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We compute the O(α2α2
s ) perturbative corrections to inclusive jet production in electron–nucleon 

collisions. This process is of particular interest to the physics program of a future Electron Ion Collider 
(EIC). We include all relevant partonic processes, including deep-inelastic scattering contributions, 
photon-initiated corrections, and parton–parton scattering terms that first appear at this order. Upon 
integration over the final-state hadronic phase space we validate our results for the deep-inelastic 
corrections against the known next-to-next-to-leading order (NNLO) structure functions. Our calculation 
uses the N-jettiness subtraction scheme for performing higher-order computations, and allows for a 
completely differential description of the deep-inelastic scattering process. We describe the application of 
this method to inclusive jet production in detail, and present phenomenological results for the proposed 
EIC. The NNLO corrections have a non-trivial dependence on the jet kinematics and arise from an intricate 
interplay between all contributing partonic channels.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The production of hadrons and jets at a future Electron Ion Col-
lider (EIC) will play a central role in understanding the structure 
of the protons and nuclei which comprise the visible matter in 
the universe. Measurements of inclusive jet and hadron produc-
tion with transversely polarized protons probe novel phenomena 
within the proton such as the Sivers function [1], and address 
fundamental questions concerning the validity of QCD factoriza-
tion. Event shapes in jet production can give insight into the 
nuclear medium and its effect on particle propagation [2]. The 
precision study of these processes at a future EIC will provide 
a much sharper image of proton and nucleus structure than is 
currently available. Progress is needed on both the experimental 
and theoretical fronts to achieve this goal. Currently, much of our 
knowledge of proton spin phenomena, such as the global fit to 
helicity-dependent structure functions [3], comes from comparison 
to predictions at the next-to-leading order (NLO) in the strong cou-
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pling constant. Theoretical predictions at the NLO level for jet and 
hadron production in DIS suffer from large theoretical uncertain-
ties from uncalculated higher-order QCD corrections [4] that will 
eventually hinder the precision determination of proton structure. 
In some cases even NLO is unknown, and an LO analysis fails to 
describe the available data [5]. Given the high luminosity and ex-
pected precision possible with an EIC, it is desirable to extend the 
theoretical precision beyond what is currently available. For many 
observables, a prediction to next-to-next-to-leading order (NNLO) 
in the perturbative QCD expansion will ultimately be needed.

An important step toward improving the achievable precision 
for jet production in electron–nucleon collisions was taken in 
Ref. [4], where the full NLO O(α2αs) corrections to unpolarized 
lN → j X and lN → h X scattering were obtained. Focusing on 
single-inclusive jet production for this discussion, it was pointed 
out that two distinct processes contribute: the deep-inelastic scat-
tering (DIS) process lN → l j X , where the final-state lepton is re-
solved, and γ N → j X , where the initial photon is almost on-shell 
and the final-state lepton is emitted collinear to the initial-state 
beam direction. Both processes were found to contribute for ex-
pected EIC parameters, and the shift of the leading-order predic-
tion was found to be both large and dependent on the final-state 
jet kinematics.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Our goal in this manuscript is to present the full O(α2α2
s )

NNLO contributions to single-inclusive jet production in electron–
nucleon collisions, including all the relevant partonic processes 
discussed above. Achieving NNLO precision for jet and hadron 
production is a formidable task. The relevant Feynman diagrams 
which give rise to the NNLO corrections consist of two-loop vir-
tual corrections, one-loop real-emission diagrams, and double-real 
emission contributions. Since these three pieces are separately in-
frared divergent, some way of regularizing and canceling these 
divergences must be found. However, theoretical techniques for 
achieving this cancellation in the presence of final-state jets have 
seen great recent progress. The introduction of the N-jettiness sub-
traction scheme for higher order QCD calculations [6,7] has lead to 
the first complete NNLO descriptions of jet production processes 
in hadronic collisions. During the past year several NNLO predic-
tions for processes with final-state jets have become available due 
to this theoretical advance [6,8–12]. In some cases the NNLO cor-
rections were critical in explaining the observed data [12]. We 
discuss here the application of the N-jettiness subtraction scheme 
to inclusive jet production in electron–proton collisions. Our re-
sult includes both the DIS and photon-initiated contributions, and 
allows arbitrary selection cuts to be imposed on the final state. 
Upon integration of the DIS terms over the final-state hadronic 
phase space we compare our result against the known NNLO pre-
diction for the inclusive structure function, and we find complete 
agreement. We present phenomenological results for proposed EIC 
parameters. We find that all partonic channels, including new ones 
that first appear at this order, contribute in a non-trivial way to 
give the complete NNLO correction. We note that the NNLO cor-
rections to similar processes, massive charm-quark production in 
deeply inelastic scattering and dijet production, were recently ob-
tained [13,14].

