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Motivated by a connection between semi-regular relative difference
sets and mutually unbiased bases, we study relative difference
sets with parameters (m,n,m,m/n) in groups of non-prime-power
orders. Let p be an odd prime. We prove that there does not exist
a (2p, p,2p,2) relative difference set in any group of order 2p2,
and an abelian (4p, p,4p,4) relative difference set can only exist
in the group Z

2
2 × Z

2
3. On the other hand, we construct a family of

non-abelian relative difference sets with parameters (4q,q,4q,4),
where q is an odd prime power greater than 9 and q ≡ 1 (mod 4).
When q = p is a prime, p > 9, and p ≡ 1 (mod 4), the (4p, p,4p,4)

non-abelian relative difference sets constructed here are genuinely
non-abelian in the sense that there does not exist an abelian
relative difference set with the same parameters.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite (multiplicative) group of order mn, and let N be a subgroup of G of order n.
A k-subset R of G is called an (m,n,k, λ) relative difference set (RDS) in G relative to N if every
element g ∈ G \N has exactly λ representations g = r1r−1

2 with r1, r2 ∈ R , and no non-identity element
of N has such a representation. The subgroup N is usually called the forbidden subgroup. If the group
G is abelian (respectively non-abelian), then D is called an abelian (respectively non-abelian) relative
difference set. When n = 1, R is an (m,k, λ) difference set in the usual sense. If k = nλ, then R is said
to be semi-regular.
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For a subset X of G , we set X (−1) = {x−1 | x ∈ X}; also we use the same X to denote the group ring
element

∑
x∈X x ∈ Z[G]. Then, a k-subset R of G is an (m,n,k, λ) relative difference set in G relative

to N if and only if it satisfies the following equation in the group ring Z[G]:
R R(−1) = k + λ(G − N).

Character theory is a very useful tool in the study of difference sets and relative difference sets in
abelian groups. We state the Fourier inversion formula below, which will be used many times in the
paper.

Inversion formula. Let G be an abelian group of order v . If A = ∑
g∈G ag g ∈ Z[G], then ah =

1
v

∑
χ∈Ĝ χ(Ah−1), for all h ∈ G , where Ĝ is the group of (complex) characters of G and χ(Ah−1) =∑

g∈G agχ(gh−1).

One consequence of the inversion formula is as follows. Let G be a finite abelian group, and let A
and B be two elements of Z[G]. Then we have A = B if and only if χ(A) = χ(B) for all characters χ
of G . The following result is a standard characterization of relative difference sets by using their
character values (cf. [4, p. 374]).

Proposition 1.1. Let G be an abelian group of order mn with a subgroup N of order n. Let k and λ be positive
integers satisfying k(k − 1) = λn(m − 1). Then a k-subset D of G is an (m,n,k, λ) difference set in G relative
to N if and only if for every non-principal character χ of G,

χ(D)χ(D) =
{

k if χ |N �= 1,

k − λn if χ |N = 1,
(1.1)

where χ |N is the restriction of χ to N.

Recently a connection between semi-regular abelian RDS and mutually unbiased bases is estab-
lished in [10]. To explain the connection, we first give the definition of mutually unbiased bases. Let
C be the field of complex numbers. A pair of bases x1, x2, . . . , xd and y1, y2, . . . , yd of Cd is said to
be mutually unbiased if they are both orthonormal and

∣∣〈xi, y j〉
∣∣ = 1√

d
,

for all i and j, 1 � i, j � d, where 〈·,·〉 is the standard inner product of Cd . The notion of mutually
unbiased bases first appeared in [20]. It has received a lot of attention in recent years because of
their applications in quantum state determination [14,24] and quantum cryptography [2]. Let NMUB(d)

denote the maximum size of any set containing pairwise mutually unbiased bases (MUB) of Cd . The
main open problem about MUB is to determine NMUB(d) for non-prime-power integers d. There are
some similarities between NMUB(d) and NMOLS(d), the maximum number of mutually orthogonal Latin
squares of size d. For example, it is known [7] that NMUB(d) � d + 1; and when d = pe is a prime
power it was shown [14,24] that NMUB(pe) = pe + 1. Also if d = st , then we have

NMUB(d) � min
{

NMUB(s), NMUB(t)
}
. (1.2)

For an arbitrary positive integer d and a prime p, we use νp(d) to denote pα , where pα |d but pα+1 � d.
We also use π(d) to denote the set of prime divisors of d. Then by (1.2), we have

NMUB(d) � min
p∈π(d)

{
NMUB

(
νp(d)

)} = min
p∈π(d)

{
νp(d) + 1

}
. (1.3)

We will refer to this construction as the reduce to prime power construction. For more information on
NMUB(d), we refer the reader to [1,10,14,24].

We now state a theorem in [10] which establishes a connection between semi-regular abelian RDS
and mutually unbiased bases.
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Theorem 1.2. (See [10].) The existence of a semi-regular (m,n,m,m/n) RDS in an abelian group implies the
existence of a set of n + 1 mutually unbiased bases of Cm.

We refer the reader to [10] for the proof of Theorem 1.2. A semifield (S,+,∗) is a ring with no
zero-divisor, a multiplicative identity and left and right distributivity. It is known [12] that a finite
commutative semifield of order q (necessarily a prime power) gives rise to an abelian (q,q,q,1)

relative difference set. In the case where q is an odd prime power, there is a very simple description
of such an RDS. Let (S,+,∗) be a commutative semifield of odd order q. Let

R = {
(x, x ∗ x)

∣∣ x ∈ S
}
.

Then R is a (q,q,q,1) RDS in (S × S,+) relative to {0} × S . By Theorem 1.2, one obtains (q + 1) MUB
in Cq from any commutative semifield of order q. It was shown in [10] that the MUB coming from
commutative semifields are equivalent to those coming from a construction by Calderbank et al. [5].
Moreover it was shown in [10] that all known sets of MUB of size q + 1 (q a prime power) fit into
this framework.

Motivated by the desire to use Theorem 1.2 to construct more MUB than the minimum in (1.3)
given by the reduce to prime power construction, Wocjan [23] asked the following question: Does
there exist an abelian semi-regular relative difference set with parameters (m,n,m,m/n) satisfying

n > min
p∈π(m)

{
νp(m)

}
? (1.4)

We make some preliminary observations regarding this question. First of all, most known semi-regular
RDS have parameters (pa, pb, pa, pa−b), where p is a prime. The parameters of these RDS will not
satisfy (1.4). The reason is quite straightforward. Note that if m is a prime power, then (1.4) simply
becomes n > m. For RDS with parameters (pa, pb, pa, pa−b), where p is a prime, we have pa−b � 1;
hence n = pb � pa = m. Therefore to answer the question of Wocjan we have to consider semi-regular
(m,n,m,m/n) RDS with m not a prime power. As far as we know, prior to 2007 there are only two
general constructions [6,16] of such semi-regular RDS with n > 2. The RDS constructed in these papers
have parameters(

p2t(p + 1), p + 1, p2t(p + 1), p2t), (1.5)

where t is a positive integer, and p = 2 or p is a Mersenne prime. Note that the parameters in (1.5) do
not satisfy (1.4) either since n = p + 1 and minr∈π(m){νr(m)} = p + 1 (here p = 2 or p is a Mersenne
prime). Very recently the first author [8] gave a construction of (p(p + 1), p, p(p + 1), p + 1) abelian
RDS, where p is a Mersenne prime. But the parameters of these RDS still do not satisfy (1.4).

