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Given a lattice L, a basis B of L together with its dual B∗, the or-

thogonalitymeasure S(B) = ∑
i ‖bi‖2‖b∗

i ‖2 of Bwas introduced by

Seysen (1993) [9]. This measure (the Seysen measure in the sequel,

also known as the Seysen metric [11]) is at the heart of the Seysen

lattice reduction algorithm and is linkedwith different geometrical

properties of the basis [6,7,10,11]. In this paper, we derive different

expressions for this measure as well as new inequalities related to

the Frobenius norm and the condition number of a matrix.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction, notations and previous results

An n-dimensional (real) lattice L is defined as a subset ofRm, n�m, generated by B = [b1| · · · |bn]t ,
where the bi are n linearly independent vectors over R in Rm, as

L =
⎧⎨⎩

n∑
i=1

aibi|ai ∈ Z

⎫⎬⎭ .

In this paper, the rowsof thematrixB span the lattice. AnyothermatrixB′ = UB,whereU ∈ GLn(Z),
generates the same lattice. The volume Vol L of L is thewell defined real number (det BBt)1/2. The dual
lattice of L is defined by the basis B∗ = (B+)t , where B+ is the Moore–Penrose inverse, or pseudo-

inverse, ofB. IfB∗ = [b∗
1| · · · |b∗

n]t , then sinceBB+ = In,wehave 〈bi, b∗
j 〉 = δi,j . Lattice reduction theory

deals with the problem of identifying and computing bases of a given lattice whose vectors are short
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and almost orthogonal. There are several concepts of reduced bases, such as the concepts of Minkovsky

reduced, LLL reduced [5] and Korkin–Zolotarev reduced basis [3]. In 1990, Hastad and Lagarias [1]

proved that in all lattices of full rank (i.e., when n = m), there exists a basis B such that both B and B∗
consist in relatively short vector, i.e., maxi ‖bi‖ · ‖b∗

i ‖ � exp(O(n1/3)). In 1993, Seysen [9] improved

this upper bound to exp(O(ln2(n))) and suggested to use the expression S(B):= ∑
i ‖bi‖2‖b∗

i ‖2. This

definition also allowed him to define a new concept of reduction: a basis B of L is Seysen reduced if

S(B) is minimal among all bases of L (see also [4] for a study of this reduction method). A relation

between the orthogonality defect [2,11]

od(B):=1 − det BBt∏n
i=1‖bi‖2

∈ [0, 1]
and the Seysen measure S(B) is given in [11] where the following bounds can be found:

n� S(B) �
n

1 − od(B)
, (1.1)

0� od(B) � 1 − 1

(S(B) − n + 1)n−1
. (1.2)

Clearly, the smaller the Seysenmeasure is, the closer to orthogonal the basis is, showing that the Seysen

measure describes the quality of the angle behavior of the vectors in a basis. The length of the different

vectors are nevertheless not part of the direct information given by the measure, but inequality (1.2)

gives

n∏
i=1

‖bi‖ �(S(B) − n + 1)
n−1
2 · Vol L,

which in turn provides the inequality

min
i

‖bi‖ �(S(B) − n + 1)(n−1)/2n(Vol L)1/n. (1.3)

Note that such a type of inequality appears in the context of lattice reduction as

mini ‖bi‖ �
√

n(Vol L)1/n for Korkin Zolotarev and Minkovsky reduced bases,

mini ‖bi‖ �(4/3)(n−1)/4(Vol L)1/n for LLL reducedbases.

In thispaper,we start by revisitingSeysen’s boundexp(O(ln(n)2))bycomputing thehiddenconstant in

Landau’s notation. Then we present new expressions for the Seysenmeasure, connecting the measure

with the condition number and the Frobenius norm of a matrix and allowing us to improve some of

the existing bounds. We will from now on suppose that m = n, since equality (3.6) below shows that

the Seysen measure is invariant under isometric embeddings.

