999; Sierra et al., 2010).

This study aimed at evaluating the potential of soil washing to
remediate a Hg contaminated soil by determining the total and sol-
uble Hg concentrations in different soil particle size fractions; Hg
association with soil organic matter (SOM); and the influence of
pH and chlorides on Hg mobilization in the contaminated soil.
2. Materials and methods

2.1. Sample preparation

Three soil samples (Table 1) were collected from Tidermans
padding area about 10 km upstream of Göta River, Sweden. Mer-
cury contamination in the soil resulted from waste disposal,
chlor–alkali process and harbor activities (Sweco Viak, 2007). This
soil was also polluted by other trace elements, i.e., zinc, lead and
copper. Three samples were pooled into one composite sample of
approximately 45 kg (wet weight). The composite sample was
oven-dried for 48 h at 45 �C, manually disaggregated, homogenized
and subsequently sub-divided by a Riffle splitter prior to the
experiment.

2.2. Soil sieving

The prepared samples were dry sieved into particle-size frac-
tions of (in mm) <0.063, 0.063–0.125 , 0.125–0.25, 0.25–0.5, 0.5–
1, 1–2, 2–4, 4–6.3, 6.3–12.5, 12.5–25 and >25 through normalized
sieves positioned in an analytical sieve shaker (AS 200 control
Restch) for 10 min. Wet sieving was performed afterwards with a
water supply (1.5 L min�1) on the top of the uppermost sieve and
a water collection at the bottom (ISO/TS 17892-4:2004). Size frac-
tions below 4 mm from the dry sieving were used for further leach-
ing tests and extractions.

2.3. Soil and solution analysis

2.3.1. Soil
Soil pH and electrical conductivity were measured in 1:2 v/v

soil-distilled H2O suspensions. Total Hg and other element concen-
trations were measured by accredited laboratory ALS Scandinavia
to determine the Hg distribution in different particle size fractions
(modified USEPA methods 200.7 (ICP-AES) and 200.8 (ICP-SFMS)).
Samples were digested with 5 mL conc. HNO3 + 0.5 mL 30% H2O2

in closed Teflon containers in a microwave digestion system prior
to element analyses. Total organic carbon (TOC) was assessed to
measure the organic content of bulk soil and particle size fractions
with a TOC analyzer (TOC-VCPH/CPN Shimadzu). The samples were
pre-treated with concentrated HCl to remove the inorganic carbon.
The remaining carbon was oxidized at 900 �C and the formed CO2

was analyzed by non-dispersive infrared absorbance.

2.3.2. Mercury solubility in distilled water
Water-soluble Hg in bulk soil and particle size fractions was as-

sessed by a batch leaching test at liquid-to-solid ratio (L/S) 10 for
Table 1
Initial characteristics of Hg-contaminated soil (±SD, n = 3).

Soil properties Unit Value

pH – 6.5
Electrical conductivity (EC) mS cm�1 2.3 ± 0.1
Total organic carbon (TOC) (n = 4) % 8 ± 2
Dissolved organic carbon (DOC) mg kg�1 209 ± 14
Hg concentration (n = 6) mg kg�1 34 ± 14
24 h ± 1 h to assess the release of Hg upon contact with distilled
water (SS-EN 12457-4).
2.3.3. The pH-dependent dissolution of Hg
A pH-static leaching test (24 h ± 1 h, L/S 10) was performed to

determine the Hg dissolution in the pH range of 3–11 by automatic
titrator (TitroMess-2000). The pH adjustments were: 0.1 M HNO3

for pH 3 and 5; 0.1 M NaOH for pH 7; and 1 M NaOH for pH 9
and 11.

The pH-static titration at pH 3 and 5 using 0.1 M HCl as the ti-
trant was additionally performed to determine the influence of
chlorides on Hg mobilization in comparison to nitrate.
2.3.4. Dissolution of Hg associated with SOM
Bulk soil was mixed either with 0.1 or 0.4 M NaOH solution (L/S

10) and rotated for 24 h ± 1 h to assess the impact of different alka-
li concentrations on the release of Hg associated with SOM (Walls-
chläger et al., 1998; Boszke et al., 2008).
2.3.5. Hydrochloric acid extraction
In order to evaluate the effect of chlorides on Hg mobilization,

0.01, 0.05 and 0.1 M HCl solutions were used to extract Hg from
the bulk soil (L/S 10) using a batch leaching test for 24 h and 48 h.