Therefore we are motivated to search for semi-regular RDS with parameters (m,n,m,m/n) not of
the form (1.5) and m not a prime power. The simplest case to consider is when (m,n,m,m/n) =
(2p, p,2p,2), p an odd prime. We prove in Section 3 that there does not exist a (2p, p,2p,2) RDS in
any group of order 2p2. Next we prove that an abelian (4p, p,4p,4) RDS with p an odd prime can
only exist in the group Z2

2 × Z2
3. These non-existence results suggest that in order to use Theorem 1.2

to construct more MUB than the minimum in (1.3), one has to go beyond the simple parameter
sets considered above. Some investigations in this direction were carried out by Feng [8]. On the
construction side, we construct a family of (4q,q,4q,4) non-abelian RDS, where q is an odd prime
power greater than 9, q ≡ 1 (mod 4). Since Theorem 1.2 requires the RDS to be abelian, it is not
clear what implications of these non-abelian RDS have on MUB. When q = p is a prime (also p > 9
and p ≡ 1 (mod 4)), by the above non-existence result on abelian (4p, p,4p,4) RDS, we see that the
RDS constructed here are genuinely non-abelian in the sense that there does not exist an abelian RDS
with the same parameters. As far as we know, this is the first infinite family of genuinely non-abelian
(m,n,m,m/n) relative difference sets with n > 2.

We give some preparation results in the rest of this section. For any group G with a subgroup N ,
we use CG(N) to denote the centralizer of N in G , namely, CG(N) = {x ∈ G: xy = yx, ∀y ∈ N}. Also we
use exp(G) to denote the exponent of G . The following lemma on RDS is implicitly contained in [9],
and has its origin in [19].
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Lemma 1.3. Let G be a group of order mn with an abelian normal subgroup N of order n, and let R be an
(m,n,m,m/n) RDS in G relative to N. Then exp(CG(N)) divides 2m. Furthermore if the Sylow 2-subgroup
of N is not cyclic or m/n is even, then exp(CG(N)) divides m.

Proof. Since N is abelian, we have CG(N) � N . If CG(N) = N , then of course |CG(N)| = |N|. Hence
exp(CG (N)) divides |N| = n, which in turn divides m since m/n is an integer. So we will assume that
CG(N) �= N from now on. Given an element g ∈ G , we use ḡ to denote its image in G/N . Also we use
rḡ to denote the unique element in R ∩ gN . Now for any given g ∈ CG(N) \ N , we set

S = {
(rgh, rh̄): h̄ ∈ G/N

}
.

We have |S| = m. Since N is normal in G , we see that for any pair (r1, r2) ∈ S , r1r−1
2 ∈ gN . Next

we claim that each gu, where u ∈ N , can be represented as gu = r1r−1
2 , for m/n pairs (r1, r2) ∈ S .

This claim can be seen as follows. Since R is an (m,n,m,m/n) RDS in G relative to N , each gu,
u ∈ N , can be represented as gu = xy−1, for m/n pairs (x, y) ∈ R × R . Let y = hu′ , where u′ ∈ N . Then
x = guhu′ = gh(h−1uh)u′ . Since N is normal in G , we have h−1uh ∈ N . Hence x ∈ R ∩ ghN . The claim
is proved. It follows that,

gm
( ∏

u∈N

u

)m/n

=
∏
u∈N

(gu)m/n =
∏

(r1,r2)∈S

r1r−1
2 .

Now using the assumption that g ∈ CG (N), we can arrange the terms in the last product above in
such a way that r1r−1

2 is followed by r2r−1
3 , and so on. Therefore we have

gm
( ∏

u∈N

u

)m/n

= 1.

The element a := ∏
u∈N u has order at most 2. So g2m = 1. Hence exp(CG (N)) divides 2m. If the

Sylow 2-subgroup of N is not cyclic, then N has at least two elements of order 2; hence a = 1.
Therefore we have gm = 1 and exp(CG(N)) divides m. If m/n is even, then clearly we have gm = 1
and exp(CG(N))|m. The proof is complete. �

Let p be a prime and f : Zn
p → Zp be a function. The Fourier transform f̂ of f is defined by

f̂ (b) =
∑

x∈Z
n
p

ξ
f (x)+b·x

p , ∀b ∈ Zn
p,

where b · x is the standard dot product and ξp is a primitive pth root of unity in C. The function f is

said to be p-ary bent if | f̂ (b)| = pn/2 for all b ∈ Zn
p . In Section 4, we will need the following theorem

from [11].

Theorem 1.4. (See [11].) Let p be an odd prime. Then a function f : Zp → Zp is p-ary bent if and only if
deg( f ) = 2.

Throughout this paper, we fix the following notation: For a multiplicative group G , we denote its
identity by 1G , or simply by 1 if there is no confusion. For a positive integer m, ξm denotes a primitive
mth root of unity in C. For an odd prime p, ( ·

p ) is the Legendre symbol; also we let

Δ =
∑
x∈Zp

ξ x2

p =
p−1∑
i=0

(
i

p

)
ξ i

p .

It is well known [15] that ΔΔ̄ = p and Δ = ±√
p∗ , where p∗ = (−1)

p−1
2 p. For an integer t such that

p � t , we use σt to denote the element in Gal(Q(ξp)/Q) that maps ξp to ξ t
p . We have σt(Δ) = ( t

p )Δ.
We will use standard facts on prime ideal decompositions of rational integers in cyclotomic fields
freely. The readers are referred to [15,18,22] for proofs of these facts.
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2. A construction of (4q,q,4q,4) RDS in non-abelian groups

In this section, we construct a family of (4q,q,4q,4) RDS in certain non-abelian groups of or-
der 4q2, where q is an odd prime power, q ≡ 1 (mod 4), and q > 9.

For prime power q = pn , n � 1, p an odd prime, let K := Fq be the finite field of order q, K ∗ =
K \ {0}, and tr : K → Fp be the absolute trace function. The quadratic character η on K is defined by

η(x) =
⎧⎨
⎩

1 if x is a non-zero square of K ,

0 if x = 0,

−1 if x is a non-square of K .

For u ∈ K ∗ , we define

S(u) :=
∑
x∈K

ξ
tr(ux2)
p .

For simplicity, we write S for S(1). We have S + S(u) = 2
∑

x∈K ξ
tr(x)
p = 0 if u is a non-square of K .

Therefore S(u) = η(u)S for every u ∈ K ∗ .
The quadratic Gauss sum g(η) is defined by

g(η) :=
∑
x∈K

η(x)ξ tr(x)
p .

Straightforward computations show that g(η) = S . Therefore

S S = g(η)g(η) = q,

cf. [3, p. 11].
In the rest of this section we assume that q ≡ 1 (mod 4), e, f are elements of K satisfying e4 = 1,

f 2 = −1, respectively.
Given an element s2 ∈ K ∗ , we define

s1 = 1

2

(
(1 + s2) + f

e2
(1 − s2)

)
,

s3 = 1

2

(
(1 + s2) − f

e2
(1 − s2)

)
.

Lemma 2.1. If q > 9, then there exists s2 ∈ K ∗ such that

η(s1s2s3) = −1.

Proof. First, note that if s2 �= f +1
f −1 or f −1

f +1 , then s1 �= 0 and s3 �= 0. Secondly,

s1s2s3 = s2

4

(
(1 + s2)

2 − f 2

e4
(1 − s2)

2
)

= s2

2

(
1 + s2

2

)
.

Hence the number of s2 ∈ K ∗ satisfying η(s1s2s3) = η(2s2(1 + s2
2)) = −1 is at least

∑
x∈K ∗

1 − η(2x(1 + x2))

2
− 2 = 1

2

(
q − 5 −

∑
x∈K ∗

η
(
2x + x3)). (2.1)

By Theorem 5.41 in [17, p. 225], we have∣∣∣∣ ∑
x∈K ∗

η
(
2x + x3)∣∣∣∣ � 2

√
q.

