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Abstract

We construct polarized spin reversal operator (PSRO) which yields a class of representations for the
BCN type of Weyl algebra, and subsequently use this PSRO to find out novel exactly solvable variants of
the BCN type of spin Calogero model. The strong coupling limit of such spin Calogero models generates
the BCN type of Polychronakos spin chains with PSRO. We derive the exact spectra of the BCN type of
spin Calogero models with PSRO and compute the partition functions of the related spin chains by using
the freezing trick. We also find out an interesting relation between the partition functions of the BCN type
and AN−1 type of Polychronakos spin chains. Finally, we study spectral properties like level density and
distribution of spacing between consecutive energy levels for BCN type of Polychronakos spin chains with
PSRO.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Exactly solvable one-dimensional quantum many body systems with long-range interactions
have been studied intensively during last few decades [1–12] and have been applied in vari-
ous topics of contemporary physics as well as mathematics like generalized exclusion statistics,
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electric transport in mesoscopic systems, N = 4 super Yang–Mills theory, random matrix theory,
multivariate orthogonal polynomials and Yangian quantum groups [13–30]. Investigation of this
type of quantum mechanical systems having only dynamical degrees of freedom was initiated by
Calogero, who found the exact spectrum of a Hamiltonian describing particles on a line, subject
to a harmonic confining potential and two-body long-range interaction inversely proportional to
the square of the inter-particle distances [1]. An exactly solvable trigonometric variant of this
rational Calogero model, with particles moving on a circle and interacting through two-body po-
tentials proportional to the inverse square of their chord distances, was subsequently studied by
Sutherland [2,3].

In a parallel development, Haldane and Shastry pioneered the study of quantum integrable
spin chains with long-range interaction [5,6]. They found an exactly solvable quantum spin- 1

2
chain with long-range interactions, whose ground state coincides with the U → ∞ limit of
Gutzwiller’s variational wave function for the Hubbard model, and yields a one-dimensional ana-
logue of the resonating valence bond state. The lattice sites of this su(2) Haldane–Shastry (HS)
spin chain are equally spaced on a circle and all spins interact with each other through pairwise
exchange interactions inversely proportional to the square of their chord distances. Integrable
models possessing both spin and dynamical degrees of freedom, like su(m) spin generalization
of the Sutherland model, have been studied subsequently in the literature [31–33]. Furthermore,
a close connection between the su(m) spin generalization of the Sutherland model and the HS
chain with su(m) spin degrees of freedom has been established by using the method of ‘freezing
trick’ [7,34]. Indeed, by applying the above mentioned method, it can be shown that in the strong
coupling limit the particles of the su(m) spin Sutherland model ‘freeze’ at the equilibrium posi-
tion of the scalar part of the potential, and the dynamical and spin degrees of freedom decouple
from each other. Moreover, since such equilibrium positions of the particles coincide with the
equally spaced lattice points of the HS spin chain, the dynamics of the decoupled spin degrees
of freedom naturally leads to the Hamiltonian of the su(m) HS model. In a similar way, appli-
cation of this freezing trick to the su(m) spin Calogero model with harmonic confining potential
yields the Polychronakos spin chain (also known as Polychronakos–Frahm (PF) spin chain in the
literature) with Hamiltonian given by [7,9]

H(m)
PF =

∑
1�i<j�N

1 + Pij

(ρi − ρj )2
, (1.1)

where ρi denotes the i-th zero of the Hermite polynomial of degree N and Pij is the exchange
operator interchanging the ‘spins’ (taking m possible values) of i-th and j -th lattice sites. Thus,
unlike the case of HS spin chain, the lattice sites of the PF spin chain are inhomogeneously
distributed on a line. Due to the decoupling of the spin and dynamical degrees of freedom of
the su(m) spin Calogero model for large values of its coupling constant, an expression for the
partition function of the su(m) PF spin chain can be obtained by first computing the spectrum and
partition function of the su(m) spin Calogero model and then dividing such partition function by
that of the spinless Calogero model [8]. Similarly, the partition function of su(m) HS spin chain
can be computed by dividing the partition function of the su(m) spin Sutherland model at the
strong coupling limit by that of the spinless Sutherland model [10].

The Hamiltonians of the above mentioned translational invariant su(m) HS and PF spin
chains, in which the strength of interaction between any two spins depends only on the dif-
ference of their site coordinates, have a close connection with the AN−1 type of root system [4].
Variants of these spin chains associated with other root systems have also been studied in the
literature and applied in the context of one dimensional physical systems with boundaries which
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break the translational invariance. In particular, the spectrum of an equally spaced spin- 1
2 HS

chain related to the BCN root system has been studied by Bernerd et al. [35]. A key feature in the
Hamiltonian of this spin chain is the presence of reflection operators like P̂i (defined on the i-th
lattice site) satisfying the relation P̂ 2

i = 1. Since the internal space associated with each lattice
site is two dimensional for this spin chain, the reflection operator yields three inequivalent repre-
sentations: P̂i = ±1 and P̂i = σx , where σx is a Pauli matrix. For the case P̂i = 1 (or, P̂i = −1),
this spin- 1

2 chain becomes su(2) invariant and coincides (up to an additive constant) with a spin
model with open boundary condition, which was first considered by Simons and Altshuler [36].
On the other hand, for the case P̂i = σx , where P̂i can be interpreted as the spin reversal operator
due to its action on the states of the i-th lattice site as P̂i | 1

2 〉 = |− 1
2 〉, P̂i |− 1

2 〉 = | 1
2 〉, this spin- 1

2
chain associated with the BCN root system breaks the su(2) symmetry.

Taking P̂i as the spin reversal operator (denoted by Pi ) for any possible value of the ‘spin’
degrees of freedom (m� 2), and also allowing the possibility of having unequally spaced lattice
sites on a circle, the above mentioned HS spin chain associated with the BCN root system has
been generalized by Enciso et al. [37]. By employing the freezing trick, the partition functions for
this type of generalization of the HS spin chain and a similar generalization of the PF spin chain
have also been calculated for all values of m [37,38]. However, to the best of our knowledge, the
partition functions for the Simons–Altshuler (SA) type generalizations of HS and PF spin chains,
corresponding to the cases P̂i = ±1, have not been computed till now for any value of m. Since
SA type generalizations of HS and PF spin chains would be su(m) invariant, exact solutions of
these spin chains may play an important role in describing boundary effects in physical systems
which break the translational invariance but respect the internal su(m) symmetry.

Even though P̂i = ±1 and P̂i = σx are the only possible inequivalent representations of the
reflection operator P̂i for the case m = 2, in this paper it will be shown that the situation is
slightly more complex for the case m > 2. Since each inequivalent representation of the reflection
operator P̂i on a complex m-dimensional vector space may lead to a different type of HS or
PF spin chain associated with the BCN root system, at present our main aim is to construct
all possible inequivalent representations of P̂i for any value of m and compute the partition
functions of the corresponding PF spin chains through the freezing trick. Interestingly, it will
turn out that, in general a representation of P̂i can be characterized as a polarized spin reversal
operator (PSRO) which acts like the identity operator on some spin components and acts like
the spin reversal operator on the rest of the spin components. In a particular limit, such PSRO
coincides with the usual spin reversal operator Pi which changes the signs of all spin components
and, in the opposite limit, such PSRO yields P̂i = 1 (or, P̂i = −1). The latter representation of
P̂i would allow us to construct a su(m) invariant SA type generalization of the PF spin chain,
which is described by the Hamiltonian

H(m,0) =
∑

1�i �=j�N

yi + yj

(yi − yj )2
(1 + Pij ), (1.2)

where yi denotes the i-th zero of the generalized Laguerre polynomial L
β−1
N . Hence, the lattice

sites of this su(m) invariant Hamiltonian (1.2) implicitly depend on the real positive parame-
ter β .

The organization of this paper is as follows. In Section 2, at first we review the key role
played by the BCN type of Weyl algebra in deriving the spectrum of the BCN type of spin
Calogero model. Then we construct the PSRO which, along with the spin exchange operator Pij ,
yields new representations of the BCN type of Weyl algebra in the internal space associated with
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N number of particles or lattice sites. In Section 3, we use such PSRO to obtain novel exactly
solvable variants of the BCN type of spin Calogero model and subsequently take the strong
coupling limit of these models to construct BCN type of PF spin chains with PSRO. Next, we
derive the exact spectrum of the BCN type of spin Calogero models with PSRO and also compute
the partition functions of the related spin chains by using the freezing trick. In Section 4, we
derive an interesting relation between the partition function of the BCN type of PF spin chain
with PSRO and that of the AN−1 type of PF spin chain. Then we establish a duality relation
between the partition functions of the BCN type of anti-ferromagnetic and ferromagnetic PF
spin chains with PSRO. In Section 5, we compute the ground state and the highest state energy
levels corresponding to the BCN type of PF spin chains with PSRO. In Section 6, we study a
few spectral properties of the BCN type of PF spin chains with PSRO, like the energy level
density and nearest neighbour spacing distribution. In Section 7, we summarize our results and
also mention some possible directions for future study.