2. Lower-order results

We begin by discussing our notation for the hadronic and par-
tonic cross sections, and outlining the expressions for the LO and 
NLO cross sections. We will express the hadronic cross section in 
the following notation:

dσ = dσLO + dσNLO + dσNNLO + . . . , (1)

where the ellipsis denotes neglected higher-order terms. The LO 
subscript refers to the O(α2) term, the NLO subscript denotes 
the O(α2αs) correction, while the NNLO subscript indicates the 
O(α2α2

s ) contribution. For the partonic cross sections, we intro-
duce superscripts that denote the powers of both α and αs that 
appear. For example, the leading quark–lepton scattering process 
is expanded as

dσ̂ql = dσ̂
(2,0)

ql + dσ̂
(2,1)

ql + dσ̂
(2,2)

ql + . . . . (2)

Here, the dσ̂
(2,0)

ql denotes the O(α2) correction, while dσ̂
(2,1)

ql in-

dicates the O(α2αs) term.
The leading-order hadronic cross section can be written as a 

convolution of parton distribution functions with a partonic cross 
section,

dσLO =
∫

dξ1

ξ1

dξ2

ξ2

∑
q

[
fq/H (ξ1) fl/l(ξ2)dσ̂

(2,0)

ql (3)

+ fq̄/H (ξ1) fl/l(ξ2)dσ̂
(2,0)

q̄l

]
.

Here, fq/H (ξ1) is the usual parton distribution function that de-
scribes the distributions of a quark q in the hadron H carrying 
Fig. 1. Feynman diagram for the leading-order process q(p1) + l(p2) → q( p3) + l(p4). 
We have colored the photon line red, the lepton lines green and the quark lines 
black. (For interpretation of the references to color in this figure, the reader is re-
ferred to the web version of this article.)

Fig. 2. Representative Feynman diagrams contributing to the following perturbative 
QCD corrections at NLO: virtual corrections to the q(p1) +l(p2) → q(p3) +l(p4) pro-
cess (left); real emission correction q(p1) + l(p2) → q(p3) + l(p4) + g(p5) (middle); 
the process g(p1) + l(p2) → q( p3) + l(p4) + q̄(p5) (right). We have colored the pho-
ton line red, the lepton lines green, the gluon lines blue and the quark lines black. 
(For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.)

a fraction ξ1 of the hadron momentum. fl/l(ξ2) is the distribu-
tion for finding a lepton with momentum fraction ξ2 inside the 
original lepton. At leading order this is just fl/l(ξ2) = δ(1 − ξ2), 
but it is modified at higher orders in the electromagnetic coupling 
by photon emission. dσ̂

(2,0)

ql is the differential partonic cross sec-
tion. At leading order only the partonic channel q(p1) + l(p2) →
q(p3) + l(p4) and the same process with anti-quarks instead con-
tribute. The relevant Feynman diagram is shown in Fig. 1. It is 
straightforward to obtain these terms.

At the next-to-leading order level several new contributions 
first occur. The quark–lepton scattering channel that appears at 
LO receives both virtual and real-emission corrections that are 
separately infrared divergent. We use the antennae subtraction 
method [15] to regularize and cancel these divergences. Initial-
state collinear divergences are handled as usual by absorbing them 
into the PDFs via mass factorization. A gluon–lepton scattering 
channel also contributes at this order. The collinear divergences 
that appear in these contributions are removed by mass factoriza-
tion. Example Feynman diagrams for these processes are shown in 
Fig. 2.

The processes discussed above exhaust the possible NLO con-
tributions when the final-state lepton is observed. However, for 
single-inclusive jet production a kinematic configuration is allowed 
where the t-channel photon is nearly on-shell, and the final-state 
lepton travels down the beam pipe. The transverse momentum of 
the leading jet is balanced by the additional jet present in these 
diagrams. This kinematic configuration leads to a QED collinear 
divergence for vanishing lepton mass, since the photon can be-
come exactly on-shell in this limit. While it is regulated by the 
lepton mass, it is more convenient to obtain these corrections by 
introducing a photon distribution function in analogy with the 
usual parton distribution function. The collinear divergences that 
appear in the matrix elements computed with vanishing lepton 
mass can be absorbed into this distribution function, which can 
be calculated in perturbation theory. Representative diagrams for 
the photon-initiated processes are shown in Fig. 3.