Therefore, if q > 9, then the quantity in (2.1) is positive. The lemma now follows. �



T. Feng, Q. Xiang / Journal of Combinatorial Theory, Series A 115 (2008) 1456–1473 1461
Fix e, f ∈ K ∗ as above. Let H = K × K , N = {0} × K � H , and

G = 〈
x, H

∣∣ x4 = 1, (u, v)x = (eu, f v), ∀(u, v) ∈ H
〉
,

where (u, v)x stands for x−1(u, v)x. With s1, s2, s3 as given in Lemma 2.1, we define

R := R0 + R1x + R2x2 + R3x3 ∈ Z[G], (2.2)

where R0 = {(y, y2) | y ∈ K }, R1 = {(y, 1
s1

y2) | y ∈ K }, R2 = {(y, 1
s2

y2) | y ∈ K }, and R3 = {(y, 1
s3

y2) |
y ∈ K }.

Theorem 2.2. Let q be a prime power such that q ≡ 1 (mod 4) and q > 9. Then R is a (4q,q,4q,4) RDS in G
relative to N.

Proof. For (u, v) ∈ H , let χu,v be the character of H defined by

χu,v(u′, v ′) = ξ
tr(uu′+v v ′)
p , ∀(u′, v ′) ∈ H .

For notational convenience, we set s0 = 1. Let (u, v) �= (0,0). For each i, 0 � i � 3, we have the
following facts.

Fact 1. If v �= 0, then for any i, 0 � i � 3,

χu,v(Ri) =
∑
y∈K

ξ
tr(uy+ v

si
y2)

p

=
∑
y∈K

ξ
tr( v

si
(y+ usi

2v )2− u2 si
4v )

p

= η(v)η(si)Sξ
−tr(

u2si
4v )

p .

Fact 2. If u �= 0, then χu,0(Ri) = ∑
y∈K ξ

tr(uy)
p = 0.

Fact 3. We have χu,v(R(−xk)
i ) = χeku, f k v(Ri), where R(−xk)

i = ∑
y∈Ri

x−k y−1xk , and k � 1.

To prove the theorem, we will show that R R(−1) = 4q + 4(G − N), which is equivalent to the
following system of group ring equations in Z[H]:

R0 R(−1)
0 + R1 R(−1)

1 + R2 R(−1)
2 + R3 R(−1)

3 = 4q + 4(H − N),

R0 R(−x)
1 + R1 R(−x)

2 + R2 R(−x)
3 + R3 R(−x)

0 = 4H,

R0 R(−x2)
2 + R2 R(−x2)

0 + R1 R(−x2)
3 + R3 R(−x2)

1 = 4H,

R0 R(−x3)
3 + R1 R(−x3)

0 + R2 R(−x3)
1 + R3 R(−x3)

2 = 4H .

Note that the fourth equation can be obtained from the second one by first applying h → h−1, ∀h ∈ H ,
to both sides of the second equation and then conjugating both sides of the resulting equation by x3.
Therefore it suffices to show that the first three equations hold in Z[H]. We will do so by proving
that the left-hand side and the right-hand side of each of the first three equations have the same
character values for all characters of H . This can be checked easily for the principal character of H .
Now let χu,v be an arbitrary non-principal character of H . For simplicity write χ = χu,v , χ1 = χeu, f v ,
χ2 = χe2u, f 2 v . Let

(a,b, c,d) = (
χ(R0),χ(R1),χ(R2),χ(R3)

)
,

(a′,b′, c′,d′) = (
χ1(R0),χ1(R1),χ1(R2),χ1(R3)

)
,

(a′′,b′′, c′′,d′′) = (
χ2(R0),χ2(R1),χ2(R2),χ2(R3)

)
.
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By Fact 3, in order to prove the theorem, it suffices to show that

aā + bb̄ + cc̄ + dd̄ = 4q − 4χ(N),

ab′ + bc′ + cd′ + da′ = 0,

ac′′ + ca′′ + bd′′ + db′′ = 0.

If v = 0, then χ is principal on N . Hence χ(N) = q, and a = b = c = d = 0. We see that all three
equations above hold in this case.

If v �= 0, then χ is non-principal on N . Hence χ(N) = 0. Using Fact 1, we see that

aā = bb̄ = cc̄ = dd̄ = S S = q.

Therefore we have aā + bb̄ + cc̄ + dd̄ = 4q − 4χ(N) in this case. Next we will show that

ab′ + cd′ = 0,

bc′ + da′ = 0,

from which it follows that ab′ + bc′ + cd′ + da′ = 0. We compute ab′ + cd′ as follows.

ab′ + cd′ = qη( f )η(s1)ξ
−tr( u2

4v − e2u2 s1
4 f v )

p + qη( f )η(s2s3)ξ
−tr(

u2 s2
4v − e2u2s3

4 f v )

p

= qη( f )
(
η(s1)ξ

−tr( u2
4v − e2u2 s1

4 f v )

p + η(s2s3)ξ
−tr(

u2 s2
4v − e2u2 s3

4 f v )

p
)
. (2.3)

Note that

u2

4v
− e2u2s1

4 f v
= u2

4 f v

(
f − e2s1

)
,

u2s2

4v
− e2u2s3

4 f v
= u2

4 f v

(
f s2 − e2s3

)
.

By the definitions of s1 and s3, we have ( f − e2s1) = ( f s2 − e2s3). Therefore, u2

4v − e2u2s1
4 f v = u2s2

4v −
e2u2s3

4 f v . Also, by Lemma 2.1, η(s1) = −η(s2s3). Combining these two facts, we see from (2.3) that

ab′ + cd′ = 0. Similarly, one can show that bc′ + da′ = 0. Therefore we have shown that ab′ + bc′ +
cd′ + da′ = 0.

To finish the proof we will show that

ac′′ + bd′′ = 0,

ca′′ + db′′ = 0.

We compute ac′′ + bd′′ as follows.

ac′′ + bd′′ = qη
(

f 2)η(s2)ξ
−tr( u2

4v + u2s2
4v )

p + qη
(

f 2)η(s1s3)ξ
−tr(

u2s1
4v + u2s3

4v )
p

= q
(
η(s2)ξ

−tr( u2
4v + u2s2

4v )
p + η(s1s3)ξ

−tr(
u2 s1

4v + u2 s3
4v )

p
)
. (2.4)

By the definitions of s1 and s3, we have s2 + 1 = s1 + s3. Hence u2

4v + u2s2
4v = u2s1

4v + u2s3
4v . Also by

Lemma 2.1, η(s2) = −η(s1s3). Combining these two facts, we see from (2.4) that ac′′ + bd′′ = 0. Sim-
ilarly, we can show that ca′′ + db′′ = 0. It follows that ac′′ + ca′′ + bd′′ + db′′ = 0. The proof is now
complete. �
Remark. When q = p is a prime, p ≡ 1 (mod 4), p > 9, we have constructed a (4p, p,4p,4) RDS in
groups G ′

13 (e = − f ), G14 (e = 1), G15 (e = −1), G16 (e = f ) as listed in [13].



T. Feng, Q. Xiang / Journal of Combinatorial Theory, Series A 115 (2008) 1456–1473 1463
3. Non-existence of (2p, p,2p,2) RDS in groups of order 2p2

Throughout this section p is an odd prime. We will show that there does not exist a (2p, p,2p,2)

RDS in any group of order 2p2.
Let G be a group of order 2p2. Then G has a unique Sylow p-subgroup H of order p2. (This is an

easy consequence of Sylow’s theorems.) Hence H is a normal subgroup of G .
We first consider the case where H is cyclic. In this case, H has a unique subgroup N of order p.