2. Construction of the PSRO

Similar to the case of AN−1 type of quantum integrable systems with long-range interaction,
BCN type of Dunkl operators and the corresponding auxiliary operator (which is a quadratic sum
of all Dunkl operators) play a central role in calculating the exact spectrum of the BCN type of
spin Calogero model and its scalar counterpart [38]. The form of such BCN type of auxiliary
operator is given by

H = −
N∑

i=1

∂2

∂x2
i

+ a
∑
i �=j

[
a − Kij

(x−
ij )2

+ a − K̃ij

(x+
ij )2

]
+ βa

N∑
i=1

βa − Ki

x2
i

+ a2

4
r2, (2.1)

where a > 1
2 , β > 0 are some real coupling constants and the notations x−

ij ≡ xi − xj , x+
ij ≡

xi + xj and r2 ≡∑N
i=1 x2

i are used. Moreover, Kij and Ki are coordinate permutation and sign
reversing operators, defined by

(Kijf )(x1, . . . , xi, . . . , xj , . . . , xN) = f (x1, . . . , xj , . . . , xi, . . . , xN), (2.2a)

(Kif )(x1, . . . , xi, . . . , xN) = f (x1, . . . ,−xi, . . . , xN), (2.2b)

and K̃ij = KiKjKij . Thus the operators Kij , Ki and H act on the functions of the coordinate
space, which is denoted by C∞(RN). By using Eq. (2.2), it is easy to check that Kij and Ki give
a realization of the BCN type of Weyl algebra generated by Wij and Wi :

W2
ij = 1, WijWjk =WikWij =WjkWik, WijWkl =WklWij , (2.3a)

W2
i = 1, WiWj =WjWi , WijWk =WkWij , WijWj =WiWij . (2.3b)

The Hamiltonian of the BCN type of spin Calogero model, as considered in Ref. [38], is quite
similar in form to that of the auxiliary operator (2.1). However, this Hamiltonian acts not only on
the functions of the coordinate space, but on a direct product space like C∞(RN) ⊗ S , where

S ≡ Cm ⊗ Cm ⊗ · · · ⊗ Cm︸ ︷︷ ︸, (2.4)
N
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with Cm denoting the m-dimensional complex vector space associated with each particle. In terms
of orthonormal basis vectors, the total spin space S may be expressed as

S =
〈
|s1, . . . , sN 〉∗ ∣∣ si ∈ {−M,−M + 1, . . . ,M}; M = m − 1

2

〉
. (2.5)

The spin exchange operator Pij and the spin reversal operator Pi are defined on the space S as

Pij |s1, . . . , si , . . . , sj , . . . , sN 〉∗ = |s1, . . . , sj , . . . , si , . . . , sN 〉∗ (2.6a)

Pi |s1, . . . , si , . . . , sN 〉∗ = |s1, . . . ,−si , . . . , sN 〉∗. (2.6b)

It is easy to check that, similar to the case of Kij and Ki , Pij and Pi also give a realization
of the BCN type of Weyl algebra (2.3). By using the operators Pij and Pi , one can define the
Hamiltonian of the BCN type of spin Calogero model as [38]

H(m) = −
N∑

i=1

∂2

∂x2
i

+ a
∑
i �=j

[
a + Pij

(x−
ij )2

+ a + P̃ij

(x+
ij )2

]
+ βa

N∑
i=1

βa − εPi

x2
i

+ a2

4
r2, (2.7)

where ε = ±1 and P̃ij ≡ PiPjPij . Note that the Hamiltonian (2.7) of BCN spin Calogero model
can be reproduced from the auxiliary operator (2.1) through simple substitutions like

H(m) =H|Kij →−Pij , Ki→εPi
. (2.8)

Consequently, the Hilbert space and the spectrum of H(m) can be obtained from those of H by
applying a projector Λ which satisfies the relations [38]

KijPijΛ = ΛKijPij = −Λ (2.9a)

KiPiΛ = ΛKiPi = εΛ. (2.9b)

For constructing the projector Λ, it is important to observe that both of the two sets of operators
given by Kij , Ki and Pij , Pi yield realizations of the BCN type of Weyl algebra (2.3) on the
spaces C∞(RN) and S respectively. Hence, it is possible to define another set of operators like
Πij = KijPij , Πi = KiPi , which will yield a realization of the BCN type of Weyl algebra (2.3)
on the space C∞(RN) ⊗ S . Let us now define an operator Λ0 on the space C∞(RN) ⊗ S as

Λ0 = 1

N !
N !∑
i=1

εlPl , (2.10)

where Pl denotes an element of the realization of the permutation group generated by the oper-
ators Πij and εl is the signature of Pl . For example, corresponding to the simplest N = 2 and
N = 3 cases, Λ0 is given by

N = 2: Λ0 = 1

2
(1 − Π12),

N = 3: Λ0 = 1

6
(1 − Π12 − Π13 − Π23 + Π12Π13 + Π12Π23).

It is easy to show that Λ0 in Eq. (2.10) satisfies the relations

Λ2 = Λ0, KijPijΛ0 = Λ0KijPij = −Λ0.
0
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Hence Λ0 acts as an antisymmetrizer with respect to the simultaneous interchange of the coordi-
nate and the spin degrees of freedom. With the help of this Λ0, it is possible to finally construct
the projector Λ as [39]

Λ = 1

2N

(
N∏

j=1

(1 + εΠj )

)
Λ0. (2.11)

Using the fact that Πij and Πi yield a realization of the BCN type of Weyl algebra (2.3), one can
easily verify that the projector Λ satisfies the relations (2.9). Hence, with the help of the projector
given in (2.11), it is possible to compute the spectrum of H(m) from the known spectrum of the
auxiliary operator.

Even though the projector (2.11) is constructed for a particular representation of the BCN type
of Weyl algebra (2.3), such a projector can also be written in an abstract algebraic form [40].
Therefore, if we can modify the action of Pi given in Eq. (2.6b) so that, along with Pij in (2.6a),
this modified version of Pi yields an inequivalent representation of the BCN type of Weyl algebra
(2.3), then it would be possible to explicitly construct the corresponding projector in exactly same
way. Consequently, such modified version of Pi would lead to a new BCN type of spin Calogero
model whose spectrum can be computed by using the method of projector. For the purpose of
finding out modified versions of Pi which may give inequivalent representations of the BCN type
of Weyl algebra, at first we notice that the spin reversal operator Pi in Eq. (2.6b) acts nontrivially
only on the i-th spin space. Hence, this Pi can also be written in the form

Pi = 1 ⊗ · · · ⊗ 1 ⊗P ⊗ 1 ⊗ · · · ⊗ 1,

i-th place
(2.12)

where P acts on Cm as

P |si〉∗ = |−si〉∗. (2.13)

In analogy with this case, we assume that all modified versions of Pi act nontrivially only on
the i-th spin space. Due to the relation W2

i = 1 within Eq. (2.3b), such modified versions of
Pi can be treated as involutions on the i-th spin space. It is known that the Hamiltonian of the
BCN type of spin Calogero model, with reflection operators formally defined as involutions on
the corresponding spin spaces, yields a quantum integrable system with mutually commuting
conserved quantities [41]. Consequently, the spin Calogero models which we shall construct
in the next section by using modified versions of Pi would also represent quantum integrable
systems.

For the purpose of explicitly finding out all possible modified versions of Pi , which act as
involutions on the i-th spin space and also satisfy the BCN type of Weyl algebra (2.3), let us
arbitrarily partition m into two parts as m = m1 +m2, where m1 � m2 � 0. Evidently, the internal
space Cm associated with the i-th particle can always be written as a direct sum of any two
orthogonal subspaces of dimension m1 − m2 and 2m2 respectively:

Cm = Cm1−m2 ⊕ C2m2 , (2.14)

where Cm1−m2 and C2m2 are defined in terms of orthonormal basis vectors as

Cm1−m2 = 〈|α〉′ ∣∣ α ∈ {1,2, . . . ,m1 − m2}
〉
,

C2m2 = 〈|β〉′′ ∣∣ β ∈ {1,2, . . . ,2m2}
〉
. (2.15)

In analogy with Eq. (2.12), we propose a modification of Pi in the form
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Pi = 1 ⊗ · · · ⊗ 1 ⊗P (m1,m2) ⊗ 1 ⊗ · · · ⊗ 1,

i-th place
(2.16)

where P (m1,m2) acts in a rather different way on the two subspaces Cm1−m2 and C2m2 of the
space Cm. More precisely, P (m1,m2) acts like an identity operator on the space Cm1−m2 and acts
like a spin reversal operator on the even dimensional space C2m2 . Thus, the action of P (m1,m2) on
the basis vectors of Cm1−m2 is given by

P (m1,m2)|α〉′ = |α〉′. (2.17)

Moreover, in analogy with Eq. (2.13), the action of P (m1,m2) on the first basis vector of C2m2

would give the last basis vector of this space, on the second basis vector would give the last but
one basis vector, and so on. Hence, in general, the action of P (m1,m2) on the basis vectors of C2m2

may be written as

P (m1,m2)|β〉′′ = |2m2 + 1 − β〉′′. (2.18)

Since P (m1,m2) acts like a spin reversal operator only on a subspace of Cm, and acts trivially
on the complementary subspace, it is natural to call P

(m1,m2)
i as a PSRO associated with the

i-th particle. Note that the relation (P (m1,m2))2 = 1 is satisfied for both of the spaces Cm1−m2

and C2m2 . For the purpose of representing P (m1,m2) in a more convenient form, let us take another
set of orthonormal basis vectors of C2m2 as

|β〉± = 1√
2

(|β〉′′ ± |2m2 + 1 − β〉′′), (2.19)

where β ∈ {1,2, . . . ,m2}. By using Eq. (2.18), it is easy to check that

P (m1,m2)|β〉± = ±|β〉±. (2.20)

Due to Eq. (2.14), we can choose an orthonormal set of basis vectors for the space Cm as

Cm = 〈|s〉 ∣∣ s ∈ {1,2, . . . ,m1 + m2}
〉
, (2.21)

where |s〉 = |α〉′ with α = s for s ∈ {1,2, . . . ,m1 − m2}, |s〉 = |β〉+ with β = s − m1 + m2 for
s ∈ {m1 − m2 + 1,m1 − m2 + 2, . . . ,m1} and |s〉 = |β〉− with β = s − m1 for s ∈ {m1 + 1,

m1 + 2, . . . ,m1 + m2}. Using Eqs. (2.17) and (2.20), it is easy to show that P (m1,m2) acts as a
diagonal matrix on the basis vectors (2.21) of Cm:

P (m1,m2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−1

. . .