Eluates from the leaching and titration tests were filtrated
through 0.45 lm nitrocellulose membrane filter prior to further
analyses. Samples were acidified with ultra-high purity HNO3 be-
fore element measurement (modified USEPA methods 200.7 (ICP-
AES) and 200.8 (ICP-SFMS)). Dissolved chloride and sulfate ions
were determined by liquid chromatography (CSN EN ISO 10304-1
and CSN EN ISO 10304-2); dissolved organic carbon (DOC) was
measured following CSN EN 1484 procedure. These analyses were
performed by accredited laboratory ALS Scandinavia.
2.3.6. Thermo-desorption of Hg
Analysis of thermo-desorption of Hg was carried out in tripli-

cate for three replicate bulk soil samples (<4 mm) (nine in total)
after HCl titration at pH 3 to identify the changes in Hg speciation.
The technique is based on the thermal decomposition of Hg com-
pounds from solids at different temperatures and continuous
determination of the released volatile Hg (Biester and Scholz,
1996).
2.3.7. Statistical evaluation and modeling
Element speciation was calculated using the geochemical equi-

librium modeling software Visual MINTEQ v3.0, using default
parameters (Gustafsson, 2012). Information about solid-solution
distribution and solution speciation of Hg(II) was obtained assum-
ing that sorption by solid-phase humic acids (HA) and fulvic acids
(FA) was the predominant sorption mechanism. The input data
used were based on the compositions of the leachates and included
pH, temperature (20 �C), and total concentrations of major ele-
ments of Ca, K, Mg, Na, Cl, SO4 and DOC. For Hg and some other
metals (Cu, Zn and Pb), the geochemically active concentrations
were assumed to constitute 50% of the total concentrations. Model
conditions were set according to the following hypothesis: (1) 50%
of TOC is active; TOC contains 50% FA and HA, i.e. the FA/HA ra-
tio = 1; 75% of DOC is FA; (2) Al and Fe were not included in the
modeling as they are expected not to compete with Hg for specific
functional groups of SOM (Stumm and Morgan, 2012). Pearson’s
correlation coefficient (r) was assessed to evaluate linear relation-
ships between two variables.



Fig. 1. Cumulative curves of particle size fractions (<4 mm) determined by dry and
wet sieving of the studied soil.
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3. Results

3.1. Mercury distribution in soil particle size fractions

The particle size distribution obtained by dry sieving (Table 2)
indicates that the soil consisted of more than 98% of coarse-grained
fraction (Jury and Horton, 2004). Mercury concentrations of size
fractions below 4 mm ranged from 10 to 49 mg kg�1 and decreased
with increasing particle sizes (Table 2). The finest soil fraction con-
tained nearly five times more Hg than the coarsest analyzed frac-
tion. Even the least contaminated fraction (2–4 mm)
substantially exceeded the Swedish generic guideline value for
Hg in soils with less sensitive use, i.e. industrial and commercial
land use (2.5 mg kg�1) (Swedish EPA, 2009). The concentrations
of water-soluble Hg, i.e. the amount of soil Hg dissolved in distilled
water with no pH modifications, ranged from 4 to 37 lg kg�1 in
particle size fractions, corresponding to 0.03–0.2% of total Hg. No
apparent relationship was observed between water-soluble Hg
and the particle size fractions (Table 2).

Larger amount of fine fractions (up to 0.25–0.5 mm) were ob-
served in wet sieving than in dry sieving (Fig. 1), implying that
more fines were bound to coarser particles in dry sieving.

3.2. Total organic carbon (TOC) in solid samples

The TOC contents varied from 5 to 11% in the particle size frac-
tions, but no clear differences were observed in relation to the par-
ticle sizes (Table 3). No correlation (r = 0.4) was observed between
TOC contents and total Hg (n = 21).

3.3. Mercury solubility in water

The concentrations of water soluble Hg were low in all fractions
(Table 2), indicating that Hg was firmly bound to the soil matrix
and was hardly leached by water. The contents of DOC increased
with decreasing particle sizes and ranged from 0.2% to 0.4% of
TOC (Table 3). No correlation was observed between DOC and sol-
uble Hg (r = 0.1), while strong correlations were shown between
DOC and Cd (r = 0.92) and Zn (r = 0.94).

3.4. The pH-dependent Hg dissolution

The amounts of Hg desorbed from soil at different pH values
varied, but the desorption pattern was similar in all particle size
fractions (Fig. 2). The least Hg dissolution was achieved at pH 3
and 9 (0.2–2.9 lg kg�1), while the dissolution peaks were observed
at pH 5 and 11 (11–43 lg kg�1) in all fractions (Fig. 2).