Hence N is a normal subgroup of G . Also CG(N) � H . If R is a (2p, p,2p,2) RDS in G relative to N ,
then by Lemma 1.3, we have p2|2p, which is impossible. So from now on, we assume that H is not
cyclic, say H = 〈a,b: ap = bp = 1, [a,b] = 1〉.

Let c ∈ G be an element of order 2. Then G is a semidirect product of H and {1, c}. Since Aut(H) ∼=
GL2(Fp), and every element of order 2 in GL2(Fp) is conjugate to a diagonal matrix with ±1’s on the
diagonal, there are three isomorphism types of semidirect products of H and {1, c}. Below we list the
three non-isomorphic groups of order 2p2 with non-cyclic Sylow p-subgroup H :

G1 = 〈
a,b, c: ap = bp = c2 = 1, [a,b] = 1, ac = a−1, bc = b−1〉;

G2 = 〈
a,b, c: ap = bp = c2 = 1, [a,b] = 1, ac = a−1, [b, c] = 1

〉;
G3 = 〈

a,b, c: ap = bp = c2 = 1, [a,b] = [a, c] = [b, c] = 1
〉
.

In each Gi , i = 1,2,3, we consider the orbits of subgroups of order p under the action of the full
automorphism group Aut(Gi). There is only one orbit of subgroups order p in G1 and G3, and there
are three such orbits in G2. We list the orbit representatives as follows:

(1) G = G1, N = 〈a〉;
(2) G = G3, N = 〈a〉;
(3) G = G2, N = 〈a〉;
(4) G = G2, N = 〈b〉;
(5) G = G2, N = 〈ab〉.

We remark that case (5) is the only case where N is not a normal subgroup of G .
The following lemma will play an important role in our non-existence proof.

Lemma 3.1. Let p be an odd prime, and let a0,a1, . . . ,ap−1 be non-negative integers such that
∑p−1

i=0 ai = p. If

A = ∑p−1
i=0 aiξ

i
p has modulus

√
2p, then p = 7, as = 4, a2i t+s = 1, 0 � i � 2, for some integers s, t, 0 � s � 6,

1 � t � 6, and a j = 0 for the rest j’s.

Proof. Since A Ā = 2p, we have

(A)( Ā) = (2)(p) = (2)(1 − ξp)p−1,

as ideals in Z[ξp]. Since the ideal (1 − ξp) is fixed by ξp → ξ−1
p , we have

(1 − ξp)(p−1)/2 | (A).

Recall that ΔΔ̄ = p, Δ̄ = (−1
p )Δ, we have (Δ) = (1 − ξp)(p−1)/2. Hence (Δ)|(A), and we may write

A = f (ξp)Δ, (3.1)

where f (ξp) = ∑p−1
i=0 biξ

i
p and f (ξp) f (ξp) = 2, bi ∈ Z.

Multiplying both sides of (3.1) by Δ̄, we have( p−1∑
aiξ

i
p

)( p−1∑(−i

p

)
ξ i

p

)
= p

( p−1∑
biξ

i
p

)
. (3.2)
i=0 i=0 i=0
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Comparing the coefficients of ξk
p , k = 0,1, . . . , (p − 1), on both sides of (3.2), we find that there exists

some c ∈ Z such that

∑
i

ak−i

(−i

p

)
= pbk − c, ∀k = 0,1, . . . , (p − 1).

Summing these equations over k, we get c = ∑p−1
k=0 bk . Since (

∑
i biξ

i
p)(

∑
i biξ

−i
p ) = 2, we have

c2 =
( p−1∑

i=0

bi

)2

≡ 2
(
mod (1 − ξp) ∩ Z

)
.

That is, c2 ≡ 2 (mod p). Hence � := c (mod p) �= 0. Write c = pc1 + �. Note that for all k =
0,1, . . . , (p − 1), on one hand we have |∑i ak−i(

−i
p )| �

∑
i �=0 ak−i = p − ak � p, and on the other

hand |∑i ak−i(
−i
p )| = |pbk − c| = |p(bk − c1) − �|. So we must have δk := bk − c1 = 1 or 0, for all

k = 0,1, . . . , (p − 1). Also since

pc1 + � =
p−1∑
k=0

bk =
p−1∑
k=0

(c1 + δk),

we have
∑

k δk = �. Hence exactly � of the δk ’s are equal to 1. It follows that
∑

k bkξ
k
p = ∑�

j=1 ξ
i j
p . Let

S = {i j: 1 � j � �} ⊂ Zp . Define S(x) = ∑�
j=1 xi j ∈ Z[x]/(xp − 1). Then

S(x)S
(
x−1) = 2 + λT (x),

where T (x) = 1 + x + x2 +· · ·+ xp−1, and λ is some non-negative integer. It follows that λ = �− 2 and
�2 = 2 + λp. We then have λ2 + (4 − p)λ + 2 = 0. Hence λ = 1 or 2, and p = 7.

If λ = 1, then S is a (7,3,1) difference set in Z7. Since 2 is a multiplier of S (see [4, p. 323]),
we have S = {t + s,2t + s,4t + s} for some integers s, t , where 1 � t � 6. Now using

∑6
i=0 aiξ

i
7 =

(
∑6

i=0(
i
7 )ξ i

7)(ξ
t+s
7 + ξ2t+s

7 + ξ4t+s
7 ), we find that there are no solutions for the ai ’s when ( t

p ) = 1; and
there is a unique set of solutions: as = 4, a2i t+s = 1, 0 � i � 2, and a j = 0 for the remaining j’s when
( t

p ) = −1.

In the case where λ = 2, similarly, we find that there are no solutions for the ai ’s when ( t
p ) = −1;

and there is a unique set of solutions: as = 4, a2i t+s = 1, 0 � i � 2, and a j = 0 for the remaining j’s,
when ( t

p ) = 1. �
We are now ready to state the main theorem in this section.

Theorem 3.2. Let p be an odd prime. Then there does not exist a (2p, p,2p,2) RDS in any group of order 2p2 .

Proof. By the analysis preceding Lemma 3.1, we only need to consider the five cases listed before
Lemma 3.1. We use the same notation as in the discussion at the beginning of this section. Suppose
R is a putative (2p, p,2p,2) RDS in G relative to N . Write R = R1 + R2c, where Ri ∈ Z[H], H =
〈a〉 × 〈b〉 ∼= Zp × Zp . Then R R(−1) = 2p + 2(G − N). Hence we have

R1 R(−1)
1 + R2 R(−1)

2 = 2p + 2(H − N), R1 R(−c)
2 + R2 R(−c)

1 = 2H .

Applying the principal character of H to the above equations, we find that |R1| = |R2| = p.
We now consider the five cases one by one.
Case 1. G = G1 and N = 〈a〉. In this case we have R1 R(−c)

2 = R1 R2. Hence R1 R(−1)
1 + R2 R(−1)

2 =
2p + 2(H − N) and R1 R2 = H . For any χ ∈ Ĥ whose restriction on N is non-principal, we have
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χ(R1)χ(R2) = 0,

χ(R1)χ(R1) + χ(R2)χ(R2) = 2p.

Hence |χ(R1)|2 = 2p or 0. Let S1 = {χ ∈ Ĥ: χ is non-principal on N and |χ(R1)|2 = 2p}. It is clear
that the coefficient of 1H in R1 R(−1)

1 is |R1| = p. This coefficient can also be calculated by using the
inversion formula. We therefore have

p = 1

p2

∑
χ∈Ĥ

χ
(

R1 R(−1)
1

) = 1

p2

(
p2 + 2p|S1|

)
.

It follows that |S1| = p(p−1)
2 . Now note that Gal(Q(ξp)/Q) acts on Ĥ , and S1 is fixed (setwise) under

this action. Therefore S1 is partitioned into orbits under the aforementioned action, each having size
p −1. So |S1| ≡ 0 (mod p −1). But this is impossible since |S1| = p(p−1)

2 . We have reached the desired
contradiction.