The full expression for the NLO hadronic cross section then 
takes the form
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Fig. 3. Representative Feynman diagrams contributing to the q(p1) + γ (p2) →
q(p3) + g(p4) (left) and g(p1) + γ (p2) → q(p3) + q̄(p4) scattering processes.

dσNLO =
∫

dξ1

ξ1

dξ2

ξ2

{
f 1

g/H f 2
l/ldσ̂

(2,1)

gl + f 1
g/H f 2

γ /ldσ̂
(1,1)
gγ

+
∑

q

[
f 1
q/H f 2

l/ldσ̂
(2,1)

ql + f 1
q̄/H f 2

l/ldσ̂
(2,1)

q̄l

+ f 1
q/H f 2

γ /ldσ̂
(1,1)
qγ + f 1

q̄/H f 2
γ /ldσ̂

(2,1)

q̄γ

]}
, (4)

where we have abbreviated f k
i/ j = f i/ j(ξk). The contributions 

dσ̂
(2,1)

gl , dσ̂
(2,1)

ql and dσ̂
(2,1)

q̄l denote the usual DIS partonic chan-
nels computed to NLO in QCD with zero lepton mass. The terms 
dσ̂q̄γ ,LO and dσ̂gγ ,LO denote the new contributions arising when 
Q 2 ≈ 0 and the virtual photon is nearly on-shell. The photon dis-
tribution can be expressed as

fγ /l(ξ) = α

2π
Pγ l(ξ)

[
ln

(
μ2

ξ2m2
l

)
− 1

]
+O(α2), (5)

where the splitting function is given by

Pγ l(ξ) = 1 + (1 − ξ)2

ξ
. (6)

This is the well-known Weizsäcker–Williams (WW) distribution for 
the photon inside of a lepton [16]. The appearance of the renor-
malization scale μ indicates that an MS subtraction of the QED 
collinear divergence is used in the calculation of the gl and ql scat-
tering channels, and consequently in the derivation of the photon 
distribution function.

3. Calculation of the NNLO result

The calculation of the full O(α2α2
s ) corrections involves several 

distinct contributions. The quark–lepton and gluon–lepton scatter-
ing channels receive two-loop double virtual corrections, one-loop 
corrections to single real-emission diagrams, and double-real emis-
sion corrections. These contributions necessitate the use of a full–
fledged NNLO subtraction scheme. We use the recently-developed 
N-jettiness subtraction scheme [6,7]. Its application to this process 
is discussed here in detail. In addition, the photon-initiated scat-
tering channels receive virtual and single real-emission corrections. 
The calculation of these terms follows the standard application of 
the antennae subtraction scheme at NLO.

There is in addition a new effect that appears at the NNLO level. 
The initial-state lepton can emit a photon which splits into a qq̄
pair, all of which are collinear to the initial lepton direction. In the 
limit of vanishing fermion masses there is a collinear singularity 
associated with this contribution. This divergence appears in the 
quark–lepton, gluon–lepton, and photon-initiated scattering chan-
nels. It can be absorbed into a distribution function that describes 
the quark distribution inside a lepton. Treating the collinear sin-
gularity in this way leads to new scattering channels that first 
appear at NNLO: qq̄ → qq̄, qq̄ → q′q̄′ , qq̄ → gg , qq′ → qq′ , and 
qg → qg . For our numerical predictions for these channels we need 
the quark distribution in a lepton. We obtain this by solving the 
Fig. 4. Representative Feynman diagrams contributing to the q(p1) + q̄(p2) →
g(p3) + g(p4) (left), q(p1) +q′(p2) → q(p3) +q′(p4) (middle), and q(p1) + g(p2) →
q(p3) + g(p4) (right) scattering processes.

DGLAP equation, which to the order we are working can be writ-
ten as

μ2 ∂ fq/l

∂μ2
(ξ,μ2) = e2

q
α

2π

1∫
ξ

dz

z
P (0)

qγ (z) fγ /l

(
ξ

z
,μ2

)

+ e2
q

( α

2π

)2
1∫

ξ

dz

z
P (1)

ql (z) fl/l

(
ξ

z
,μ2

)
, (7)

where the two needed splitting kernels are

P (0)
qγ (x) = x2 + (1 − x)2,

P (1)

ql (x) = −2 + 20

9x
+ 6x − 56x2

9

+
(

1 + 5x + 8x2

3

)
log(x) − (1 + x) log2(x). (8)

This expression for the NLO splitting kernel can be obtained from 
upon replacement of the appropriate QCD couplings with electro-
magnetic ones. To derive the full quark-in-lepton distribution we 
use as an initial condition fq/l(ξ, m2

l ) = 0. Solving Eq. (7) with this 
initial condition gives

fq/l(ξ,μ2) = e2
q

( α

2π

)2
{[

1

2
+ 2

3ξ
− ξ

2
− 2ξ2

3

+ (1 + ξ) log ξ

]
log2

(
μ2

m2
l

)
+

[
− 3 − 2

ξ
+ 7ξ − 2ξ2 +

(
− 5 − 8

3ξ
+ ξ + 8ξ2

3

)
log(ξ) − 3(1 + x) log2(ξ)

]

× log

(
μ2

m2
l

)
. (9)

With this distribution function it is straightforward to obtain 
numerical predictions for these partonic channels. Representative 
Feynman diagrams for these processes are shown in Fig. 4. We can 
now write down the full result for the O(α2α2

s ) correction to the 
cross section:

dσNNLO =
∫

dξ1dξ2

ξ1ξ2

{
f 1

g/H f 2
l/l dσ̂

(2,2)

gl + f 1
g/H f 2

γ /l dσ̂
(1,2)
gγ

+
∑

q

[
f 1

g/H f 2
q/l dσ̂

(0,2)
gq + f 1

g/H f 2
q̄/l dσ̂

(0,2)

gq̄

]