A small increase in Hg dissolution was observed at pH 3 using
HCl as the titrant compared to HNO3. However, at pH 5, chloride
ions seemed to have less impact on Hg mobilization than nitrate
Table 2
Distribution of particle size fractions and total Hg (HgT) in solid soil samples after dry sie

Texture Particle size (mm) Percentage

Clay/silt <0.063 1.32
Sand 0.063–0.125 2.05

0.125–0.25 3.08
0.25–0.5 6.04
0.5–1 8.42
1–2 11.11

Gravel/stone 2–4 9.55
4–6.3 14.65
6.3–12.5 15.51
12.5–25 14.06
>25 14.21

‘‘–’’ not measured.
ions. The content of DOC was slightly higher at pH 3 than pH 5
when HCl was the titrant while the concentration of dissolved
Hg was higher at pH 5 using both titrants (Fig. 3).

3.5. Dissolution of Hg associated with SOM

Mercury desorption was largely enhanced by NaOH washing
compared to distilled water (Table 4). But the dissolved Hg ac-
counted for only a small percentage (up to 1.5%) of the total Hg
and did not show any increase at higher NaOH concentration (Ta-
bles 2 and 4).

3.6. Thermo-desorption curves (TDCs) of Hg

Mercury in nine soil samples after HCl titration at pH 3 was
classified as humic/matrix-bound and chloride species according
to the TDCs (Fig. 4a and b). The TDCs of most of these peaks were
quite symmetric and none of them was at the temperature below
100 �C, implying no occurrence of Hg(0) species.

3.7. Geochemical modeling and equilibrium calculations

According to the output of model exercise (Fig. 5), the majority
of dissolved Hg was bound to chlorides when 0.1 M HCl was used,
while dissolved organic matter (DOM) contributed as much as
chlorides for dissolved Hg binding when 0.05 M HCl was used. In
the absence or at very low concentration (0.01 M) of chlorides,
DOM dominated the binding for dissolved Hg. The free form of
Hg(II) was negligible. Elevated chloride concentrations accompa-
nied by lower pH were supposed to enhance Hg mobilization
according to the model simulation (Fig. 5). However, dissolved
Hg concentration at acidic pH, as observed in this experiment,
was substantially lower than predicted by the model (Fig. 6). A
ving and soluble Hg (HgS) in leachates of the soil particle size fractions (±SD, n = 3).

passing HgT (mg kg�1) HgS (lg kg�1)

49 ± 2 16 ± 2
42 ± 2 27 ± 4
30 ± 1 25 ± 1
25 ± 6 37 ± 6
20 ± 3 35 ± 3
24 ± 5 16 ± 3
10 ± 1 4 ± 2

8 ± 1 –
6 ± 2 –
3 ± 1 –
3 ± 3 –



Table 3
Characteristics of fractionated and bulk soil (EC: electrical conductivity; TOC: total organic carbon; DOC: dissolved organic carbon, ±SD, n = 3).

Particle size (mm) EC (mS cm�1) pH (1:2 H2O) TOC (%) DOC (mg kg�1) DOC/TOC (%)

<0.063 2.5 ± 0.1 6.56–6.64 8.9 ± 0.1 391 ± 11 0.44
0.063–0.125 2.6 ± 0.1 6.55–6.65 8.7 ± 0.2 336 ± 2 0.39
0.125–0.25 2.5 ± 0.1 6.47–6.53 9.2 ± 0.5 256 ± 2 0.28
0.25–0.5 2.4 ± 0.1 6.43–6.57 8.9 ± 0.9 213 ± 2 0.24
0.5–1 2.2 ± 0.0 6.46–6.54 10.9 ± 0.7 190 ± 5 0.17
1–2 1.8 ± 0.1 6.58–6.62 8.5 ± 2.1 172 ± 9 0.20
2–4 1.3 ± 0.1 6.69–6.71 4.9 ± 1.5 145 ± 5 0.29

Fig. 2. The pH-dependent dissolution of Hg in soil particle size fractions using
HNO3 as the titration acid. Note the logarithmic concentration scale. Error bars
represent standard deviation of means, n = 3.

Fig. 3. Soluble Hg (HgS) and dissolved organic carbon (DOC) after titrations to pH 3
and 5 using HCl and HNO3 as the titrants. Note the logarithmic concentration scale.
Error bars represent standard deviation of means, n = 3.

Table 4
Mercury dissolution in NaOH solution (± SD, n = 3).

NaOH concentration (M) 0 0.1 0.4
Soluble Hg (lg kg�1) 30 ± 3 500 ± 48 470 ± 56
pH 6.5 12.6–12.8 12.9–13.1
Electrical conductivity (EC, mS cm�1) 2.3 ± 0.1 12.3 ± 0.2 54.3 ± 2.9
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pH dependent dissolution of Hg (similar to what was shown in
Fig. 2) was observed regardless of the presence of chlorides.