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (2.22)

where there are m1 number of 1’s and m2 number of −1’s along the main diagonal. Combining
Eqs. (2.4) and (2.21), we express the total spin space S through a set of orthonormal basis vectors
as

S = 〈|s1, . . . , sN 〉 ∣∣ si ∈ {1,2, . . . ,m}〉. (2.23)
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Due to Eqs. (2.16) and (2.22), P
(m1,m2)
i acts on these basis vectors as

P
(m1,m2)
i |s1, . . . , si , . . . , sN 〉 = (−1)f (si )|s1, . . . , si , . . . , sN 〉, (2.24)

where

f (si) =
{

0, for si ∈ {1,2, . . . ,m1},
1, for si ∈ {m1 + 1, . . . ,m1 + m2}.

In analogy with Eq. (2.6a), we define the action of Pij on the basis vectors (2.23) as

Pij |s1, . . . , si , . . . , sj , . . . , sN 〉 = |s1, . . . , sj , . . . , si , . . . , sN 〉. (2.25)

Using Eqs. (2.24) and (2.25), one can easily check that P
(m1,m2)
i and Pij yield a realization of

the BCN type of Weyl algebra (2.3). In this context it may be recalled that, while constructing
P

(m1,m2)
i as a PSRO, we have previously assumed that m1 � m2. However, this condition is

really not necessary for showing that P
(m1,m2)
i and Pij yield a realization of the BCN type of

Weyl algebra. Therefore, in the rest of this article we shall take Eq. (2.24), with any possible
values of m1 and m2 satisfying the condition m1 + m2 = m, as the definition of PSRO. Since the
trace of P

(m1,m2)
i in Eq. (2.24) is given by

trP (m1,m2)
i = mN−1(m1 − m2), (2.26)

it is evident that, for any given value of m, P
(m1,m2)
i with each distinct set of values for m1

and m2 would lead to an inequivalent realization of the BCN type of Weyl algebra. In the next
section, we shall use such PSRO to obtain new exactly solvable variants of the BCN type of spin
Calogero model (2.7) and the related PF spin chain. It may be observed that the trace of the spin
reversal operator Pi in Eq. (2.6b) is given by

trPi = mN−1 × (mmod 2). (2.27)

Comparing Eq. (2.26) with Eq. (2.27) we find that, the trace of P
(m1,m2)
i coincides with that

of εPi in the special case m1 = m2 (m1 = m2 + ε) for even (odd) values of m. Since both of
the operators P

(m1,m2)
i and εPi can only have eigenvalues ±1, these two operators yield exactly

same set of eigenvalues and lead to equivalent representations of the BCN type of Weyl algebra
for the above mentioned choice of m1 and m2. It may also be noted that, for the special case
m1 = m, m2 = 0, P

(m1,m2)
i in Eq. (2.24) reduces to the trivial identity operator.

3. Spectra and partition functions of BCN type models with PSRO

In this section, we shall use the PSRO for obtaining new variants of the BCN type of spin
Calogero model (2.7) and subsequently take the strong coupling limit of such spin Calogero
models to construct the corresponding BCN type of PF spin chains. Next, by using the method of
projector which has been discussed in the previous section, we shall find out the exact spectrum of
BCN type of spin Calogero models with PSRO. Finally we shall compute the partition functions
of the BCN type of PF spin chains with PSRO by using the freezing trick.

Substituting εPi by P
(m1,m2)
i in the Hamiltonian (2.7), we obtain the Hamiltonians of the BCN

type of spin Calogero models with PSRO as
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H(m1,m2) = −
N∑

i=1

∂2

∂x2
i

+ a
∑
i �=j

[
a + Pij

(x−
ij )2

+ a + P̃
(m1,m2)
ij

(x+
ij )2

]

+ βa

N∑
i=1

βa − P
(m1,m2)
i

x2
i

+ a2

4
r2, (3.1)

where P̃
(m1,m2)
ij ≡ P

(m1,m2)
i P

(m1,m2)
j Pij . Since P

(m1,m2)
i and εPi yield equivalent representations

of the BCN type of Weyl algebra in the special case m1 = m2 (m1 = m2 +ε) for even (odd) values
of m, H(m1,m2) (3.1) would reduce to H(m) (2.7) after an appropriate similarity transformation
in this special case. In another special case given by m1 = m, m2 = 0, where P

(m1,m2)
i reduces to

the identity operator, H(m1,m2) (3.1) yields an SA type extension of spin Calogero model given
by

H(m,0) = −
N∑

i=1

∂2

∂x2
i

+ a
∑
i �=j

(a + Pij )

[
1

(x−
ij )2

+ 1

(x+
ij )2

]

+ βa(βa − 1)

N∑
i=1

1

x2
i

+ a2

4
r2. (3.2)

It may be noted that, the above Hamiltonian has been obtained earlier by using an auxiliary
operator, which was constructed through a combination of several AN−1 type of Dunkl operators
[42]. However, at present we have obtained this Hamiltonian (3.2) as a special case of (3.1),
which will be shown to be related to the BN type of Dunkl operators. Thus the Hamiltonian
H(m,0) is surprisingly related to both AN−1 and BN types of Dunkl operators.

Since the potentials of the Hamiltonian H(m1,m2) (3.1) become singular in the limits
xi ± xj → 0 and xi → 0, the configuration space of this Hamiltonian can be taken as one of
the maximal open subsets of RN on which linear functionals xi ± xj and xi have constant signs,
i.e., one of the Weyl chambers of the BCN root system. Let us choose this configuration space as
the principal Weyl chamber given by

C = {x ≡ (x1, x2, . . . , xN): 0 < x1 < x2 < · · · < xN

}
. (3.3)

Note that this configuration space does not depend on the values of m1 and m2, and coincides
with the configuration space of H(m) [38]. The Hamiltonian of the BCN type of PF spin chains
with PSRO can be obtained from the Hamiltonian (3.1) in the limit a → ∞ by means of the
freezing trick. To this end, we express H(m1,m2) (3.1) in powers of the coupling constant a as

H(m1,m2) = −
N∑

i=1

∂2

∂x2
i

+ a2U + O(a), (3.4)

with

U(x) =
∑
i �=j

[
1

(x−
ij )2

+ 1

(x+
ij )2

]
+ β2

N∑
i=1

1

x2
i

+ r2

4
. (3.5)

As the coefficient of a2 order term in (3.4) dominates in the limit a → ∞, the particles of the
spin dynamical model (3.1) concentrate at the coordinates ξi of the minimum ξ of the potential
U in C. Since the Hamiltonian (3.1) can be written in the form

H(m1,m2) = Hsc + aH(m1,m2), (3.6)
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where Hsc is the scalar (spinless) Calogero model of BN type given by

Hsc = −
N∑

i=1

∂2

∂x2
i

+ a(a − 1)
∑
i �=j

[
1

(x−
ij )2

+ 1

(x+
ij )2

]
+
∑

i

aβ(aβ − 1)

x2
i

+ a2

4
r2, (3.7)

and

H(m1,m2) =
∑
i �=j

[
1 + Pij

(xi − xj )2
+ 1 + P̃

(m1,m2)
ij

(xi + xj )2

]
+ β

N∑
i=1

1 − P
(m1,m2)
i

x2
i

, (3.8)

it follows that the dynamical and internal degrees of freedom of H(m1,m2) decouple from each
other in the limit a → ∞. Moreover, in this freezing limit, the internal degrees of freedom of
H(m1,m2) are governed by the Hamiltonian H(m1,m2) = H(m1,m2)|x→ξ , which is explicitly given
by

H(m1,m2) =
∑
i �=j

[
1 + Pij

(ξi − ξj )2
+ 1 + P̃

(m1,m2)
ij

(ξi + ξj )2

]
+ β

N∑
i=1

1 − P
(m1,m2)
i

ξ2
i

. (3.9)

The operator H(m1,m2) in the above equation represents the Hamiltonian of the BCN type of PF
spin chain with PSRO, whose lattice sites ξi are the coordinates of the unique minimum ξ of the
potential U (3.5) within the configuration space C (3.3). The uniqueness of such minimum was
established in Ref. [43] by expressing the potential U in terms of the logarithm of the ground
state wave function of the scalar Calogero model (3.7). The ground state wave function of this
scalar Calogero model takes the form

μ(x) = e− a
4 r2∏

i

|xi |βa
∏
i<j

∣∣x2
i − x2

j

∣∣a, (3.10)

and the corresponding ground state energy is given by

E0 = Na

(
βa + a(N − 1) + 1

2

)
. (3.11)

Since the sites ξi coincide with the coordinates of the (unique) critical point of logμ(x) in C,
they can be determined through the set of relations [43,38]

N∑
j=1
(j �=i)

2yi

yi − yj

= yi − β, (3.12)

where ξi = √
2yi and yi ’s satisfying (3.12) represent the zero points of the generalized Laguerre

polynomial L
β−1
N . Due to the presence of the operator P

(m1,m2)
i , the Hamiltonian (3.9) is not

su(m) invariant in general. However, in the special case given by m1 = m, m2 = 0, H(m1,m2) in
(3.9) reduces to the su(m) invariant SA type generalization of the PF spin chain (1.2), whose
partition function has not been computed till now. On the other hand, using a similarity transfor-
mation in the special case given by m1 = m2 (m1 = m2 + ε) for even (odd) values of m, H(m1,m2)

can be reduced to the Hamiltonian

H(m) =
∑
i �=j

[
1 + Pij

(ξi − ξj )2
+ 1 + P̃ij

(ξi + ξj )2

]
+ β

N∑
i=1

1 − εPi

ξ2
i

, (3.13)

whose partition function has been computed earlier by using the freezing trick [38].
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We have already seen that the spin and dynamical degrees of freedom of the Hamiltonian
(3.1) decouple in the freezing limit a → ∞. Hence, due to Eq. (3.6), eigenvalues of H(m1,m2) are
approximately given by

Eij  Esc
i + aEj , (3.14)

where Esc
i and Ej are two arbitrary eigenvalues of Hsc and H(m1,m2) respectively. By using

the asymptotic relation (3.14), one can easily derive an exact formula for the partition function
Z(m1,m2)

N (T ) of the spin chain (3.9) as

Z(m1,m2)
N (T ) = lim

a→∞
Z

(m1,m2)
N (aT )

ZN(aT )
, (3.15)

where Z
(m1,m2)
N (aT ) denotes the partition function for the spin dynamical model (3.1) and