2. Explicit constant in Seysen’s bound

We show in this section that the hidden constant in Seysen’s bound exp(O(ln(n)2)) can be upper

bounded by 1 + 2
ln 2

. The proof is not new, but revisits some details in the original proof of Seysen

[9, Theorem 7] by using explicit bounds given in [5, Proposition 4.2]. Let us define the two main

ingredients of the proof. First, ifN(n,R) andN(n,Z) are the group of lower triangular unipotent n × n

matrices over R and Z, respectively (i.e. matrices with 1 in the diagonal), then following [1,9], and if

‖X‖∞ = maxi,j |Xij|, we define S(n) for all n ∈ N by

S(n) = sup
A∈N(n,R)

(
inf

T∈N(n,Z)
max(‖TA‖∞, ‖(TA)−1‖∞)

)
.

In [9], the author proves that S(2n) � S(n) · max(1, n/2), and concludes that S(n) = exp(O((ln n)2)).
We would like to point out that the latter is not true in general, unless some other property of the
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function S is invoked. Indeed, an arbitrary map s defined on the set of odd integers, e.g. s(2n + 1) =
exp(2n + 1), and extended to N with the rule s(2n) = n/2 · s(n) satisfies the condition s(2n) � s(n) ·
max(1, n/2) butwe have s(n) /= exp(O((ln n)2)) in general. This point seems to have been overlooked

in [9]. However, in our case, we have the following in addition.

Lemma 2.1. ∀n�m ∈ N, S(n) � S(m).

Proof. It is not difficult to see that for all A ∈ N(n,R), there exists a matrix TA ∈ N(n,Z) such that

inf
T∈N(n,Z)

max(‖TA‖∞, ‖(TA)−1‖∞) = max(‖TAA‖∞, ‖(TAA)−1‖∞).

See the Remark following Definition 4 of [9] for the details. As a consequence, in order to prove the

lemma, it is sufficient to show that

sup
A∈N(n,R)

max(‖TAA‖∞, ‖(TAA)−1‖∞) � sup
A′∈N(n+1,R)

max(‖TA′A′‖∞, ‖(TA′A′)−1‖∞). (2.4)

Let us consider the map i from N(n,R) to N(n + 1,R) defined by mapping a matrix A to the block

matrix diag(1, A). Themap i is a group homomorphism and thus i(A)−1 = i(A−1) = diag(1, A−1). We

claim that for all A ∈ N(n,R) and all T ∈ N(n,Z), we have

max(‖i(TA)‖∞, ‖i(TA)−1‖∞) = max(‖TA‖∞, ‖(TA)−1‖∞). (2.5)

First, if max(‖i(TA)‖∞, ‖i(TA)−1‖∞) = 1, then the above equality is straightforward, due to the defi-

nition of ‖·‖∞. Let us then consider the case where themaximum is not 1. Notice that since ‖X‖∞ � 1

is true for all matrix X in N(m,R), we have that max(‖X‖∞, ‖X−1‖∞) � 1 and so max(‖i(TA)‖∞,

‖i(TA)−1‖∞) > 1. As a consequence the maximum in max(‖i(TA)‖∞, ‖i(TA)−1‖∞) is achieved by

one of the entries of i(TA) or i(TA)−1, and this entry cannot be the one in the upper left corner. The

maximum is then the same for both sides of (2.5). This proves the above claim. Now, since

sup
A′∈N(n+1,R)

max(‖TA′A′‖∞, ‖(TA′A′)−1‖∞) �max(‖i(TA)‖∞, ‖i(TA)−1‖∞)

= max(‖TA‖∞, ‖(TA)−1‖∞),

is true for all A ∈ N(n,R), taking the supremum on the left hand side, we see that inequality (2.4) is

correct. �

This lemma makes the following inequalities valid:

S(n) = S(2log2 n) � S(2�log2 n�) � 2�log2 n�−2 · 2�log2 n�−3 · · · 2 · 1� exp

(
(ln n)2

2 ln 2

)
.

The second ingredient we need is related to the Korkin–Zolotarev reduced bases of a lattice L. Such

bases arewell known, see e.g. [5], and one of their properties is the following: if B is a Korkin–Zolotarev

reduced basis of L, and if B = HK , where H = (hij) is a lower triangular matrix and K is an orthogonal

matrix, then for all 1� i � j � n, we have

h2jj > h2ii(j − i + 1)−1−ln(j−i+1).