Case 2. G = G3 and N = 〈a〉. In this case, the group G is abelian. For any χ ∈ Ĥ whose restriction to
N is non-principal, we have |χ(R1 ± R2)|2 = 2p. From the proof of Lemma 3.1, we have χ(R1 + R2) =
f1Δ and χ(R1 − R2) = f2Δ, where f i ∈ Z[ξp] and | f i |2 = 2, for i = 1, 2. Since ( f1 − f2)Δ = 2χ(R2),
we have 2|( f1 − f2) in Z[ξp]. Let f2 = f1 + 2x for some x ∈ Z[ξp]. Multiplying both sides of this
equation by f̄1, we have

f̄1 f2 = f̄1 f1 + 2x f̄1 = 2 + 2x f̄1.

So 2| f̄1 f2. Let f̄1 f2 = 2y for some y ∈ Z[ξp]. Multiplying both sides of the equation by f1, we obtain
f2 = f1 y. Since both f1 and f2 have modulus

√
2, we have f1 = η f2 for some root of unity η ∈ Z[ξp].

Now 2χ(R1) = ( f1 + f2)Δ = f2(1 + η)Δ. Multiplying this equation by its own complex conjugate, we
find that 2|(1 + η)(1 + η). Recall that η is a root of unity in Z[ξp] and gcd((2), (1 − ξp)) = 1, we see
that η = ±1. It follows that |χ(R1)|2 = 0 or 2p. Now the same arguments as those in the first case
yield a contradiction.

Case 3. G = G2 and N = 〈a〉. For any (u, v) ∈ Z2
p , we denote by χu,v the character of H defined

by χu,v(au′
bv ′

) = ξuu′+v v ′
p . Then χu,v((aib j)c) = χ−u,v(aib j). So χu,v(R(−c)

i ) = χu,−v(Ri) for i = 1, 2.

Let χ ∈ Ĥ and χ |N �= 1. If χ is principal on 〈b〉, then from R1 R(−c)
2 + R2 R(−c)

1 = 2H we deduce that
χ(R1)χ(R2) = 0. Without loss of generality we assume that χ(R1) = 0. Then χ(R2) has modulus√

2p. Since R2 has size p, we have p = 7 by Lemma 3.1. Noting that the characters χu,0 with u ∈ Z∗
p

form a single orbit of size (p − 1) under the action of Gal(Q(ξp)/Q), we have χu,0(R1) = 0 for all
u ∈ Z∗

p .

From R1 R(−1)
1 + R2 R(−1)

2 = 2p + 2(H − N), we have R(c)
1 R(−c)

1 + R(c)
2 R(−c)

2 = 2p + 2(H − N). Now,
apply a character χ which is non-principal on N to these group ring equations, we have∣∣χ(

R(c)
1

)∣∣2 + ∣∣χ(
R(c)

2

)∣∣2 = 2p,
∣∣χ(R1)

∣∣2 + ∣∣χ(R2)
∣∣2 = 2p,

χ(R1)χ
(

R(c)
2

) + χ(R2)χ
(

R(c)
1

) = χ(R1)χ
(

R(−c)
2

) + χ(R2)χ
(

R(−c)
1

) = 0.

From the last equation, we have∣∣χ(R1)
∣∣2∣∣χ(

R(−c)
2

)∣∣2 = ∣∣χ(R2)
∣∣2∣∣χ(

R(−c)
1

)∣∣2
.

Substitute |χ(R1)|2 by 2p − |χ(R2)|2, and |χ(R(−c)
1 )|2 by 2p − |χ(R(−c)

2 )|2 in the above equation, we
obtain

(
2p − ∣∣χ(R2)

∣∣2)∣∣χ(
R(−c)

2

)∣∣2 = ∣∣χ(R2)
∣∣2(

2p − ∣∣χ(
R(−c)

2

)∣∣2)
,

which simplifies to |χ(R2)|2 = |χ(R(−c)
2 )|2. Similarly, we can show that |χ(R1)|2 = |χ(R(−c)

1 )|2. Hence∣∣χu,v(Ri)
∣∣ = ∣∣χ−u,−v(Ri)

∣∣ = ∣∣χ−u,v(Ri)
∣∣ = ∣∣χu,−v(Ri)

∣∣.
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Thus the characters of H that are principal on neither N nor 〈b〉 are partitioned into subsets of size
four of the form {χε1u,ε2 v : ε1, ε2 = ±1}, u, v ∈ Z∗

p , where |χε1u,ε2 v(Ri)| = |χu,v(Ri)|. Now computing

the coefficient of 1H in R1 R(−1)
1 by the inversion formula, we have

p = 1

p2

(
p2 +

∑
u∈Z

∗
p

∣∣χu,0(R1)
∣∣2 +

∑
v∈Z

∗
p

∣∣χ0,v(R1)
∣∣2 + 4x

)
= 1

p2

(
p2 + 4x

)

for some algebraic integer x. Hence 4|(p − 1). But p = 7: we have reached a contradiction.
Case 4. G = G2 and N = 〈b〉. Let χ ∈ Ĥ and χ |N �= 1. If χ is principal on 〈a〉, then χ(R(−1)

i ) =
χ(R(−c)

i ) for i = 1,2. By the same arguments as those in Case 2, we have |χ(R1)|2 = 2p or 0. In the
former case, since |R1| = p, we have p = 7 by Lemma 3.1. In the latter case, we have |χ(R2)|2 = 2p.
Again since |R2| = p, we have p = 7 by Lemma 3.1. Now the same arguments as those in the third
case yield a contradiction.

Case 5. G = G2 and N = 〈ab〉. Let χ1 be the character of H which maps a to 1 and b to ξp . Then

χ1 is non-principal on N . Since χ1|〈a〉 = 1, we have χ1(R(−1)
i ) = χ1(R(−c)

i ). Using the same arguments
as those in Case 2, we have |χ1(R1)|2 = 2p or |χ1(R2)|2 = 2p. Without loss of generality we assume
that |χ1(R1)|2 = 2p. Since |R1 ∩ ai N| = 1 for all i = 0,1, . . . , (p − 1), we can find a map F1 : Zp → Zp

such that

R1 = {
ax+F1(x)bF1(x): x ∈ Zp

}
.

Let ai = |{x ∈ Zp: F1(x) = i}|. Then
∑p−1

i=0 ai = p, ai � 0, and χ1(R1) = ∑p−1
i=0 aiξ

i
p . Since

|χ1(R1)|2 = 2p, by Lemma 3.1, we have p = 7, as = 4,a2i t+s = 1,0 � i � 2, and a j = 0 for the re-
maining j, where s, t are two integers, 0 � s � 6 and 1 � t � 6. Assume that F −1

1 (s) = {i1, i2, i3, i4},
F −1

1 (t + s) = {i5}, F −1
1 (2t + s) = {i6}, F −1

1 (4t + s) = {i7}. Now let χ2 to be the character which maps a

to ξp and b to 1. Then χ2(R(−1)
i ) = χ2(Ri). Combining this with R1 R(−c)

2 + R2 R(−c)
1 = 2H , we deduce

that χ2(R1)χ2(R2) = 0. Hence |χ2(R1)|2 = 0 or 14. That is,

χ2(R1)ξ
−s
7 =

(
4∑

j=1

ξ
i j

7

)
+ ξ

i5+t
7 + ξ

i6+2t
7 + ξ

i7+4t
7

has modulus
√

14 or 0. We assume that t is a non-square of Z7. The case where t is a non-zero
square in Z7 can be handled similarly.