ZN(aT ) denotes that of the scalar model (3.7). Therefore, we can evaluate the partition func-
tion Z(m1,m2)

N (T ) of the spin chain (3.9) by computing first the spectra and partition functions
of the Hamiltonians H(m1,m2) and Hsc. To this end, we shall follow the approach of Ref. [38],
where the auxiliary operator (2.1) and related Dunkl operators have played a key role. The form
of rational Dunkl operators of BCN type are given by

J−
i = ∂

∂xi

+ a
∑
j �=i

[
1

x−
ij

(1 − Kij ) + 1

x+
ij

(1 − K̃ij )

]
+ βa

1

xi

(1 − Ki), (3.16)

where i ∈ {1,2, . . . ,N}. The auxiliary operator (2.1) can be written through these Dunkl opera-
tors as

H = μ(x)

[
−
∑

i

(
J−

i

)2 + a
∑

i

xi

∂

∂xi

+ E0

]
μ−1(x). (3.17)

Evidently, the Dunkl operators (3.16) map any monomial
∏

i x
ni

i into a polynomial of total degree
n1 + n2 + · · · + nN − 1. Therefore, if we consider a Hilbert space having a set of basis vectors
like

φn(x) = μ(x)
∏
i

x
ni

i , (3.18)

with ni ’s being arbitrary non-negative integers, and partially order these basis vectors according
to the total degree |n| ≡ n1 + n2 + · · · + nN , then it follows from Eq. (3.17) that the operator H
would become an upper triangular matrix in the aforesaid nonorthonormal basis. More precisely,

Hφn(x) = Enφn(x) +
∑

|m|<|n|
cmnφm(x), (3.19)

where

En = a|n| + E0, (3.20)

and the coefficients cmn are real constants. Since the diagonal elements of any upper triangular
matrix coincide with its eigenvalues, the spectrum of H is given by Eq. (3.20) where ni ’s can be
taken as arbitrary non-negative integers.

Note that the Hamiltonians of both scalar Calogero model (3.7) and the spin Calogero model
with PSRO (3.1) may be obtained from the auxiliary operator (2.1) through formal substitutions
like
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Hsc =H|Kij ,Ki→1, (3.21a)

H(m1,m2) =H|
Kij →−P

(m1,m2)

ij , Ki→P
(m1,m2)

i

. (3.21b)

Consequently, it would be possible to compute the spectra of these Hamiltonians from the known
spectrum of the auxiliary operator with the help of appropriate projectors. For the purpose of
obtaining the spectrum of Hsc (3.7), one considers scalar functions of the form [38]

ψn(x) = Λscφn(x), (3.22)

where Λsc is the symmetrizer with respect to both permutations and sign reversals, i.e., it satisfies
the relations given by

KijΛsc = ΛscKij = Λsc, KiΛsc = ΛscKi = Λsc. (3.23)

By using these relations, it can be shown that the functions (3.22) form a (nonorthonormal) basis
of the Hilbert space of Hsc, provided that ni = 2ki are even integers and k1 � k2 � · · · � kN . As
before, one can define a partial ordering among these basis vectors by comparing their degree.
Due to Eqs. (3.21a) and (3.23), it follows that Hsc (3.7) can be written as an upper triangular
matrix with diagonal elements Esc

n also given by the right hand side of Eq. (3.20). Thus one
obtains the exact partition function of the BCN type of scalar Calogero model (3.7) as [38]

ZN(aT ) =
∑

k1�k2�···�kN�0

q2|k|+Ẽ0 = qẼ0∏N
j=1(1 − q2j )

, (3.24)

where q = e−1/(kBT ) and Ẽ0 = E0/a.
Next, for the purpose of finding out the spectrum and partition function of the BCN type of

spin Calogero model with PSRO (3.1), let us assume that their exists a projector Λ(m1,m2) which
would satisfy the relations

KijPijΛ
(m1,m2) = Λ(m1,m2)KijPij = −Λ(m1,m2), (3.25a)

KiP
(m1,m2)
i Λ(m1,m2) = Λ(m1,m2)KiP

(m1,m2)
i = Λ(m1,m2). (3.25b)

Following the procedure of constructing Λ (2.11) in Section 2, we obtain such Λ(m1,m2) as

Λ(m1,m2) = 1

2N

{
N∏

j=1

(
1 + Π

(m1,m2)
j

)}
Λ0, (3.26)

where Π
(m1,m2)
j = KjP

(m1,m2)
j and Λ0 is given in Eq. (2.10). Apart from satisfying the relations

(3.25), Λ(m1,m2) given in (3.26) commutes with the auxiliary operator (2.1):[
Λ(m1,m2),H

]= 0. (3.27)

With the help of this Λ(m1,m2), let us define a set of state vectors depending on both coordinates
and spins as

ψ s
n ≡ ψ

s1,...,si ,...,sj ,...,sN
n1,...,ni ,...,nj ,...,nN

= Λ(m1,m2)
(
φn(x)|s〉), (3.28)

where φn is given in (3.18) and |s〉 ≡ |s1, . . . , sN 〉 is an arbitrary basis element of the spin space
S (2.23). However, it should be noted that ψ s

n’s defined in Eq. (3.28) do not form a set of linearly
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independent state vectors. Indeed, by using Eqs. (3.25a), (2.2a) and (2.25), it is easy to show that
ψ s

n’s satisfy the antisymmetry condition

ψ
s1,...,si ,...,sj ,...,sN
n1,...,ni ,...,nj ,...,nN

= −ψ
s1,...,sj ,...,si ,...,sN
n1,...,nj ,...,ni ,...,nN

. (3.29)

Furthermore, due to Eqs. (3.25b), (2.2b) and (2.24), it follows that

ψs1,...,sN
n1,...,nN

= (−1)ni+f (si ) ψs1,...,sN
n1,...,nN

. (3.30)

The above relation implies that for constructing any nontrivial ψ
s1,...,sN
n1,...,nN

, we must take si ∈
{1,2, . . . ,m1} for even values of ni and si ∈ {m1 + 1,m1 + 2, . . . ,m1 + m2} for odd values
of ni . Using Eqs. (3.29) and (3.30) it is easy to check that, ψ s

n’s defined through Eq. (3.28) would
be nontrivial and linearly independent provided the following three conditions are imposed on
the corresponding ni ’s and si ’s.

(1) We take an ordered form of n, which separately arranges its even and odd components into
two nonincreasing sequences as

n ≡ (ne,no) = ( k1︷ ︸︸ ︷
2l1, . . . ,2l1, . . . ,

ks︷ ︸︸ ︷
2ls , . . . ,2ls ,

g1︷ ︸︸ ︷
2p1 + 1, . . . ,2p1 + 1, . . . ,

gt︷ ︸︸ ︷
2pt + 1, . . . ,2pt + 1

)
, (3.31)

where 0 � s, t � N , l1 > l2 > · · · > ls � 0 and p1 > p2 > · · · > pt � 0.
(2) The allowed values of si corresponding to each ni are given by

si ∈
{ {1,2, . . . ,m1}, for ni ∈ ne,

{m1 + 1,m1 + 2, . . . ,m1 + m2}, for ni ∈ no.
(3.32)

(3) If ni = nj and i < j , then si > sj .

We have already discussed how the condition (2) has emerged from Eq. (3.30). Due to the con-
dition (2), the numbers of allowed spin components are different for even and odd values of
ni (except for the particular case where m1 = m2, corresponding to even values of m). Hence,
for the sake of convenience, we have taken n in (3.31) such that its even and odd components
are separated before arranging among themselves. Note that any given n can be brought in the
ordered form (3.31) through an appropriate permutation of its components. Therefore, we can
impose the condition (1) as a consequence of Eq. (3.29). Finally, the ordering of spin compo-
nents in condition (3) can also be imposed due to Eq. (3.29). However, it should be noted that,
the choice (3.31) for an ordered form of n does not uniquely follow from Eq. (3.29). For exam-
ple, while constructing the basis vectors for the Hilbert space of H(m) (2.7), the ordered form
(3.31) of n has been chosen earlier for odd values of m, but a quite different ordered form of n
(which arranges all components of n in a nonincreasing sequence, without separating them into
even and odd parts) has been chosen for even values of m [38].

All linearly independent ψ s
n’s (3.28), satisfying the above mentioned three conditions, may

now be taken as a set of (nonorthonormal) basis vectors for the Hilbert space of the BCN type
of spin Calogero model with PSRO (3.1). We define a partial ordering among these basis vectors
as: ψ s

n > ψ s′
n′ , if |n| > |n′|. Using Eqs. (3.25), (3.27), and (3.19), we find that H(m1,m2) (3.1) acts

as an upper triangular matrix on these partially ordered basis vectors:
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H(m1,m2) ψ s
n = Es

nψ s
n +

∑
|m|<|n|

Cmnψ s
m, (3.33)

where

Es
n = a|n| + E0. (3.34)

Due to such triangular form of H(m1,m2), all eigenvalues of this Hamiltonian are given by
Eq. (3.34), where the quantum number n satisfies the condition (1) and the quantum number
s satisfies the conditions (2) and (3). Since the right hand side of Eq. (3.34) does not depend
on the spin quantum number s, Es

n’s are highly degenerate in general. Using the conditions (2)
and (3), we find out the spin degeneracy d

m1,m2
k,g for the eigenvalue Es

n as

d
m1,m2

k,g =
s∏

i=1

C
m1
ki

t∏
j=1

Cm2
gj

. (3.35)

Thus, the degeneracy factors of the energy levels for the spectrum of H(m1,m2) (3.1) explicitly
depend on the discrete parameters m1 and m2.

Since the degree of the monomial φn(x) (3.18) with n arranged in the form (3.31) is given by
|n| = 2

∑s
i=1 liki + 2

∑t
j=1 pjgj + t , the energy eigenvalues (3.34) of H(m1,m2) can be written

as

Es
n = 2a

s∑
i=1

liki + 2a

t∑
j=1

pjgj + at + E0. (3.36)

Let us denote the numbers of the even and the odd components of n by N1 and N2 respectively,
which can take all possible values ranging from 0 to N , and satisfy the condition N1 + N2 = N .
From Eq. (3.31) it follows that

N1 =
s∑

i=1

ki, N2 =
t∑

j=1

gj .