4. Discussion

4.1. Soil washing efficiency by particle size separation

Usually, fine soil particles have a larger specific surface area and
tend to bind more contaminants than large particles (Table 2).
However, even sand/gravel fractions (below 4 mm) contained sub-
stantial concentrations of Hg (Table 2). Different curves obtained
for dry and wet sieving (Fig. 1) indicate that coarser particles con-
tained some amount of fines attached to them, demonstrating the
lower effectiveness of particle size separation via dry sieving. Mer-
cury concentrations in particle size fractions after wet sieving were
not measured, but judging from the leaching test results (Table 2),
the removal of Hg from all particle size fractions with water is ex-
pected to be very low.

Organic content of soil might also influence Hg distribution
(Dermont et al., 2008). TOC usually exhibits a strong correlation
with Hg concentration due to the high affinity of Hg for SOM func-
tional groups (Schuster, 1991; Kwaansa-Ansah et al., 2012). Never-
theless, there was no correlation between TOC and total Hg in this
case (r = 0.4), which could be due to the competition with soil min-
eral particles that have larger specific surface area (e.g., Fe, Mn, Al
(hydr)oxides) (Liao et al., 2009). On the other hand, the quality of
functional groups of SOM might be more important than the quan-
tity of SOM for Hg binding (Jing et al., 2007). Hg(II) is expected to
preferentially bind with thiol (–SH) and other reduced sulfur-con-
taining groups (Skyllberg et al., 2006), which are present only in
trace quantities in SOM (Ravichandran, 2004). Quantification of
functional Hg-binding groups of SOM in different particle sizes
might help to better understand the Hg association with SOM
(Xia et al., 1999; Manceau and Nagy, 2012).

4.2. Influence of DOM, pH and chlorides on Hg mobilization in the soil

4.2.1. DOM
In general, strong positive correlation between soluble Hg and

DOC is expected in cases where Hg is primarily derived from wet-
lands and soils, where Hg is released and co-transported with the
natural DOM (Wallschläger et al., 1996; Åkerblom et al., 2008;
Miller et al., 2011). The Hg contamination in the studied soil re-
sulted from anthropogenic activities and it is likely that organic
contaminants have altered the distribution of organic carbon in
soil particle size fractions, which have interfered with the correla-
tions between Hg and SOM. Other elements, such as Cd and Zn,
that were present in elevated concentrations showed significant
positive correlations with DOC, hence they are competing with
Hg for sorption sites (Lin and Chen, 1998; Turer and Maynard,
2003; Amir et al., 2005).

Several studies have demonstrated that DOM might act as a re-
ducer by transforming Hg(II) in the solution to Hg(0) thereby
decreasing Hg dissolution (Ravichandran, 2004; Gu et al., 2011).
Although a higher level of DOC was observed, while lower Hg dis-
solution was shown at pH 3 compared to pH 5 (Fig. 3), no species
transformation to Hg(0) was indicated by the thermo-desorption
(Fig. 4a and b).

4.2.2. pH
It is well established that pH is an important factor controlling

the mobility of Hg in soil by changing Hg speciation (Barrow and
Cox, 1992; Yin et al., 1996). The observed low dissolution of Hg



Fig. 4. (a) Reference measurement of Hg thermo-desorption curves of soil; (b) Thermal desorption curves of Hg in bulk soil after HCl titration to pH 3. Three replicate samples
after titration examined in triplicate (hence nine graphs in total).
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at pH 3 (Figs. 2 and 6) was earlier reported by Yin et al. (1996), who
explained it by the precipitation of SOM at this pH. HA is one of the
main constituents of SOM and is insoluble under strongly acidic
conditions; therefore, Hg bound to HA would be expected to co-
precipitate at pH 3 (Hem, 1970; Reimers and Krenkel, 1974; Walls-
chläger et al., 1996). Besides, adsorption of Hg(II) to soil mineral
particles could also occur at this pH range. Maximal adsorption
of Hg(II) just below pH 4 was reported for goethite (Barrow and
Cox, 1992). Considerable Hg adsorption on hydrous MnO2 between
pH 2.5 and 3 were found by Lockwood and Chen (1973). They ex-
plained the formation of the Mn-hydroxide complex was responsi-
ble for Hg adsorption in this pH range. The apparent increase in Hg
dissolution at pH 5 and 7 compared to pH 3 (Figs. 2 and 6) was
likely to result from the dissolution of HA that retained Hg in the
soil at pH 3. The decrease of desorbed Hg from pH 5 to 7 could
be caused by the competition between Hg2+ and hydronium ions
(H3O+) for adsorption sites on the soil particles at acidic pH (Semu
et al., 1987). When pH increased from 7 to 9, Hg dissolution de-
creased (Fig. 2), most likely due to that elevated pH increases the
quantity of negative charges of soil particles, which might attract
and retain Hg(II) ions (Semu et al., 1987). In addition, hydrolysis
of Hg increases with increasing pH, and mercuric hydroxide has
been reported to be increasingly adsorbed by soil constituents
from pH 5 to 9 (Farrah and Pickering, 1978). This mechanism could
also contribute to a higher Hg adsorption at pH 9 in comparison to
pH 7. An obvious increase in Hg dissolution from pH 9 to 11 (Fig. 2)
was probably due to the continuous dissolution of HA that bound
Hg. Results of the dissolution of Hg associated with humic matter
(Table 4) further confirmed this hypothesis, with much enhanced
Hg dissolution at pH around 13 compared to neutral pH. Moreover,
decreasing concentrations of Hg2+ and HgOH+ with increasing pH,
as hydrolysis of these charged species proceeds to uncharged