We first consider the case where |χ2(R1)|2 = 14. Define

S(x) :=
(

4∑
j=1

xi j

)
+ xi5+t + xi6+2t + xi7+4t ∈ Z[x]/(x7 − 1

)
.

Then S(x)S(x−1) = 14 + λT (x), where T (x) = 1 + x + x2 + · · · + x6 and λ is a non-negative integer. It
follows that λ = 1

7 (72 − 14) = 5. Write S(x) = ∑6
i=0 ci xi . Since the i j ’s are distinct, we have 0 � ci � 4,

for all i. Also
∑6

i=0 ci = 7 and
∑6

i=0 c2
i = 19. From these constraints, we find that there is only one

possibility, namely {c0, c1, . . . , c6} = {4,1,1,1,0,0,0}. We may assume that ci1 = 4. It follows that
i1 = i5 + t = i6 + 2t = i7 + 4t . After replacing R1 by a−i1 b−s R1 if necessary, we may assume that

i1 = 0 and s = 0. In order for (
∑4

j=2 ξ
i j

7 )+ 4 to have modulus
√

14, we must have {i2, i3, i4} = {1,2,4}
or {3,5,6} by Lemma 3.1. Since all i j ’s are distinct and t is assumed to be a non-square modulo 7,
we see that {i2, i3, i4} = {3,5,6}. So F1 maps all non-squares modulo 7 to 0, and maps each square
modulo 7 to its additive inverse. Let χ3 be the character that maps a to ξ7 and b to ξu

7 , and χ4 be
the one that maps a to ξ7 and b to ξ−u

7 , where u = 2 or 4. Then it is easy to see that |χ3(R1)|2 = 7,
|χ4(R1)|2 = 0. But similar arguments to those in Case 3 show that we must have |χ3(R1)| = |χ4(R1)|:
a contradiction.
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Next we consider the case where χ2(R1) = 0. We have

4∑
j=1

ξ
i j

7 + ξ
i5+t
7 + ξ

i6+2t
7 + ξ

i7+4t
7 = 0.

Hence {i1, i2, i3, i4, i5 + t, i6 +2t, i7 +4t} = Z7. It follows that {i5, i6, i7} = {i5 + t, i6 +2t, i7 +4t}. Since
t �= 0, we have either (i5, i6, i7) = (i5, i5 − 2t, i5 + t) or (i5, i6, i7) = (i5, i5 + t, i5 + 3t). By replacing
R1 with a−i5 b−s R1 if necessary, we may assume that s = 0 and i5 = 0. When (i5, i6, i7) = (0,−2t, t),
apply the character χ ′

3 (respectively χ ′
4) that maps a to ξ7 and b to ξu

7 (respectively ξ−u
7 ) to R1, where

u = 3, we find that |χ ′
3(R1)|2 = 7 and |χ ′

4(R1)|2 = 0. But again we should have |χ ′
3(R1)| = |χ ′

4(R1)|
as before: a contradiction. The case (i5, i6, i7) = (0, t,3t) is similarly ruled out: take u = 2 (in the
definition of χ ′

3 and χ ′
4); then |χ ′

3(R1)|2 = 14 and χ ′
4(R1) = 0, again contradicting |χ ′

3(R1)| = |χ ′
4(R1)|.

The proof of the theorem is now complete. �
4. Non-existence of (4p, p,4p,4) RDS in abelian groups of order 4p2

Throughout this section we let G be an abelian group of order 4p2, p an odd prime. If G contains
a (4p, p,4p,4) RDS relative to a subgroup N of order p, then by Lemma 1.3 the Sylow p-subgroup
of G is non-cyclic. Therefore in the rest of this section we always assume that the Sylow p-subgroup
of G is isomorphic to Zp × Zp .

In this section we will first show that if p �= 3 is an odd prime, then G = Z2
2 ×Z2

p does not contain

a (4p, p,4p,4) RDS. We remark that G = Z2
2 ×Z2

3 indeed contains a (12,3,12,4) RDS, see [6] and [16].

Theorem 4.1. Let p � 5 be an odd prime. Then there does not exist a (4p, p,4p,4) relative difference set in
G = Z2

2 × Z2
p .

Proof. We write G = 〈α1: α2
1 = 1〉 × 〈α2: α2

2 = 1〉 × Z2
p and H := Z2

p < G . Assume that R is a
(4p, p,4p,4) RDS in G relative to a subgroup N of order p. Since the subgroups of order p of G
form a single orbit under the action of Aut(G), we may choose N to be {0} × Zp < H . By the defini-
tion of an RDS, we have

R R(−1) = 4p + 4(G − N) in Z[G]. (4.1)

On one hand, if θ ∈ Ĝ and θ |N = 1, then by applying θ to both sides of (4.1) we obtain that θ(R) = 0.
On the other hand, if θ ∈ Ĝ and θ |N �= 1, then by applying θ to both sides of (4.1) we obtain that
θ(R)θ(R) = 4p; by the same arguments as those at the beginning of the proof of Lemma 3.1, we find
that θ(R) = f0(ξp)Δ, where | f0(ξp)|2 = 4 and f0(x) ∈ Z[x]. Write

R = R1 + R2α1 + R3α2 + R4α1α2, (4.2)

where Ri ⊂ H for all 1 � i � 4. By applying the characters of G whose restrictions to H are trivial to
both sides of (4.2), we have

|R1| + |R2| + |R3| + |R4| = 4p,

|R1| − |R2| + |R3| − |R4| = 0,

|R1| − |R2| − |R3| + |R4| = 0,

|R1| + |R2| − |R3| − |R4| = 0. (4.3)

From these equations, we find that |R1| = |R2| = |R3| = |R4| = p.
The characters of H are of the form χu,v(u′, v ′) = ξuu′+v v ′

p , ∀(u′, v ′) ∈ H . For any character χ
of H that is non-principal on N , write (a,b, c,d) = (χ(R1),χ(R2),χ(R3),χ(R4)). By applying the
characters of G whose restrictions to H equal χ to both sides of (4.2), we have
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a + b + c + d = f1(ξp)Δ, a − b + c − d = f2(ξp)Δ,

a − b − c + d = f3(ξp)Δ, a + b − c − d = f4(ξp)Δ, (4.4)

where | f i(ξp)|2 = 4 and f i(x) ∈ Z[x], for i = 1,2,3,4. To simplify notation, we will usually write f i(ξp)

as f i . Solving for a,b, c,d, we obtain,

a = 1

4
( f1 + f2 + f3 + f4)Δ, b = 1

4
( f1 − f2 − f3 + f4)Δ,

c = 1

4
( f1 + f2 − f3 − f4)Δ, d = 1

4
( f1 − f2 + f3 − f4)Δ.

Note that a,b, c,d are all algebraic integers. We consider two cases.
Case 1. ordp(2) is odd. Let (2) = Q 1 · · · Q g Q̄ 1 · · · Q̄ g be the prime ideal decomposition of (2)

in Z[ξp]. (Note that since ordp(2) is odd, the decomposition group of Q � does not contain the com-
plex conjugation.) For each i, 1 � i � 4, let

( f i) = Q ri1
1 · · · Q

rig
g Q̄ si1

1 · · · Q̄
sig
g ,

where ri�, si� � 0. Then from f i f̄ i = 4 we obtain that ri� + si� = 2, ∀� = 1,2, . . . , g .
We claim that ( f i) = ( f j), ∀1 � i, j � 4. The proof of the claim goes as follows. First note that

by subtracting the two equations in (4.4) that involve f i and f j , we find that 2|( f i − f j). Hence
Q �|( f i − f j) as well as Q �|( f i − f j) for each �. If ri� = 0 for some �, then Q � does not divide f j
since otherwise from f j ∈ Q � and f i − f j ∈ Q � we obtain f i ∈ Q � , i.e. Q �|( f i). So we must have
r j� = 0. Hence si� = s j� = 2. Similarly, if si� = 0 for some �, then s j� = 0 and ri� = r j� = 2. If ri� =
si� = 1 for some �, then neither r j� nor s j� can be zero for otherwise ri� = 0 or 2 from the above
analysis. It follows that r j� = s j� = 1. We have thus proved that ( f i) and ( f j) has the same prime
ideal decomposition. Hence ( f i) = ( f j). It follows that f i = f1μi , where μ1 = 1 and μi , 2 � i � 4,
are 2pth roots of unity. Furthermore, if f i �= ± f j for some i, j, then since (μi − μ j) and (2) have no
common prime ideal divisor, and 2|( f i − f j), we have ( f i) = ( f j) = (2). There are two possibilities to
consider.