+
∑

q

[
f 1
q/H f 2

l/l dσ̂
(2,2)

ql + f 1
q̄/H f 2

l/l dσ̂
(2,2)

q̄l

+ f 1
q/H f 2

γ /l dσ̂
(1,2)
qγ + f 1

q̄/H f 2
γ /l dσ̂

(1,2)

q̄γ

+ f 1
q/H f 2

q̄/l dσ̂
(0,2)

qq̄ + f 1
q̄/H f 2

q/l dσ̂
(0,2)

q̄q

]
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Fig. 5. Representative Feynman diagrams contributing to the quark–lepton scattering 
channel at NNLO.

+
∑
q,q′

[
f 1
q/H f 2

q′/l dσ̂
(0,2)

qq′ + f 1
q̄/H f 2

q̄′/l dσ̂
(0,2)

q̄q̄′

+ f 1
q/H f 2

q̄′/l dσ̂
(0,2)

qq̄′ + f 1
q̄/H f 2

q′/l dσ̂
(0,2)

q̄q′

]}
. (10)

The most difficult contribution is the quark–lepton scattering 
channel. It receives contributions from two-loop virtual corrections 
(double-virtual), one-loop corrections to single real emission terms 
(real-virtual), and double-real emission corrections. Sample Feyn-
man diagrams for these corrections are shown in Fig. 5. These 
are separately infrared divergent, and require a full NNLO sub-
traction scheme to combine. We apply the N-jettiness subtraction 
scheme [6,7]. The starting point of this method is the N-jettiness 
event shape variable [17], defined in the one-jet case of current 
interest as

T1 = 2

Q 2

∑
i

min
{

pB · qi, p J · qi
}
, (11)

with Q 2 = −(p2 − p4)
2. Here, pB and p J are light-like four-vectors 

along the initial-state hadronic beam and final-state jet directions, 
respectively.1 The qi denote the four-momenta of all final-state 
partons. Values of T1 near zero indicate a final state containing a 
single narrow energy deposition, while larger values denote a final 
state containing two or more well-separated energy depositions. 
A measurement of T1 is itself of phenomenological interest. It has 
been proposed as a probe of nuclear properties in electron–ion col-
lisions [2,18], and has also been suggested as a way to precisely 
determine the strong coupling constant [19].

We will use T1 to establish the complete O(α2α2
s ) calculation 

of the quark–lepton scattering channel. Our ability to do so relies 
on two key observations, as first discussed in Ref. [6] for a general 
N-jet process.

• Restricting T1 > 0 removes all doubly-unresolved limits of the 
quark–lepton matrix elements, for example when the two ad-
ditional partons that appear in the double-real emission cor-
rections are soft or collinear to the beam or the final-state jet. 
This can be seen from Eq. (11); if T1 > 0 then at least one 
qi must be resolved. Since all doubly-unresolved limits are re-
moved, the O(α2α2

s ) correction in this phase space region can 
be obtained from an NLO calculation of two-jet production in 
electron–nucleon collisions.

• When T1 is smaller than any other hard scale in the problem, 
it can be resummed to all orders in perturbation theory [20,
21]. Expansion of this resummation formula to O(α2α2

s ) gives 
the NNLO correction to the quark–lepton scattering channel 
for small T1.

1 This choice of T1 corresponds to τ a
1 in Ref. [19]. We note that this definition 

is dimensionless, unlike the choice in previous applications of N-jettiness subtrac-
tion [6].
The path to a full NNLO calculation is now clear. We partition 
the phase space for the real-virtual and double-real corrections 
into regions above and below a cutoff on T1, which we label T cut

1 :

dσ
(2,2)

ql =
∫

d
VV |MVV|2 +
∫

d
RV |MRV|2 θ<
1

+
∫

d
RR |MRR|2 θ<
1 +

∫
d
RV |MRV|2 θ>

1

+
∫

d
RR |MRR|2 θ>
1

≡ dσ
(2,2)

ql (T1 < T cut
1 ) + dσ

(2,2)

ql (T1 > T cut
1 )

(12)

We have abbreviated θ<
1 = θ(T cut

1 − T1) and θ>
1 = θ(T1 − T cut

1 ). 
The first three terms in this expression all have T1 < T cut

1 , and 
have been collectively denoted as dσ

(2,2)

ql (T1 < T cut
1 ). The remain-

ing two terms have T1 > T cut
1 , and have been collectively denoted 

as dσ
(2,2)

ql (T1 > T cut
1 ). The double-virtual corrections necessarily 

have T1 = 0. We obtain dσ
(2,2)

ql (T1 > T cut
1 ) from a NLO calculation 

of two-jet production. This is possible since no genuine double-
unresolved limit occurs in this phase-space region. We discuss the 
calculation of dσ