Thus we find that k ≡ {k1, k2, . . . , ks} ∈ PN1 and g ≡ {g1, g2, . . . , gt } ∈ PN2 , where PN1 and
PN2 denote the sets of all ordered partitions of N1 and N2 respectively. Next, we sum over
the Boltzmann weights corresponding to all possible n in the ordered form (3.31), by using the
corresponding energy eigenvalues (3.36) and their degeneracy factors (3.35). Thus we obtain the
canonical partition function for the BCN type of spin Calogero model with PSRO (3.1) as

Z
(m1,m2)
N (aT )

= qẼ0
∑

N1,N2
(N1+N2=N)

∑
k∈PN1 ,g∈PN2

d
m1,m2
k,g

∑
l1>···>ls�0

∑
p1>···>pt�0

q
2
∑s

i=1 li ki+2
∑t

j=1 pj gj +t
,

where q = e−1/(kBT ) and Ẽ0 = E0/a. Summing over li ’s and pj ’s through appropriate change
of variables, as done in Ref. [38] while calculating the partition function of H(m) (2.7) for odd
values of m, we get a simplified expression for the above partition function as

Z
(m1,m2)
N (aT )

= qẼ0
∑

N1,N2

∑
k∈PN1 ,g∈PN2

d
m1,m2

k,g q−(N+κs)

s∏
i=1

q2κi

1 − q2κi

t∏
j=1

q2ζj

1 − q2ζj
, (3.37)
(N1+N2=N)
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where κi =∑i
l=1 kl and ζj =∑j

l=1 gl denote the partial sums corresponding to the partitions
k ∈ PN1 and g ∈ PN2 respectively. Using Eqs. (3.15), (3.24) and (3.37), we finally obtain an
expression for the partition function of the BCN type of PF spin chain with PSRO (3.9) as

Z(m1,m2)
N (T )

=
N∏

l=1

(
1 − q2l

) ∑
N1,N2

(N1+N2=N)

∑
k∈PN1 ,g∈PN2

d
m1,m2
k,g q−(N+κs)

s∏
i=1

q2κi

1 − q2κi

t∏
j=1

q2ζj

1 − q2ζj
.

(3.38)

However, from the above equation it is not clear whether Z(m1,m2)
N (q) can be expressed as

a polynomial function of q , which is expected for the case of any finite system with in-
teger energies. In the following, we shall try to express Z(m1,m2)

N (q) as a polynomial of
q by using the q-binomial coefficients. To this end, we define complementary sets of the
two sets {κ1, κ2, . . . , κs} and {ζ1, ζ2, . . . , ζt } as {1,2, . . . ,N1 − 1,N1} − {κ1, κ2, . . . , κs} ≡
{κ ′

1, κ
′
2, . . . , κ

′
N1−s} and {1,2, . . . ,N2 − 1,N2} − {ζ1, ζ2, . . . , ζt } ≡ {ζ ′

1, ζ
′
2, . . . , ζ

′
N2−t }, respec-

tively. Using the elements belonging to these complementary sets, one can write

s∏
i=1

1

1 − q2κi
=
∏N1−s

i=1 (1 − q2κ ′
i )∏N1

i=1(1 − q2i )
,

t∏
j=1

1

1 − q2ζj
=
∏N2−t

j=1 (1 − q
2ζ ′

j )∏N2
j=1(1 − q2j )

. (3.39)

Substituting (3.39) to (3.38), we get

Z(m1,m2)
N (T ) =

∑
N1,N2

(N1+N2=N)

∑
k∈PN1 ,g∈PN2

d
m1,m2
k,g q

−(N+κs)+2
∑s

j=1 κj +2
∑t

j=1 ζj

×
N1−s∏
i=1

(
1 − q2κ ′

i
)N2−t∏

j=1

(
1 − q

2ζ ′
j
) ∏N

l=1(1 − q2l )∏N1
i=1(1 − q2i )

∏N2
j=1(1 − q2j )

.

Since κs = N1 and ζt = N2, the above equation can also be expressed as

Z(m1,m2)
N (T ) =

∑
N1,N2

(N1+N2=N)

∑
k∈PN1 ,g∈PN2

d
m1,m2
k,g q

N2+2
∑s−1

i=1 κi+2
∑t−1

j=1 ζj

×
N1−s∏
i=1

(
1 − q2κ ′

i
)N2−t∏

j=1

(
1 − q

2ζ ′
j
)[ N

N1

]
q2

, (3.40)

where
[ N

N1

]
q2 denotes a q-binomial coefficient defined by[

N

N1

]
q2

=
∏N

l=1(1 − q2l)∏N1
i=1(1 − q2i )

∏N−N1
j=1 (1 − q2j )

.

It is well known that a q-binomial coefficient like
[ N

N1

]
q2 can be written as an even polynomial

of degree 2N1(N − N1) in q [44]. Hence, the partition function (3.40) of the BCN type of PF
spin chain with PSRO (3.9) is finally expressed as a polynomial in q . Since the partition function
(3.40) does not depend on the parameter β which is present in the Hamiltonian (3.9), it is evident
that the energy levels of this Hamiltonian do not change with the variation of β .
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Let us now compare the partition function (3.40) with the previously obtained partition func-
tion [38] of the spin chain (3.13). As expected, in the special given by m1 = m2 +ε for odd values
of m, (3.40) reproduces the partition function of the spin chain (3.13). However, in the special
case given by m1 = m2 for even values of m, (3.40) yields an equivalent but apparently different
looking expression for the partition function of the spin chain (3.13). This happens because the
ordering of n, which was chosen earlier while computing the partition function of the spin chain
(3.13), is same as (3.31) for odd values of m, but different from (3.31) for even values of m. It
may also be noted that, for even values of m, the partition function of the BCN type of PF spin
chain (3.13) can be related in a very simple way to the partition function of the AN−1 type of PF
spin chain (1.1) with m/2 number of internal degrees of freedom [38]. However, no such simple
relation is known to exist between the partition functions of the BCN and AN−1 types of PF spin
chains for odd values of m. In the following section, we shall establish a novel relation between
the partition functions of the BCN type of PF spin chains with PSRO and AN−1 type of PF spin
chain, which would remain uniformly valid for all possible choice of m1 and m2 corresponding
to both even and odd values of m.

4. Relation with the partition function of AN−1 type PF spin chain

For the purpose of making a connection between the partition function (3.40) of the BCN type
of PF spin chain with PSRO and that of the AN−1 type of PF spin chain, at first we observe that
the spin degeneracy factor d

m1,m2
k,g (3.35) may be written as

d
m1,m2
k,g = dm1(k)dm2(g), (4.1)

where

dm1(k) =
s∏

i=1

C
m1
ki

, dm2(g) =
t∏

j=1

Cm2
gj

.

Substituting d
m1,m2
k,g in Eq. (4.1) to Eq. (3.40), we obtain

Z(m1,m2)
N (T ) =

∑
N1,N2

(N1+N2=N)

qN2

[
N

N1

]
q2

( ∑
k∈PN1

dm1(k)q
2
∑s−1

j=1 κj

N1−s∏
j=1

(
1 − q

2κ ′
j
))

×
( ∑

g∈PN2

dm2(g)q
2
∑t−1

j=1 ζj

N2−t∏
j=1

(
1 − q

2ζ ′
j
))

. (4.2)

In this context it may be noted that, there exists several different but equivalent expressions for
the partition function of the AN−1 type of PF spin chain (1.1) in the literature [8,26,45,29]. For
our present purpose, we shall use the following expression [45,29] for the partition function of
the AN−1 type of PF spin chain (1.1) with m internal degrees of freedom:

ZA,m
N (T ) =

∑
f∈PN

dm(f)q
∑r−1

j=1 Fj

N−r∏
j=1

(
1 − q

F ′
j
)
. (4.3)

where f ≡ {f1, f2 · · ·fr}, dm(f) = ∏r
i=1 Cm

fi
, the partial sums are given by Fj = ∑j

i=1 fi ,
and the complementary partial sums are defined as {F ′ ,F ′ , . . . ,F ′ } ≡ {1,2, . . . ,N} −
1 1 N−r
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{F1,F2, . . . ,Fr}. Let us now multiply H(m)
PF in (1.1) by a factor of two and define a scaled

Hamiltonian for the AN−1 type of PF spin chain as

H̃(m)
PF ≡ 2H(m)

PF =
∑
i �=j

1 + Pij

(ρi − ρj )2
. (4.4)

Since all energy levels of H̃(m)
PF are related to those of H(m)

PF by a scale factor of two, the partition

function of H̃(m)
PF (which is denoted by Z̃A,m

N (T )) can be obtained from the r.h.s. of Eq. (4.3) by
simply substituting q2 to the place of q:

Z̃A,m
N (T ) =

∑
f∈PN

dm(f)q2
∑r−1

j=1 Fj

N−r∏
j=1

(
1 − q

2F ′
j
)
. (4.5)

Using (4.5), we finally express Z(m1,m2)
N (T ) in (4.2) as

Z(m1,m2)
N (T ) =

N∑
N1=0

qN−N1

[
N

N1

]
q2
Z̃A,m1

N1
(T ) Z̃A,m2

N−N1
(T ). (4.6)

Thus we obtain a remarkable relation between the partition function of the BCN type of PF spin
chain with PSRO and the partition functions of several AN−1 type of PF spin chains, which can
be applied for all possible values of m1 and m2.