This is a direct consequence of [5, Proposition 4.2] and the fact that the concept of Korkin–Zolotarev

reduction is recursive. See [9] for the details. In [9], the author concludes that
h2ii
h2jj

= exp(O((ln n)2))

but we have the more precise statement that

h2ii

h2jj

� exp((ln(j − i + 1))2 + ln(j − i + 1)) � exp((ln n)2 + ln n).

Let us now revisit the proof of [9, Theorem 7] bymaking use of the previous inequalities. This theorem

states that forevery lattice L there is abasis B̃ = [b̃1| · · · |b̃n]t withreciprocalbasis B̃∗ = [b̃1∗| · · · |b̃n∗]t
which satisfies
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‖b̃i‖ · ‖b̃i∗‖ � exp(c2(ln n)2)

for all i and for a fixed c2, independent of n. We explicit now an upper bound for the constant c2. Given

a lattice L and a Korkin–Zolotarev reduced basis B = HK as above, the proof of [9, Theorem 7] shows

that there exists a basis B̃, constructed from B, such that

‖b̃i‖2 · ‖b̃i∗‖2 � n2 · max
k � j

{
h2jj

h2kk

}
· S(n)4.

Making use of the previous inequalities, we can write

‖b̃i‖2 · ‖b̃i∗‖2 � n2 · exp((ln n)2+ln n) · exp
(
4(ln n)2

2 ln 2

)
= exp

((
2

ln 2
+1

)
(ln n)2+3 ln n

)
,

whichshowsthat c2 < 1
ln 2

+ 1
2

+ 3
2 ln n

< 1
ln 2

+ 1
2

+ 3
2 ln 2

= 5
2 ln 2

+ 1
2
andgives the followingpropo-

sition:

Proposition 2.2. For every lattice L there is a basis B which satisfies

S(B) � exp

((
2

ln 2
+ 1

)
(ln n)2 + 4 ln n

)
.

3. Explicit expression for the Seysen measure

In this section, we present different expressions for the Seysen measure. First, let us recall the

following known expression for the measure. Given a basis B of L, by definition of B∗, for all 0� j � n,

the vector b∗
j is orthogonal to Lj , where Lj is the sublattice of L generated by all the vectors of B except

bj . If βj is the angle between bj and b∗
j and αj is the angle between bj and Lj , we have cos2 βi = sin2 αi

and

S(B) = ∑
i

‖bi‖2‖b∗
i ‖2 = ∑

i

〈bi, b∗
i 〉2

cos2 βi

= ∑
i

1

sin2 αi

. (3.6)

This has already been used in [4,11]. We introduce now the following new representation, which can

be used to define the Seysen measure without any references to the dual basis:

Proposition 3.1. For every lattice L, if B = [b1| · · · |bn]t is a basis of L with B = D · V where D =
diag(‖b1‖, . . . , ‖bn‖), then

S(B) = ‖V−1‖2,

where ‖·‖ is the Frobenius norm, i.e., ‖X‖ =
√∑

i,j |xij|2.

Proof. LetM = BBt . Using ‖X‖2 = tr(XXt) and tr(ABC) = tr(CAB), we have

‖V−1‖2 = tr(V−1(V−1)t) = tr(D2M−1) = ∑
i

‖bi‖2 · (M−1)i,i.

SinceM−1 = 1
detM

comat(M), where comat(M) is the comatrix of M, we have

(M−1)i,i = 1

detM
comat(M)i,i = detMi,i

detM
,

where Mi,i is the square matrix obtained from M by deleting the ith row and the ith column of M. So

if Bi is the matrix obtained by deleting the ith row of B, we have

detMi,i = det Bi(Bi)t = (Vol Li)
2,
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which gives

detMi,i

detM
= (Vol Li)

2

(Vol L)2
= (Vol Li)

2

(‖bi‖ · Vol Li · sinαi)2
= 1

‖bi‖2 sin2 αi

.

Finally,

‖V−1‖2 = ∑
i

‖bi‖2 · (M−1)i,i = ∑
i

‖bi‖2 · 1

‖bi‖2 sin2 αi

= S(B). �

Another way of looking at the previous result is with the help of the (Frobenius) condition number of

an invertible matrix X which is defined as κ(X) = ‖X‖ · ‖X−1‖.