(2,2)

ql (T1 < T cut
1 ) using the all-orders resummation 

of this process in the following sub-section. We note that only the 
quark–lepton and gluon–lepton scattering channels have support 
for T1 = 0. For the other processes there are two final-state jets 
with non-zero transverse momentum. Such configurations neces-
sarily have T1 > 0, and therefore only receive contributions from 
the above-the-cut phase-space region. We only need these con-
tributions to at most NLO in QCD perturbation theory, which 
can be obtained via standard techniques. We use antennae sub-
traction. The only non-standard aspect of this NLO calculation is 
the appearance of triple-collinear QED limits associated with the 
emission of a photon and a qq̄ pair which require the use of in-
tegrated antennae found in Refs. [22–24]. A powerful aspect of 
the N-jettiness subtraction method is its ability to upgrade exist-
ing NLO calculations to NNLO precision. Previous applications of 
N-jettiness subtraction [6,8,9] have used the NLO dipole subtrac-
tion technique [25] to facilitate the calculation of the above-cut 
phase-space region. This work demonstrates that it can also be 
used in conjunction with the NLO antennae subtraction scheme.

3.1. Below T cut
1

An all-orders resummation of the T1 event-shape variable in 
the DIS process for the limit T1 � 1 was constructed in Refs. [18,
19]:

dσ

dT1
=

∫
d
2(p3, p4; p1, p2)

∫
dt J dtB dkS

× δ

(
T1 − t J

Q 2
− tB

Q 2
− kS

Q

)

×
∑

q

Jq(t J ,μ) S(kS ,μ)Hq(
2,μ)Bq(tB , x,μ) + . . .

(13)

We have allowed the index q to run over both quarks and anti-
quarks. x denotes the usual Bjorken scaling variable for DIS:

x = Q 2

2P · (p2 − p4)
, (14)

where P is the initial-state nucleon four-momentum. 
2 denotes 
the Born phase space, which consists of a quark and a lepton. 
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The derivation of this result relies heavily on the machinery of 
soft-collinear effective theory (SCET) [26]. A summary of the SCET 
functions that appear in this expression and what they describe is 
given below.

• H is the hard function that encodes the effect of hard virtual 
corrections. At leading order in its αs expansion it reduces to 
the leading-order partonic cross section. At higher orders it 
also contains the finite contributions of the pure virtual cor-
rections, renormalized using the MS scheme. It depends only 
on the Born-level kinematics and on the scale choice.

• Jq , the quark jet function, describes the effect of radiation 
collinear to the final-state jet (which for this process is ini-
tiated by a quark at LO). It depends on t J , the contribution of 
final-state collinear radiation to T1. It possesses a perturbative 
expansion in αs .

• S is the soft function that encodes the contributions of soft 
radiation. It depends on kS , the contribution of soft radiation 
to T1, and has a perturbative expansion in αs .

• B is the beam function that contains the effects of initial-
state collinear radiation. It depends on tB , the contribution 
of initial-state collinear radiation to T1. The beam function 
is non-perturbative; however, up to corrections suppressed by 
�2

QCD/tB , it can be written as a convolution of perturbative 
matching coefficients and the usual PDFs:

Bq(tB , x,μ) =
∑

i

1∫
x

dξ

ξ
Iqi(tB , x/ξ,μ) f i/H (ξ), (15)

where we have suppressed the scale dependence of the PDF, 
and i runs over all partons.

The delta function appearing in Eq. (13) combines the contribution 
of each type of radiation to produce the measured value of T1. 
The ellipsis denotes power corrections that are small as long as we 
restrict ourselves to the phase-space region T1 � 1.

The hard, jet, and soft functions as well as the beam-function 
matching coefficients all have perturbative expansions in αs that 
can be obtained from the literature [27–30]. Upon expansion to 
O(α2

s ) and integration over the region T1 < T cut
1 , Eq. (13) will give 

exactly the cross section dσ
(2,2)

ql (T1 < T cut
1 ) that we require. We 

can match the beam function onto the PDFs and rewrite the cross 
section below the cut as

dσ =
∫

dξ1

ξ1

dξ2

ξ2

∑
q,i

f i/H (ξ1) fl/l(ξ2)

∫
d
2(p3, p4; p1, p2)

T cut
1∫

0

dT1

∫
dt J dtB dkSδ

(
T1 − t J

Q 2
− tB

Q 2
− kS

Q

)

× Jq(t J ,μ) S(kS ,μ)Hq(
2,μ)Iqi(tB , x/ξ,μ)

≡
∑
q,i

∫
d
i

Born

[
Jq ⊗ S ⊗ Hq ⊗ Iqi

]
. (16)

We have introduced the schematic notation Jq ⊗ S ⊗ Hq ⊗ Iqi for 
the integrations of the SCET functions over T1, t J , tB , and kS ; 
d
i