Fig. 5. Model output of Hg species in solution after extraction by HCl of various
concentrations for 24 h and 48 h and distilled water for 24 h. Note the logarithmic
concentration scale.

Fig. 6. Experimental data and model simulation of Hg released into solution at
different pH using distilled water and HCl of 0.01, 0.05 and 0.1 M as the extractants
for 24 and 48 h. Note the logarithmic concentration scale.
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Hg(OH)2 might also cause the elevated Hg dissolution at alkaline
pH with negative charges of the soil (Farrah and Pickering, 1978).

4.2.3. Chlorides
Chlorides are regarded as one of the most mobile complexing

agents for Hg (Kabata Pendias, 2011) and able to compete with
OH� and even organic ligands for Hg bonding (Payne, 1964; Rei-
mers and Krenkel, 1974; Gabriel and Williamson, 2004). According
to the model simulation, chlorides were very competitive with
SOM for complexing dissolved Hg at acidic pH (Fig. 5). Besides,
Hg solubility was predicted to increase at lower pH values in HCl
leachates (Figs. 5 and 6). However, the results of the experiment
indicate that chlorides had little effect on Hg mobilization in the
studied soil (Fig. 6). These discrepancies might be due that data
in the Visual Minteq database used to obtain the binding parame-
ters for Hg(II)-FA/HA (Gustafsson, 2012) were insufficient to simu-
late the conditions in our study. Moreover, much higher chloride
concentrations than studied (0.1 M HCl) might be needed to mobi-
lize Hg (USEPA, 2007).

Similar findings as what was shown in Fig. 3 were obtained by
Yin et al. (1996), who found that the addition of Cl� at pH 3 had al-
most no effect on the desorption of Hg(II) in soils high in SOM. It is
possible that the non-soluble SOM forms ternary complexes with
Hg-Cl (Yin et al., 1996). Chloride content in the leachate after HCl
titration to pH 3 was calculated to decrease (not shown), indicating
that chlorides were sorbed to the soil. Additionally, thermal
desorption curves indicate that Hg(II) was bound to SOM as well
as to chlorides (Fig. 4a and b), implying possible formation of
SOM bound Hg-Cl.
5. Conclusions

The studied soil was coarse-grained and the total Hg concentra-
tion decreased with increasing particle sizes. However, even the
least contaminated fraction (2–4 mm) substantially exceeded the
Swedish generic guideline value for Hg in soils with less sensitive
use (2.5 mg kg�1). Particle size separation and the use of water
were insufficient to remove Hg to the acceptable levels. As little
as 0.03–0.2% of the total Hg was removed from soil fractions with
water, showing a strong affinity of Hg for soil constituents. No cor-
relation between the total and dissolved Hg and SOM (both total
and dissolved) was identified for the studied soil.

Although different pH values affected Hg dissolution and an en-
hanced Hg desorption was observed at pH 5 and 11, soil washing
by pH adjustment was insufficient for Hg removal, as the highest
amount of mobilized Hg at these two pH values was only up to
0.3% of the total soil Hg. The pH 3 should be avoided for Hg wash-
ing since Hg was shown to be least soluble at this pH. Increased
chloride concentration through addition of 0.1 M HCl acid did not
improve Hg mobilization either in the studied soil.

The best result was obtained by the use of NaOH solution at pH
�13, where 1.5% of the total Hg was removed from soil. This, how-
ever, was still not sufficient to reach the acceptable Hg levels in
soil. Mercury was firmly bound to soil particles and the studied soil
washing conditions were not sufficient to extract Hg. Stabilization
techniques should be considered for the future soil treatment.
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