However, it should be observed that, even in the special cases like m1 = m2 for even values
of m, our relation (4.6) does not coincide with the previously derived relation [38] between the
partition functions of the BCN and AN−1 types of PF spin chains. To shed some light on this
matter through a particular example, let us choose the simplest case given by m1 = m2 = 1
for m = 2. Since d1(f) = 1 for f = {1,1, . . . ,1} ∈ PN , and d1(f) = 0 for any other f within the
set PN , from Eq. (4.5) it follows that Z̃A,1

N (T ) = qN(N−1). Hence, by putting m1 = m2 = 1 in
Eq. (4.6), we find that

Z(1,1)
N (T ) =

N∑
N1=0

q(N−N1)
2+N1(N1−1)

[
N

N1

]
q2

. (4.7)

As has been mentioned earlier, in the particular case given by m1 = m2 = 1, the BCN type of PF
spin chain with PSRO (3.9) reduces to the BCN type of PF spin chain (3.13) with m = 2. For this
case, the previously derived relation between the partition functions of the BCN and AN−1 types
of PF spin chains yields [38]

Z(1,1)
N (T ) = q

N(N−1)
2

N∏
i=1

(
1 + qi

)
. (4.8)

Comparing the r.h.s. of Eqs. (4.7) and (4.8), we obtain an interesting identity of the form

N∏
i=1

(
1 + qi

)= N∑
l=0

q
(N−2l)(N−2l+1)

2

[
N

l

]
q2

.

Let us now consider another particular case given by m1 = m, m2 = 0, for which the BCN

type of PF spin chain with PSRO (3.9) reduces to the SA type generalization (1.2) of the PF
spin chain. Due to Eq. (3.32), it is evident that there exists no odd sector of n in (3.31), i.e.,
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N2 = 0 in this case. Therefore, the summation variable N1 can only take the value N (instead
of its usual range from 0 to N ) in the r.h.s. of Eqs. (4.2) and (4.6). Consequently, in this special
case, Eq. (4.6) yields

Z(m,0)
N (T ) = Z̃A,m

N (T ). (4.9)

The above equality between two partition functions implies that the spectrum of the SA type
generalization of the PF spin chain (1.2) with arbitrary value of the parameter β is exactly same
with that of the AN−1 type of PF spin chain (4.4). This result is quite surprising, since the form
of the two Hamiltonians given in (1.2) and (4.4) apparently differ from each other. Indeed, only
in the simplest case of N = 2, we are able to analytically show that the two Hamiltonians given
in (1.2) and (4.4) coincide with each other for any value of β . On the other hand, by ordering
the zero points of the Hermite polynomial HN and the generalized Laguerre polynomial L

β−1
N

on the real line as ρ1 > ρ2 > · · · > ρN and y1 > y2 > · · · > yN respectively, one can numerically
verify that the following inequalities hold for finite values of β and for some N � 3:

yi + yj

(yi − yj )2
�= 1

(ρi − ρj )2
, (4.10)

where 1 � i < j � N . Even though the above inequalities hold for finite values of β , things
become more interesting in the limit of β tending to infinity. In fact, we numerically find that the
asymptotic relations given by

Lim
β→∞

yi + yj

(yi − yj )2
= 1

(ρi − ρj )2
, (4.11)

where 1 � i < j � N , hold for N = 3 and N = 4 cases. Being encouraged by such numerical
evidence, we conjecture that the asymptotic relations given in Eq. (4.11) hold for arbitrary values
of N . This conjecture clearly implies that

H̃(m)
PF = Lim

β→∞H(m,0), (4.12)

i.e., the scaled Hamiltonian (4.4) of the AN−1 type of PF spin chain may be seen as a particular
limit of the Hamiltonian (1.2) corresponding to the SA type generalization of the PF spin chain.
Moreover, since the spectrum of H(m,0) does not depend on the value of β , this Hamiltonian may
be interpreted as an isospectral deformation of H̃(m)

PF .
It is well known that the partition functions of the AN−1 type of ferromagnetic and anti-

ferromagnetic PF spin chains satisfy a duality relation [8,11,28]. This type of duality relation
has also been established for the case of BCN type of anti-ferromagnetic PF spin chain (3.13)
and its ferromagnetic counterpart [38]. Since the partition functions of the BCN type of PF spin
chains with PSRO can be expressed through the partition functions of the AN−1 type of PF spin
chains, it is expected that the partition functions of the former type of ferromagnetic and anti-
ferromagnetic spin chains would also satisfy a duality relation. For the purpose of finding out
such duality relation, we define the ferromagnetic counterpart corresponding to the BCN type of
anti-ferromagnetic PF spin chain with PSRO (3.9) as

Ĥ(m2,m1) =
∑
i �=j

[
1 − Pij

(ξi − ξj )2
+ 1 − P̃

(m2,m1)
ij

(ξi + ξj )2

]
+ β

N∑
i=1

1 − P
(m2,m1)
i

ξ2
i

. (4.13)

Next, by using Eq. (2.26), we find that trace of the operators P
(m2,m1)
i and −P

(m1,m2)
i coincide

with each other. Since the eigenvalues of both P
(m2,m1) and −P

(m1,m2) can only be ±1, these
i i
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two operators with exactly same eigenvalues must be related through a similarity transformation.
Hence, there exists a symmetric operator M such that

MP
(m2,m1)
i M−1 = −P

(m1,m2)
i , MPijM

−1 = Pij ,

MP̃
(m2,m1)
ij M−1 = P̃

(m1,m2)
ij . (4.14)

Using Eqs. (4.13) and (4.14), we get

MĤ(m2,m1)M−1 =
∑
i �=j

[
1 − Pij

(ξi − ξj )2
+ 1 − P̃

(m1,m2)
ij

(ξi + ξj )2

]
+ β

N∑
i=1

1 + P
(m1,m2)
i

ξ2
i

. (4.15)

Adding up the expressions in Eqs. (3.9) and (4.15), we obtain

H(m1,m2) + MĤ(m2,m1)M−1 = 2
∑
i �=j

(hij + h̃ij ) + β

N∑
i=1

1

yi

, (4.16)

where hij = 1
(ξi−ξj )2 and h̃ij = 1

(ξi+ξj )2 . Using the relation (3.12) satisfied by the zero points of

the generalized Laguerre polynomial, it can be shown that [46,47,38]

∑
i �=j

(hij + h̃ij ) = N(N − 1)

2
,

N∑
i=1

1

yi

= N

β
. (4.17)

Consequently, Eq. (4.16) can be written as

H(m1,m2) + MĤ(m2,m1)M−1 = N2. (4.18)

Since Ĥ(m2,m1) and MĤ(m2,m1)M−1 are isospectral Hamiltonians, from the above equation it
follows that

Êj = N2 − Ej , (4.19)

where Ej and Êj denote the eigenvalues of H(m1,m2) and Ĥ(m2,m1) respectively. Due to Eq. (4.19),
there exists a one-to-one correspondence between the eigenvalues of H(m1,m2) and those of
Ĥ(m2,m1). Hence, one can easily derive a duality relation between the partition functions of the
anti-ferromagnetic spin chain (4.13) and that of the ferromagnetic spin chain (3.9) as

Ẑ(m2,m1)
N (T ) = qN2Z(m1,m2)

N (T )
∣∣
q→q−1 , (4.20)

where Ẑ(m2,m1)
N (T ) denotes the partition function of the anti-ferromagnetic spin chain. Since

Z(m1,m2)
N (T )|q→q−1 may be obtained from the r.h.s. of Eq. (3.40) after replacing q by q−1, the

duality relation (4.20) can be used to derive an expression for the partition function of the anti-
ferromagnetic spin chain (4.13).

5. Ground state and highest state energies for spin chains with PSRO

In the present section, at first our aim is to calculate the ground state energy Emin of the BCN

type of anti-ferromagnetic PF spin chain with PSRO (3.9) by using the freezing trick. To this
end, we consider Eq. (3.14) which implies that

Emin = lim
1 (

Emin − Esc
min

)
, (5.1)
a→∞ a
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where Esc
min and Emin represent the ground state energies of the BCN type of scalar Calogero

model (3.7) and spin Calogero model with PSRO (3.1), respectively. It has been mentioned earlier
that the eigenvalues of the BCN type of scalar Calogero model are given by Eq. (3.20), where
ni ’s are even integers satisfying the relation n1 � n2 � · · · � nN � 0. Hence, by choosing all ni

as zero, one finds that Esc
min = E0. Due to Eq. (3.34), we can express the ground state energy of

spin Calogero model with PSRO as Emin = a|n|min + E0, where |n|min represents the minimum
value of |n| for all possible choice of the multi-index n compatible with the conditions (1)–(3) of
Section 3. Substituting these expressions of Emin and Esc

min in Eq. (5.1), we obtain

Emin = |n|min. (5.2)

For the purpose of calculating |n|min, it is convenient to consider two different ranges of the
number l defined by l = N modm. Evidently, N can be expressed through l as

N = km + l, (5.3)

where k is a nonnegative integer. For the case 0 � l < m1, let us construct a multi-index n by
combining the following even and odd components according to (3.31):

ne =
l︷ ︸︸ ︷

2k, . . . ,2k,

m1︷ ︸︸ ︷
2(k − 1), . . . ,2(k − 1), . . . ,

m1︷ ︸︸ ︷
2, . . . ,2,

m1︷ ︸︸ ︷
0, . . . ,0,

no =
m2︷ ︸︸ ︷

2k − 1, . . . ,2k − 1, . . . ,

m2︷ ︸︸ ︷
3, . . . ,3,

m2︷ ︸︸ ︷
1, . . . ,1 .

Applying the conditions (2) and (3) of Section 3, it is easy to check that such n yields |n|min with
value given by

|n|min = k
{
(k − 1)m + 2l + m2

}
. (5.4)

Using Eqs. (5.2), (5.4) and (5.3), we express the ground state energy of the anti-ferromagnetic
spin chain with PSRO (3.9) as

Emin = 1

m
(N − l)(N + l − m1), where 0 � l < m1. (5.5)

Subsequently, for the case m1 � l < m, we construct a multi-index n by combining the following
even and odd components according to (3.31):

ne =
m1︷ ︸︸ ︷

2k, . . . ,2k, . . . ,

m1︷ ︸︸ ︷
2, . . . ,2,

m1︷ ︸︸ ︷
0, . . . ,0,

no =
l−m1︷ ︸︸ ︷

2k + 1, . . . ,2k + 1,

m2︷ ︸︸ ︷
2k − 1, . . . ,2k − 1, . . . ,

m2︷ ︸︸ ︷
3, . . . ,3,

m2︷ ︸︸ ︷
1, . . . ,1 .