Born represents all other terms for the given index i: the par-
ton distribution functions, the integral over the Born phase space, 
and any measurement function acting on the Born variables. We 
denote the expansion of these functions in αs as

X = X (0) +X (1) +X (2) + . . . , (17)
where the superscript denotes the power of αs appearing in each 
term. With this notation, we need the following contributions to 
obtain the O(α2

s ) correction to the cross section below T cut
1 :

dσNNLO =
∑
q,i

∫
d
i

Born

{
J (2)

q ⊗ S(0) ⊗ H (0)
q ⊗ I(0)

qi

+ J (0)
q ⊗ S(2) ⊗ H (0)

q ⊗ I(0)
qi + J (0)

q ⊗ S(0) ⊗ H (2)
q

⊗ I(0)
qi + J (0)

q ⊗ S(0) ⊗ H (0)
q ⊗ I(2)

qi

+ J (1)
q ⊗ S(1) ⊗ H (0)

q ⊗ I(0)
qi + J (1)

q ⊗ S(0) ⊗ H (1)
q

⊗ I(0)
qi + J (1)

q ⊗ S(0) ⊗ H (0)
q ⊗ I(1)

qi + J (0)
q ⊗ S(1)

⊗ H (1)
q ⊗ I(0)

qi + J (0)
q ⊗ S(1) ⊗ H (0)

q ⊗ I(1)
qi

+ J (0)
q ⊗ S(0) ⊗ H (1)

q ⊗ I(1)
qi

}
. (18)

To simplify this expression, we first note that the hard function 
has no dependence on the hadronic variables T1, t J , tB , and kS . 
It depends only on the Born phase space and is a multiplicative 
factor for the hadronic integrations. Next, we note that the leading-
order expressions for the SCET functions are proportional to delta 
functions in their respective hadronic variable:

X (0) ∝ δ(tX ) (19)

for X = Jq, S , or Iqi . This simplifies the integrals involving 
an X (2) . Using the J (2)

q term in Eq. (18) as an example, we have

J (2)
q ⊗ S(0) ⊗ H (0)

q ⊗ I(0)
qi

= Q 2 H (0)
q δqi

T cut
1∫

0

dT1 J (2)
q (T1 Q 2,μ), (20)

where the δqi comes from the I(0)
qi term. Using the fact that the jet 

function can be written in the form

J (2)
q (t J ,μ) = a−1δ(t J ) +

3∑
n=0

an
1

μ2

[
μ2 lnn(t J /μ

2)

t J

]
+

, (21)

where the ai denote coefficients that can be found in the litera-
ture [28], we can immediately derive

J (2)
q ⊗ S(0) ⊗ H (0)

q ⊗ I(0)
qi

= H (0)
q δqi

{
a−1 +

3∑
n=0

1

n + 1
an+1 lnn+1

(
T cut

1 Q 2

μ2

)}
. (22)

We have used the standard definition of the plus distribution of a 
function:

1∫
0

dx [ f (x)]+ g(x) =
1∫

0

dx f (x) [g(x) − g(0)] . (23)

This analysis shows how to analytically calculate any term contain-
ing one of the NNLO SCET functions.

It remains only to calculate contributions containing two NLO 
SCET functions. We focus on J (1)

q ⊗ S(1) ⊗ H (0)
q ⊗I(0)

qi as an example. 
Using the LO expression for the beam function we can immediately 
derive the equation
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J (1)
q ⊗ S(1) ⊗ H (0)

q ⊗ I(0)
qi = Q H (0)

q δqi

T cut
1∫

0

dT1

T1 Q∫
0

dt J

× J (1)
q (t J ,μ) S(1)

(
Q T1 − t J

Q

)
.

(24)

The NLO results for the jet and soft functions can be written as

J (1)
q (t J ,μ) = b−1δ(t J ) +

1∑
n=0

bn
1

μ2

[
μ2 lnn(t J /μ

2)

t J

]
+

,

S(1)(kS ,μ) = c−1δ(kS) +
1∑

n=0

cn
1

μ

[
μ lnn(kS/μ)

kS

]
+

. (25)

Using these expressions it is straightforward to derive the result

J (1)
q ⊗ S(1) ⊗ H (0)

q ⊗ I(0)
qi = H (0)

q δqi

{
b−1c−1

+ c−1

1∑
n=0

1

n + 1
bn+1 Ln+1

J + b−1

1∑
n=0

1

n + 1
cn+1 Ln+1

S

+
1∑

n,m=0

bmcn

[
Lα

J Lβ
S

�(α)�(β)

�(1 + α + β)

] ∣∣∣∣
αm,βn

⎫⎬
⎭ . (26)

The vertical bar in the last term indicates that we should take the 
αmβn coefficient of the series expansion of the bracketed term. We 
have introduced the abbreviations