(i) μi = ±1, ∀i ∈ {1,2,3,4}. In this case, noting that μ1 = 1, we see that
∑4

i=1 μi can only take
one of the values 0,4,±2. If

∑4
i=1 μi = 0 or 4, then (μ1,μ2,μ3,μ4) must be one of

(1,1,1,1), (1,−1,1,−1), (1,1,−1,−1), (1,−1,−1,1).

In each case, exactly one of a,b, c,d has modulus
√

4p and the others are 0. If
∑4

i=1 μi = ±2, then
three of μi , i = 1,2,3,4, are equal. We must have ( f1) = (2) since a is an algebraic integer. It follows
that {a,b, c,d} = Δ · {η,η,η,−η} for some root of unity η.

(ii) Some μi is not equal to ±1. In this case, we have ( f i) = (2), ∀i ∈ {1,2,3,4}, by the analysis
immediately preceding (i). So we write f i = 2ωi with ωi a root of unity, for each i. It is clear that
any subset of size p − 1 of X := {1, ξp, . . . , ξ

p−1
p } forms an integral basis of Z[ξp]. So any k-subset

of X can be completed to an integral basis of Z[ξp] when k < p − 1. Write ωi = εiξ
�i
p with �i ∈ Zp

and εi = ±1 for each i. Then at least two of the �i ’s are distinct, and the distinct elements among the
four ξ

�i
p ’s can be completed to an integral basis of Z[ξp] as we remarked. We only consider the case

where �1 �= �2. The remaining cases are similar. From a =
∑4

i=1 ωi
2 Δ, we see that

∑4
i=1 ωi

2 is an algebraic

integer. Hence the sum of coefficients of ξ
�1
p (respectively ξ

�2
p ) is even in

∑4
i=1 ωi . Therefore we must

have {�3, �4} = {�1, �2}, which in turn implies that {ω3,ω4} is one of ±{ω1,ω2}, ±{ω1,−ω2}. Case-
by-case examinations show that we must have either {a,b, c,d} = Δ · {η1, η1, η2,−η2} or {a,b, c,d} =
Δ · {η1 + η2, η1 − η2,0,0}, where both η1 and η2 are roots of unity and η1 �= ±η2.

To summarize, we have the following three possibilities for (a,b, c,d):

(1A) exactly one has modulus
√

4p, and the others are 0;
(2A) {a,b, c,d} = Δ · {η1, η1, η2,−η2};
(2B) {a,b, c,d} = Δ · {η1 + η2, η1 − η2,0,0}, with η1 �= ±η2,

where η1, η2 are roots of unity in Z[ξp].
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Case 2. ordp(2) is even. In this case, each prime ideal divisor of (2) in Z[ξp] is fixed by the complex
conjugation. So f i = 2μi for some root of unity μi for each i. The same arguments as those in the
above case work for this case; and there are also three possibilities as listed above. In particular,
a,b, c,d are multiples of 2Δ in case (1A) this time. In the following, we will consider the ordp(2)

even case and the ordp(2) odd case together.
First we prove that case (2B) does not occur. Assume to the contrary that χ := χu,u′ with

u′ �= 0 is a character of H such that case (2B) occurs. Then χ(Ri) = (1 − ξ�
p)ξ�′

p εΔ for some i,
where � ∈ Z∗

p and ε = ±1. Since Ri meets each coset of N in H in a unique element we may
write Ri = {(x, f (x)): x ∈ Zp}, where f : Zp → Zp is a function. Define F (x) := ux + u′ f (x) − �′ and
a j := |{x ∈ Zp: F (x) = j}|, ∀ j ∈ Zp . Then

χ(Ri)ξ
−�′
p =

∑
x∈Zp

ξ
F (x)
p =

p−1∑
j=0

a jξ
j

p = (
1 − ξ�

p

)
εΔ =

p−1∑
j=0

[(
j

p

)
−

(
j − �

p

)]
εξ

j
p .

Comparing the coefficients of ξ j on the two sides of the above equation, we find that a j − a0 =
[( j

p ) − (
j−�

p ) + (−�
p )]ε . Together with

∑p−1
j=0 a j = p, we deduce that a j = 1 + [( j

p ) − (
j−�

p )]ε . We now
show that there exists j, 1 � j � p − 1, such that a j is negative. Let (RN) (respectively (NR)) be the
number of pairs (x, x−�) in the set 1,2, . . . , p −1 such that x (respectively x−�) is a non-zero square
modulo p and x − � (respectively x) is a non-square modulo p. Then by elementary number theory
(see, e.g. [15, p. 64]), we find that

(RN) = p − 1

4
+ 1

2

(
δ(−� ∈ Q ) − δ(� ∈ Q )

)
,

(NR) = p − 1

4
− 1

2

(
δ(−� ∈ Q ) − δ(� ∈ Q )

)
,

where δ is the Kronecker delta function and Q is the set of non-zero squares modulo p. Since p � 5,
both (RN) and (NR) are positive. Hence there exists j ∈ Z∗

p such that −(
j
p ) = (

j−�
p ) = ε . It follows that

a j = −1 < 0: a contradiction. Therefore case (2B) cannot occur.
Next we show that case (1A) does not occur. Assume to the contrary that χ := χu,u′ with

u′ �= 0 is a character of H such that case (1A) occurs. Then χ(Ri) = (
∑

j b jξ
j

p)Δ for some i, where

(
∑

j b jξ
j

p)(
∑

j b jξ
− j
p ) = 4, b j ∈ Z. Since Ri meets each coset of N in H in a unique element we

may write Ri = {(x, f (x)): x ∈ Zp}, where f : Zp → Zp is a function. Define F (x) := ux + u′ f (x) and

a j := |{x ∈ Zp: F (x) = j}|. Then χ(Ri) = ∑
j a jξ

j
p . Multiplying both sides of the following equation

∑
j

a jξ
j

p =
(∑

j

(
j

p

)
ξ

j
p

)(∑
j

b jξ
j

p

)

by Δ, we get(∑
j

a jξ
j

p

)(∑
j

(− j

p

)
ξ

j
p

)
= p

(∑
j

b jξ
j

p

)
.

The following arguments are similar to those in the proof of Lemma 3.1. By comparing coefficients
of ξk

p , we get

∑
j

ak− j

(− j

p

)
= pbk − c, ∀k ∈ Zp,

for some integer c. Summing the above equations over k, we get c = ∑
j b j . Since (

∑
j b jξ

j
p)×

(
∑

j b jξ
− j
p ) = 4, we have c2 ≡ 4 mod ((1 − ξp) ∩ Z), i.e., c2 ≡ 4 (mod p). Hence c ≡ ±2 (mod p).

Write c = pc1 + 2ε with ε = ±1. Note that
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∣∣p(bk − c1) − 2ε
∣∣ = |pbk − c| =

∣∣∣∣∑
j

ak− j

(− j

p

)∣∣∣∣ � p − ak � p.