Again, applying the conditions (2) and (3) of Section 3, we find that such n yields |n|min with
value given by

|n|min = k
{
(k − 1)m + 2l + m2

}+ (l − m1). (5.6)

Using Eqs. (5.2), (5.6) and (5.3), we obtain the ground state energy of the anti-ferromagnetic
spin chain (3.9) as

Emin = 1
(N − l)(N + l − m1) + (l − m1), where m1 � l < m. (5.7)
m
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It is easy to check that in the special case given by m1 = m2 (m1 = m2 + ε) for even (odd) values
of m, Eqs. (5.5) and (5.7) reproduce the ground state energy obtained in Ref. [38] for the spin
chain (3.13). Next, let us consider another special case given by m1 = m, m2 = 0, for which the
spin chain with PSRO (3.9) reduces to the SA type generalization (1.2) of the PF spin chain. It
is evident that Eq. (5.7) is not relevant for this case. Hence, by using Eq. (5.5), we obtain the
ground state energy of the spin chain (1.2) as

Emin = (N − l)(N + l − m)

m
, where l ≡ N modm, (5.8)

which, as expected, is exactly double of the ground state energy associated with the AN−1 type
of anti-ferromagnetic PF spin chain (1.1) [45].

Next, we want to find out the highest energy level Emax for the BCN type of anti-ferromagnetic
PF spin chain with PSRO (3.9). Since P 2

ij = (P̃
(m1,m2)
ij )2 = (P

(m1,m2)
i )2 = 1, each of these op-

erators can have the eigenvalues ±1. If there exists a simultaneous eigenstate of these operators
such that the eigenvalues of Pij , P̃ (m1,m2)

ij and P
(m1,m2)
i are given by +1, +1 and −1 respectively,

then that eigenstate would evidently yield the highest energy eigenvalue for the spin chain (3.9).
For the case of an arbitrary value of m1 and m2 > 0, we can easily construct such an eigenstate
as |s, s, . . . , s〉, where s > m1. Hence, by using Eq. (3.9), we get

Emax = 2
∑
i �=j

(hij + h̃ij ) + β

N∑
i=1

1

yi

. (5.9)

Using the identities given in Eq. (4.17), we obtain the highest energy eigenvalue for the spin
chain (3.9) in m2 > 0 case as

Emax = N2. (5.10)

Next, let us consider the case given by m1 = m, m2 = 0. In this case, the operator P
(m1,m2)
i is

not allowed to take the eigenvalue −1. Hence, if we consider a spin state like |s, s, . . . , s〉, with
0 � s � m, the eigenvalues of all of the operators Pij , P̃

(m1,m2)
ij and P

(m1,m2)
i would be given

by +1. Consequently, by using Eq. (3.9) and the first identity given in Eq. (4.17), we obtain the
highest energy eigenvalue for the spin chain (3.9) in the case m2 = 0 as

Emax = N(N − 1). (5.11)

Again, it is interesting to note that this Emax is exactly double of the highest energy eigenvalue
associated with the AN−1 type of anti-ferromagnetic PF spin chain (1.1) [45].

It is well known that the spectrum of the AN−1 type of PF spin chain (1.1) is equispaced within
its lowest and highest energy levels. This result follows from the fact that corresponding partition
function ZA,m

N (T ) (4.3) can be expressed as a polynomial in q with degree N(N −1)/2, where all
consecutive powers of q (within the allowed range) appear with positive integer coefficients [26].
In this context, it is interesting to ask whether the spectrum of the BCN type of PF spin chain with
PSRO (3.9) is also equispaced. To answer this question, let us first consider the special case given
by m1 = m, m2 = 0. Using Eq. (4.9) for this special case, we find that the corresponding partition
function can be expressed as a polynomial in q with degree N(N −1), where all consecutive even
powers of q appear with positive integer coefficients. Hence the spectrum of the spin chain (3.9)
is equispaced in the above mentioned special case. Next, for the purpose of finding out the nature
of spectrum in the case m2 �= 0, we examine all terms appearing in the corresponding partition
function (4.6). It may be noted that, [ N ]q2 , Z̃A,m1(T ) and Z̃A,m2 (T ) can be expressed as
N1 N1 N−N1
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polynomials of q , where all consecutive even powers of q (within appropriate ranges) appear with
positive integer coefficients. However, the first factor of the summand in the r.h.s. of Eq. (4.6) is
a monomial in q which, as the summation runs, takes all odd and even powers within the range
0 to N . Consequently, Z(m1,m2)

N (T ) in Eq. (4.6) can be expressed as a polynomial in q , where all
possible consecutive powers of q appear with positive integer coefficients. Hence, the spectrum
of the spin chain (3.9) is equispaced also for the case m2 �= 0. However, in this case, the spacing
between two consecutive levels reduces by a factor of half in comparison with that of the m2 = 0
case.

6. Spectral properties of the spin chains with PSRO

In this section we shall study a few spectral properties of the BCN type of PF spin chain
with PSRO (3.9), like its energy level density and nearest neighbour spacing distribution, for the
case of finite but sufficiently large number of lattice sites. It was observed earlier [45,38] that,
for sufficiently large number of lattice sites, the energy level densities of both AN−1 type of PF
spin chain (1.1) and BCN type of PF spin chain (3.13) tend to follow the Gaussian distribution
with high degree of accuracy. An analytical proof for the Gaussian behaviour of the level density
distributions at N → ∞ limit was given for the case of AN−1 type of spin chains and related
one-dimensional vertex models [48,49]. It was also found that, in contrast to the case of some
other integrable systems [50,51], the spacings between consecutive levels in the spectra of spin
chains (1.1) and (3.13) do not follow the Poissonian distribution [45,38]. We have already noted
that, the spectrum of the presently considered spin chain (3.9) leads to the spectra of the spin
chains (1.1) and (3.13) in the special cases |m1 −m2| � 1 and m2 = 0 respectively. Hence, in the
following, we shall focus on the spectral properties of the spin chain (3.9) in the case of non-zero
values of m1 and m2, which satisfy the relation |m1 − m2| > 1.

For any finite values of m1, m2 and N , one can in principle compute the exact spectrum
of the spin chain (3.9) by expanding its partition function Z(m1,m2)

N (T ) (3.40) in powers of q .
Indeed, with the help of symbolic software package like Mathematica, it is possible to explicitly
write down Z(m1,m2)

N (T ) as a polynomial of q for certain ranges of m1, m2 and N . If the term qEi

appears in such a polynomial, then Ei would represent an energy eigenvalue and the coefficient of
qEi would determine the degeneracy factor corresponding to this energy level. Let us denote this
degeneracy factor or ‘level density’ associated with the energy level Ei as d̃(Ei ). Since the sum of
these level densities for the full spectrum is not normalized to unity, we obtain the corresponding
normalized level density d(Ei ) through the relation d(Ei ) = d̃(Ei )/mN . However, this method
of computing the spectrum and the level density of the spin chain (3.9) by using its partition
function (3.40) is not very efficient for large values of N (for example, using Mathematica in a
personal computer, we can compute the level density up to about N = 20 for m1 = 3 and m2 = 1
case). To overcome this problem, we consider Eq. (4.6) which gives an alternative expression of
Z(m1,m2)

N (T ) in terms of partition functions like Z̃A,m
N (T ) associated with the scaled Hamiltonian

of the AN−1 type of PF chain (4.4). Furthermore, instead of directly using Eq. (4.5) for expressing
Z̃A,m

N (T ) in a polynomial form, we use the known equivalence relation between this partition
function and the partition function of a particular type of one-dimensional inhomogeneous vertex
model [52]. Applying this connection with the partition function of a one-dimensional vertex
model, which can be expressed as a polynomial of q in a more efficient way with the help of
Mathematica software, we have been able to compute the spectrum and the level density of the
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spin chain (3.9) for comparatively large values of N , for example, up to N = 80 with m1 = 3 and
m2 = 1.

In order to compare the energy level density of the spin chain (3.9) with a curve like Gaus-
sian distribution, it is needed to calculate the corresponding mean (μ) and variance (σ ). These
parameters are related to the Hamiltonian H(m1,m2) (3.9) as

μ = tr[H(m1,m2)]
mN

, σ 2 = tr[(H(m1,m2))2]
mN

− μ2. (6.1)

Defining a parameter t as t ≡ m1 − m2, and applying Eqs. (2.24) as well as (2.25), it is easy to
find out the following trace relations:

tr[1] = mN, tr
[
P

(m1,m2)
i

]= mN−1t, tr[Pij ] = tr
[
P̃

(m1,m2)
ij

]= mN−1,

tr
[
PijP

(m1,m2)
i

]= tr
[
PijP

(m1,m2)
k

]= mN−2t,

tr
[
P̃

(m1,m2)
ij P

(m1,m2)
i

]= tr
[
P̃

(m1,m2)
ij P

(m1,m2)
k

]= mN−2t,

tr[PijPjl] = tr[PijPkl] = tr
[
Pij P̃

(m1,m2)
j l

]= tr
[
Pij P̃

(m1,m2)
kl

]= mN−2,

tr
[
P̃

(m1,m2)
ij P̃

(m1,m2)
j l

]= tr
[
P̃

(m1,m2)
ij P̃

(m1,m2)
kl

]= mN−2,

tr
[
Pij P̃

(m1,m2)
ij

]= tr
[
P

(m1,m2)
i P

(m1,m2)
j

]= mN−2t2,

where it is assumed that i, j , k, l are all different indices. Using Eq. (6.1) along with the above
mentioned trace relations, we obtain

μ =
(

1 + 1

m

)∑
i �=j

(hij + h̃ij ) + β

2

(
1 − t

m

) N∑
i=1

1

yi

, (6.2)

and

σ 2 = 2

(
1 − 1

m2

)∑
i �=j

(
h2

ij + h̃ 2
ij

)+ 4

m2

(
t2 − 1

)∑
i �=j

hij h̃ij + β2

4

(
1 − t2

m2

) N∑
i=1

1

y2
i

. (6.3)

Using the identities in Eq. (4.17) and also similar identities given by [46,47,38]

N∑
i=1

1

y2
i

= N(N + β)

β2(1 + β)
,

∑
i �=j

hij h̃ij = N(N − 1)

16(1 + β)
,

∑
i �=j

(
h2

ij + h̃2
ij

)= N(N − 1)

72(1 + β)

[
2β(2N + 5) + 4N + 1

]
,

we finally express μ (6.2) and σ 2 (6.3) in closed forms like

μ = 1

2

(
1 + 1

m

)
N2 − 1

2m
(1 + t)N, (6.4)

σ 2 = 1

36

(
1 − 1

m2

)
N
(
4N2 + 6N − 1

)+ 1

4m2

(
1 − t2)N. (6.5)

Taking different sets of non-zero values of m1, m2 satisfying the relation |m1 − m2| > 1, and
moderately large values of N (N � 15), we find that the normalized level density of the spin
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Fig. 1. Continuous curve represents the Gaussian distribution and circles represent level density distribution for N = 20
and m1 = 3, m2 = 1.