L J = ln

(
T cut

1 Q 2

μ2

)
, LS = ln

(T cut
1 Q

μ

)
. (27)

Using these results it is straightforward to analytically compute all 
of the necessary hadronic integrals in Eq. (18). The remaining inte-
grals are over the Born phase space and parton distribution func-
tions, and are simple to perform numerically. This completes the 
calculation of the T1 < T cut

1 phase space region. We note that the 
cross section below T cut

1 will contain terms of the form lnn(T cut
1 ), 

where n ranges from 0 to 4 at NNLO. An important check of this 
framework is the cancellation of these terms against the identical 
logarithms that appear for T1 > T cut

1 . We must also choose T cut
1

small enough to avoid the power corrections in Eq. (13) that go as 
T cut

1 /Q . Both of these issues will be addressed in our later section 
on numerical results.

3.2. Above T cut
1

We now briefly outline the computation of the quark–lepton 
channel in the phase space region T1 > T cut

1 . As discussed above 
this can be obtained from a NLO calculation of the DIS process 
with an additional jet. In addition to the virtual corrections to the 
q l → q l g partonic process, there are numerous radiation processes 
that also contribute: q l → q l g g , q l → q l q′ q̄′ and q l → q l q ̄q. In 
addition to the usual ultraviolet renormalization of the strong cou-
pling constant, the real and virtual corrections are separately in-
frared divergent. Remaining divergences after introducing an NLO 
subtraction scheme are associated with initial-state collinear sin-
gularities, and are handled via mass factorization.

4. Validation and numerical results

We have implemented the NNLO cross section of Eq. (10), as 
well as the LO and NLO results of Eqs. (3) and (4) in a numerical 
code DISTRESS that allows for arbitrary cuts to be imposed on 
Fig. 6. Plot of the NNLO corrections normalized to the LO cross section for the 
quark–lepton and gluon–lepton scattering channels as a function of T cut

1 . The points 
denote values obtained from N-jettiness subtraction, with the vertical error bars 
denoting the numerical errors, while the solid lines indicate the inclusive structure 
function result.

the final-state lepton and jets. We describe below the checks we 
have performed on our calculation.

The antennae subtraction method provides an analytic cancel-
lation of the 1/ε poles that appear in an NLO calculation. We are 
therefore able to check this cancellation of poles for all compo-
nents computed in this way. This includes the entire σNLO, as well 
as the following contributions to the NNLO hadronic cross section: 
dσ̂

(1,2)
gγ and dσ̂

(1,2)
qγ . The various contributions dσ̂

(0,2)
i j that occur 

in σNNLO are finite, and simple to obtain. Our NLO results for the 
transverse momentum distribution and pseudorapidity distribution 
of the leading jet are compared against the plots of Ref. [4]. We 
find good agreement with these results.

This leaves only the validation of the dσ̂
(2,2)

gl and dσ̂
(2,2)

ql contri-
butions, which both utilize the N-jettiness subtraction technique. 
There are two primary checks that these pieces must satisfy. First, 
they must be independent of the parameter T cut

N . This checks the 
implementation of the beam, jet and soft functions, which have 
logarithmic dependence on this parameter. It also determines the 
range of T cut

N for which the power corrections denoted by the 
ellipsis in Eq. (13) are negligibly small. Second, upon integration 
over the final-state hadronic phase space we must reproduce the 
NNLO structure functions first determined in Ref. [27]. This is an 
extremely powerful check on our calculation, which essentially 
cannot be passed if any contribution is implemented incorrectly.

We show in Fig. 6 the results of these checks for the ql and 
gl scattering channels. We have set the total center-of-mass en-
ergy of the lepton–proton collision to 100 GeV. For the purpose of 
this validation check only we have imposed the phase-space cut 
Q 2 > 100 GeV2, and have integrated inclusively over the hadronic 
phase space. We have equated the renormalization and factoriza-
tion scales to the common value μ = Q , and have used the CT14 
NNLO parton distribution functions [31]. T cut

1 has been varied 
from 5 × 10−6 to 1 × 10−4, and the ratio of the NNLO correction to 
the LO result for the cross section is shown. The solid lines show 
the prediction of the inclusive structure function. We first note that 
correction is extremely small, less than 1% of the leading-order 
result. Nevertheless we have excellent numerical control over the 
NNLO coefficient, as indicated by the vertical error bars. Our nu-
merical error on the NNLO coefficient is at the percent-level, suffi-
cient for 0.01% precision on the total cross section. The N-jettiness 
prediction for the ql scattering channel is independent of T cut over 
1
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Fig. 7. Plot of the inclusive-jet transverse momentum distribution at LO, NLO and 
NNLO in QCD perturbation theory. The upper panel shows the distributions with 
scale uncertainties, while the lower panel shows the K -factors for the central scale 
choice.

the studied range, while the gl scattering channel is independent 
of T cut

1 for T cut
1 < 10−5. Both channels are in excellent agreement 

with the structure-function result. We have also checked bin-by-
bin that the transverse momentum and pseudorapidity distribu-
tions of the jet have no dependence on T cut