Corollary 3.2. With the above notation, we have S(B) = κ(V)2

n
.

By defining the matrix U as U = VVt , then BBt = DUD, where D is as above, and if θij is the angle

between bi and bj , then U = (cos θij)ij . The matrix U is a symmetric positive definite matrix, and the

eigenvalues λ1, . . . , λn of U are real positive.

Corollary 3.3. With the above notation, we have S(B) = tr(U−1) = ∑
i

1
λi

.

From the equality BBt = DUD, we have (Vol L)2 = det U ·∏i ‖bi‖2 which in turn leads to

∏
i

‖bi‖ = (det U)−1/2 · Vol L =
⎛⎝∏

i

1

λi

⎞⎠1/2

· Vol L. (3.7)

The arithmetic–geometric mean inequality applied to the λi’s, (
∏

i 1/λi)
1/n � 1

n

∑
i 1/λi, immediately

gives the inequality

∏
i

‖bi‖ �

⎛⎝1

n

∑
i

1

λi

⎞⎠
n
2

· Vol L =
(
S(B)

n

) n
2

· Vol L.

However, we also have the equality
∑

i λi = tr U = n, which affords a slightly better upper bound for

the geometric mean. Indeed, the harmonic–geometric–arithmetic mean inequalities applied to the

1/λi’s imply that if g = (
∏

i 1/λi)
1/n, h =

(
1
n

∑
i λi

)−1 = 1 and a = 1
n

∑
i

1
λi

= S(B)
n

, then we have

h� g � a, but we also have the following result, which is [8, Corollary 3.1].

Lemma 3.4. With the above notations, if α = 1/n, we have

g �

⎛⎝a − h(1 − 2α) −
√

(a − h)(a − h(1 − 2α)2)

2α

⎞⎠α

×
⎛⎝a + h(1 − 2α) +

√
(a − h)(a − h(1 − 2α)2)

2(1 − α)

⎞⎠1−α

.

This leads to the following inequality:

Proposition 3.5. With the above notation, we have

∏
i

‖bi‖ � e1/2 ·
(
S(B) + 1

n

) n−1
2

· Vol L. (3.8)
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Proof. Since (1 − 2/n)2 � 1, we have

(a − h)2 �(a − h)(a − h(1 − 2/n)2) �(a − h(1 − 2/n)2)2

and thus the upper bound of the previous lemma gives

g �
(
a − h(1 − 2/n) − (a − h)

2/n

)1/n (
a + h(1 − 2/n) + (a − h(1 − 2/n)2)

2(1 − 1/n)

)1−1/n

.

After suitable simplification, we obtain

g � a ·
(
h

a

)1/n

·
(
1 + h

a
·
(
1 − 2

n

)
· 1

n

)1−1/n

·
(
1 + 1

n − 1

)1−1/n

.

Since
(
1 + 1

n−1

)n−1
< e, taking the nth power of both sides of the previous inequality gives

∏
i

1/λi < e ·
(
S(B) + 1 − 2

n

n

)n−1

< e ·
(
S(B) + 1

n

)n−1

.

The result follows by applying the previous inequality to Eq. (3.7). �

This is an improvement by a factor of roughly nn/2 of the bound given by (1.3), and can be used to

strengthen the bound of the orthogonality defect (1.1):

Corollary 3.6. With the above notations, we have

od(B) � 1 − 1

e

(
n

S(B) + 1

)n−1

.

Combining the previous proposition with the explicit bound of Proposition 2.2, we have the following

proposition:

Proposition 3.7. For every lattice L, if B = [b1| · · · |bn]t is a Seysen reduced basis, then

min
i

‖bi‖ � exp

((
1

ln 2
+ 1

2

)
(ln n)2 + O(ln n)

)
· (Vol L)1/n .

4. Conclusion

In this article, we gave an explicit upper bound for the constant hidden inside Landau’s notation

of the original bound of the Seysen measure [9]. We also developed the connection between the

Seysen measure and standard linear algebra concepts such as the Frobenius norm and the condition

number of a matrix. This allowed us to improve known upper bounds for the Seysen measure and the

orthogonality defect.
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