Table 1
MSE for level density of BCN type PF chain with PSRO (3.9).

Sets of parameters N = 20 N = 30 N = 40 N = 50 N = 60

m1 m2

3 1 1.73 × 10−8 1.42 × 10−9 2.45 × 10−10 6.32 × 10−11 2.10 × 10−11

4 1 1.64 × 10−8 1.34 × 10−9 2.31 × 10−10 5.94 × 10−11 1.97 × 10−11

4 2 1.58 × 10−8 1.30 × 10−9 2.22 × 10−10 5.72 × 10−11 1.90 × 10−11

5 1 1.60 × 10−8 1.30 × 10−9 2.23 × 10−10 5.74 × 10−11 1.90 × 10−11

chain (3.9) is in excellent agreement with the Gaussian distribution (normalized to unity) given
by

g(E) = 1√
2πσ

e
− (E−μ)2

2σ2 . (6.6)

As an example, in Fig. 1 we compare the normalized level density with the Gaussian distribution
for the case m1 = 3, m2 = 1 and N = 20. We also compute the mean square error (MSE) between
the normalized level density and the Gaussian distribution for the above mentioned case and find
it to be as low as 1.73 × 10−8. Moreover, it is found that this MSE decreases steadily with
increasing number of lattice sites. In Table 1 we present the values of MSE calculated by taking
different sets of values of m1 and m2 for a wide range of N .

Next, our aim is to study the distribution of spacing between consecutive energy levels for the
case of BCN type of PF spin chain with PSRO (3.9). To this end, let us define cumulative level
spacing distribution as

P(s) =
s∫

0

p(x)dx, (6.7)

where p(x) denotes the probability density of the normalized spacing x between consecutive
unfolded energy levels. In order to eliminate the effect of level density variation in the calculation
of p(x), an unfolding mapping is usually applied to the ‘raw’ spectrum [53]. For the purpose of
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defining such unfolding mapping, at first the cumulative energy level density is decomposed as
the sum of a fluctuating part and a continuous part (denoted by η(E)). We have already seen that,
the energy level density of the spin chain (3.9) follows the Gaussian distribution with very good
approximation. Hence, for this case, η(E) can be expressed through the error function as

η(E) = 1√
2πσ 2

E∫
−∞

e
− (x−μ)2

2σ2 dx = 1

2

[
1 + erf

(E − μ√
2σ

)]
. (6.8)

This continuous part of the cumulative level density is used to transform each energy level Ei ,
i = 1, . . . , n, into an unfolded energy level given by ηi ≡ η(Ei ). Finally, the function p(si) is
defined as the probability density of normalized spacing si given by si = (ηi+1 − ηi)/Δ, where
Δ = (ηn − η1)/(n − 1) denotes the mean spacing of the unfolded energy levels.

According to a well-known conjecture by Berry and Tabor, for the case of a quantum
integrable system, the density p(s) of normalized spacing should obey the Poisson’s law:
p(s) = e−s [54]. However, it has been found earlier that a large class of quantum integrable
HS and PF like spin chains violate this conjecture and lead to non-Poissonian distribution of
p(s) [10,37,38,45,55]. Moreover, the cumulative level spacing distributions of such spin chains
obey a certain type of ‘square root of a logarithm’ law, which can be derived analytically by mak-
ing a few assumptions about the corresponding spectra. More precisely, if the discrete spectrum
of a quantum system satisfies the following four conditions:

(i) The energy levels are equispaced, i.e., Ei+1 − Ei = δ, for i = 1,2, . . . , n − 1,
(ii) The level density is approximately Gaussian,

(iii) Emax − μ,μ − Emin � σ ,
(iv) |Emax + Emin − 2μ| � Emax − Emin,

then the cumulative level spacing distribution is approximately given by an analytic expression
of the form [38]

P̃ (s)  1 − 2√
πsmax

√
ln

(
smax

s

)
, (6.9)

where

smax = Emax − Emin√
2πσ

. (6.10)

We have already seen that the conditions (i) and (ii) are obeyed for the spectrum of the spin chain
(3.9). Due to Eqs. (5.5), (5.7) and (5.10), it follows that Emin = N2/m + O(N) and Emax = N2.
Moreover, using Eqs. (6.4) and (6.5), one obtains the leading order contributions to mean and
variance as

μ = 1

2

(
1 + 1

m

)
N2 + O(N), σ 2 = 1

9

(
1 − 1

m2

)
N3 + O

(
N2).

Using these leading order contributions to Emin, Emax, μ and σ 2, it is easy to check that the
conditions (iii) and (iv) are also obeyed for the spectrum of the spin chain (3.9). Hence, it is
expected that P(s) would follow the analytical expression P̃ (s) (6.9) in the case of spin chain
(3.9). By using Mathematica, we calculate P(s) for different values of m1, m2 and for moderately
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Fig. 2. Circles represent cumulative spacing distribution P(s), while continuous line is its analytic approximation P̃ (s)

drawn for N = 20 and m1 = 3, m2 = 1.

large values of N , and find that P(s) matches with P̃ (s) extremely well in all of these cases. As
an example, in Fig. 2 we compare P(s) with P̃ (s) for the case of m1 = 3, m2 = 1 and N = 20.
Thus we may conclude that, similar to the case of many other quantum integrable spin chains
with long-range interaction, the cumulative distribution of spacing between consecutive energy
levels of the spin chain (3.9) follows the ‘square root of a logarithm’ law (6.9) with remarkable
accuracy.

7. Conclusions

In this paper we construct the PSRO (2.24) which, along with the spin exchange operator
(2.25), yields a class of representations for the BCN type of Weyl algebra in the internal space
associated with N number of particles or lattice sites. This PSRO allows us to find out novel ex-
actly solvable variants (3.1) of the BCN type of spin Calogero model. Taking the strong coupling
limit of these spin Calogero models and also using the freezing trick, we obtain the BCN type
of PF spin chains with PSRO (3.9). In one limit, these spin chains reproduce the BCN type of
PF models studied by Enciso et. al. [38]. In another limit, these spin chains yield new SA type
generalization (1.2) of the PF spin chain.

Subsequently, we construct some (nonorthonormal) basis vectors for the Hilbert spaces of
the BCN type of spin Calogero models with PSRO by using the projector (3.26) and derive the
exact spectra of the these models by taking advantage of the fact that their Hamiltonians can
be represented in triangular form while acting on the above mentioned basis vectors. Then we
apply the freezing trick to compute the partition functions (3.40) for the BCN type of PF spin
chains with PSRO. Furthermore, we derive a remarkable relation (4.6) between the partition
function of the BCN type of PF spin chain with PSRO and that of the AN−1 type of PF spin
chain. This relation turns out to be very efficient in studying spectral properties like level density
and distribution of spacings for consecutive levels in the case of BCN type of PF spin chains
with PSRO. We find that, similar to the case of many other quantum integrable spin chains with
long-range interaction, the level density of these spin chains follows the Gaussian distribution
and the cumulative distribution of spacing for consecutive levels follows a ‘square root of a
logarithm’ law.
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Taking a particular limit of the relation (4.6) we obtain Eq. (4.9), which implies that the
spectrum of the SA type generalization of the PF spin chain (1.2) with arbitrary value of the
parameter β would coincide with that of the scaled Hamiltonian (4.4) for AN−1 type of PF spin
chain. This result is rather surprising, since the forms of the two above mentioned Hamiltonians
apparently differ from each other. For the purpose of making some connection between these two
apparently different types of Hamiltonians, we conjecture the asymptotic relation (4.11) between
the (ordered) zero points of the Hermite polynomial and the generalized Laguerre polynomial. If
this conjecture is correct, then the scaled Hamiltonian (4.4) of the AN−1 type of PF spin chain can
be seen as a particular limit of the Hamiltonian (1.2) corresponding to the SA type generalization
of the PF spin chain. However, we have only verified the conjecture (4.11) analytically for the
case of N = 2 and numerically for N = 3 and N = 4. Therefore, finding out an analytical proof of
the conjecture (4.11) might be an interesting problem to study from the viewpoint of orthogonal
polynomials.

Finally it should be noted that, apart from the context of the BCN type of spin Calogero
model and PF spin chain, the BCN type of Weyl algebra plays a very important role in context
of the BCN type of spin Sutherland model, related HS spin chain and also for the cases of
supersymmetric generalizations of these models [37,56]. Therefore, one can use the PSRO (2.24)
to construct novel exactly solvable variants of the BCN type of spin Sutherland model and HS
spin chain [57]. Furthermore, it is also possible to construct supersymmetric generalization of the
PSRO (2.24) and apply such operator to find out exactly solvable variants of the supersymmetric
spin Calogero model and PF spin chain associated with the BCN root system [58].
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