1 .
Having established the validity of our calculation we present 

phenomenological results for proposed EIC run parameters. We 
set the collider energy to 

√
s = 100 GeV and study the inclusive-

jet transverse momentum and pseudorapidity distributions in the 
range p jet

T > 5 GeV and |η jet | < 2. We use the CT14 parton dis-
tribution set [31] extracted to NNLO in QCD perturbation the-
ory. We reconstruct jets using the anti-kt algorithm [32] with 
radius parameter R = 0.5. Our central scale choice for both the 
renormalization and factorization scales is μ = p jet

T . To estimate 
the theoretical errors from missing higher-order corrections we 
vary the scale around its central value by a factor of two. The 
transverse momentum distributions at LO, NLO and NNLO are 
shown in Fig. 7. The K -factors, defined as the ratios of higher 
order over lower order cross sections, are shown in the lower 
panel of this figure. The NNLO corrections are small in the re-
gion p jet

T > 10 GeV, changing the NLO result by no more than 
10% over the studied p jet

T region. The shift of the NLO cross sec-
tion is slightly positive in the low transverse momentum region, 
and become less than unity at high-p jet

T . Both the NNLO cor-

rections and the scale dependence grow large at low-p jet
T . The 

large scale dependence arises primarily from the partonic chan-
nels qq and gq. These channels are effectively treated at lead-
ing order in our calculation, since they first appear at O(α2α2

s ), 
and they are evaluated at the low scale μ = p jet

T /2 in our es-
timate of the theoretical uncertainty. It is therefore not surpris-
ing that their uncertainty dominates at low-p jet

T These channels 
do not contribute at NLO, and consequently the NLO scale un-
certainty is smaller. This is an example of the potential pitfalls 
in using the scale uncertainty as an estimate of the theoreti-
cal uncertainty. Only an explicit calculation can reveal qualita-
tively new effects that occur at higher orders in perturbation the-
ory.

We next show the pseudorapidity distribution in Fig. 8, with 
the restriction p jet

T > 10 GeV. There are a few surprising aspects 
present in the NNLO corrections. First, the scale dependence at 
NNLO in the region η jet < 0 is larger than the corresponding NLO 
Fig. 8. Plot of the inclusive-jet pseudorapidity distribution at LO, NLO and NNLO in 
QCD perturbation theory. The upper panel shows the distributions with scale un-
certainties, while the lower panel shows the K -factors for the central scale choice.

Fig. 9. Breakdown of the NNLO correction to the η jet distribution into its constituent 
partonic channels, as a ratio to the full NLO cross section in the bin under consid-
eration. Also shown is the total result obtained by summing all channels. The bands 
indicate the scale variation.

scale variation. Although the corrections are near unity over most 
of the studied pseudorapidity range, they become sizable near 
η jet ≈ 2, reducing the NLO rate by nearly 50%. To determine the 
origin of these effects we show in Fig. 9 the breakdown of the 
NNLO correction into its separate partonic channels. This reveals 
that the total NNLO correction comes from an intricate interplay 
between all contributing channels, with different ones dominating 
in different η jet regions. Only the gluon–lepton partonic process is 
negligible over all of phase space. For negative η jet , the dominant 
contribution is given by the quark–quark process. As discussed 
before, this appears first at O(α2α2

s ). It is therefore effectively 
treated at leading-order in our calculation, and consequently has 
a large scale dependence. We note that the quark-in-lepton dis-
tribution from Eq. (9) is larger at high-x than the corresponding 
photon-in-lepton one, leading to this channel being larger in the 
negative η jet region. At high η jet , the distribution receives sizable 
contributions from the gluon–photon process. No single partonic 
channel furnishes a good approximation to the shape of the full 
NNLO correction.
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5. Conclusions

We have presented in this paper the full calculation of the 
O(α2α2

s ) perturbative corrections to jet production in electron-
nucleus collisions. To obtain this result we have utilized the 
N-jettiness subtraction scheme introduced to allow NNLO calcu-
lations in hadronic collisions. We have described the application of 
this method to inclusive jet production in detail, and have shown 
that upon integration over the final-state hadronic phase that we 
reproduce the known NNLO result for the inclusive structure func-
tions. Our results have been implemented in a numerical program
DISTRESS that we plan to make publicly available for future phe-
nomenological studies.

We have shown numerical results for jet production at a pro-
posed future EIC. Several new partonic channels appear at the 
O(α2α2

s ) level, which have an important effect on the kinematic 
distributions of the jet. No single partonic channel furnishes a good 
approximation to the full NNLO result. The magnitude of the cor-
rections we find indicate that higher-order predictions will be an 
important part of achieving the precision understanding of proton 
structure desired at the EIC, and we expect that the methods de-
scribed here will be an integral part of achieving this goal.
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