So if ε = 1, then δk := bk − c1 = 1 or 0. Since pc1 + 2 = ∑
j b j = ∑

j(c1 + δ j), we have
∑

j δ j = 2.

Hence only two of the δ j ’s are equal to 1. It follows that
∑

j b jξ
j

p = ξ
i1
p + ξ

i2
p with i1 �= i2 ∈ Zp . Now

ξ
i1
p + ξ

i2
p clearly cannot have modulus 2: a contradiction. The case where ε = −1 is similarly ruled

out.
So we have proved that for each character χ of H that is non-principal on N only case (2A) can

possibly occur. Write Ri := {(x,hi(x)): x ∈ Zp} ⊂ H for all i = 1,2,3,4, where hi : Zp → Zp . For any
χ ∈ Ĥ and χ |N �= 1, we have |χ(Ri)| = √

p for each i. This implies that each hi is a p-ary bent
function from Zp to itself. By Theorem 1.4, we have hi(x) = ai x2 + bi x + ci , ai �= 0, ai,bi, ci ∈ Zp for
each i. For any u ∈ Zp , we write χu := χu,1, which is a character of H and whose restriction to N is
non-principal. Define for each u ∈ Zp the following 4-tuple

(A1u, A2u, A3u, A4u) = (
χu(R1),χu(R2),χu(R3),χu(R4)

)
.

We have Aiu = Δξ

−(bi+u)2

4ai
+ci

p (
ai
p ) by direct computations. Hence to meet the conditions in case (2A),

we must have three of (
ai
p ) being equal and the fourth being distinct from them. Without loss of

generality we assume that(
a1

p

)
=

(
a2

p

)
=

(
a3

p

)
= −

(
a4

p

)
.

For each u ∈ Zp , one of the following should occur:

(i) A1u = A2u , A3u = −A4u ;
(ii) A1u = A3u , A2u = −A4u ;

(iii) A2u = A3u , A1u = −A4u .

If we are in case (i), then a3 �= a4 since (
a3
p ) = −( a4

p ), and − (b3+u)2

4a3
+ c3 = − (b4+u)2

4a4
+ c4. The last

equation is quadratic in u (the coefficient of u2 is a3−a4
4a3a4

�= 0). Therefore there are at most two u’s
satisfying that equation. In other words, case (i) occurs for at most two values of u. The same is true
for the other two cases. Now note that for any u ∈ Zp , one of the above three cases must occur. It
follows that p � 6. Hence p = 5 (since p is assumed to be greater than or equal to 5). It will be
convenient to define

U1 = {u ∈ Z5 | A1u = A2u, A3u = −A4u},
U2 = {u ∈ Z5 | A1u = A3u, A2u = −A4u},
U3 = {u ∈ Z5 | A2u = A3u, A1u = −A4u}.

By the above analysis, we have U1 ∪ U2 ∪ U3 = Z5, 1 � |Ui | � 2 for all i, and Ui �= U j for 1 � i �= j � 5.
We first claim that it is impossible to have a1 = a2 = a3. If a1 = a2, then b1 �= b2 since otherwise

(a1,b1, c1) = (a2,b2, c2), which implies U2 = U3, a contradiction. Therefore, if a1 = a2, then A1u = A2u
becomes a degree one equation in u, which has at most one solution; hence |U1| = 1. By the same
reasoning we see that if a1 = a2 = a3, then |U1| = |U2| = |U3| = 1, which is clearly impossible.

Now recall that (
a1
5 ) = (

a2
5 ) = (

a3
5 ). Since there are two non-zero squares and two non-squares

in Z5, we must have two of a1,a2,a3 being equal. Without loss of generality assume that a1 = a2 =
−a3. After replacing R by Rσ g for some g ∈ G and σ ∈ Aut(G) which fixes elements of 〈α1〉 × 〈α2〉,
we may assume that h1(x) = x2 (hence a1 = 1, b1 = c1 = 0). In the following we study the case where
a4 = 2. The case where a4 = −2 can be handled similarly.

Now that we assumed a1 = a2, by the above reasoning we must have b1 �= b2, that is b2 �= 0 since
b1 is now assumed to be 0. We must have |U1| = 1, |U2| = |U3| = 2, and U1, U2 and U3 are mutually
disjoint.
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Solving A1u = A2u , we see that the unique element of U1 is u = 2b2 − c2
2b2

, which must also satisfy

u2 + (−b4 − 2b3)u + 2b2
4 − c4 + c3 − b2

3 = 0. (4.5)

This last equation comes from A3u = −A4u .
Any element u ∈ U2 must satisfy

2u2 + 2b3u + b2
3 − c3 = 0, (4.6)

3u2 + (−b4 + 2b2)u + 2b2
4 − c4 + c2 + b2

2 = 0. (4.7)

Since |U2| = 2, the two equations above should have two distinct common solutions. So by comparing
coefficients we have b4 = 2b2 + 2b3 and 2b2

4 − c4 + b2
3 − c3 + b2

2 + c2 = 0.
Now, u = 2b2 − c2

2b2
∈ U1 cannot be a solution to (4.6). But adding twice of (4.6) to (4.5) gives

u = 2b2 − c2
2b2

: a contradiction.
We have shown that for any character χ of H that is non-principal on N , none of the cases (1A),

(2A), (2B) can occur. Therefore for an odd prime p � 5, a (4p, p,4p,4) RDS in G cannot exist. The
proof is complete. �
Theorem 4.2. Let p be an odd prime. Then there does not exist a (4p, p,4p,4) relative difference set in
G = Z4 × Z2

p .

Proof. We write G = 〈α: α4 = 1〉 × Z2
p and H := Z2

p < G . Assume that R is a (4p, p,4p,4) RDS in G
relative to a subgroup N of order p. Since the subgroups of order p of G form a single orbit under
the action of Aut(G), we may choose N to be {0} × Zp < H . By the definition of an RDS, we have

R R(−1) = 4p + 4(G − N) in Z[G]. (4.8)

On one hand, if θ ∈ Ĝ and θ |N = 1, then by applying θ to both sides of (4.8) we obtain that θ(R) = 0.
On the other hand, if θ ∈ Ĝ and θ |N �= 1, then by applying θ to both sides of (4.8) we obtain that
θ(R)θ(R) = 4p; by the same arguments as those at the beginning of the proof of Lemma 3.1, we find
that θ(R) = f (ξp)Δ, where | f (ξp)|2 = 4 and f (x) ∈ Z[x]. Write

R = R0 + R1α1 + R2α
2 + R3α

3, (4.9)

where R j ⊂ H for j = 0,1,2 and 3. Applying the characters of G whose restrictions to H are trivial
to both sides of (4.9), we have

|R0| + |R1| + |R2| + |R3| = 4p,

|R0| − |R1| + |R2| − |R3| = 0,

|R0| + i|R1| − |R2| − i|R3| = 0,

|R0| − i|R1| − |R2| + i|R3| = 0, (4.10)

where i2 = −1. From these equations, we find that |R0| = |R1| = |R2| = |R3| = p.
For any character χ ∈ Ĥ that is non-principal on N , write (a,b, c,d) = (χ(R0),χ(R1),χ(R2),

χ(R3)). By applying the characters of G whose restrictions to H are χ we obtain

a + b + c + d = f1(ξp)Δ,

a − b + c − d = f2(ξp)Δ,∣∣(a − c) + (b − d)i
∣∣2 = 4p, (4.11)

where | f j(ξp)|2 = 4, j = 1,2, with f j(x) ∈ Z[x]. From the first two equations in (4.11), we find that
2(b +d) = Δ( f1 − f2). Hence 2|( f1 − f2). By the same arguments as those in the proof of Theorem 4.1,
we deduce that f2 = f1η for some 2pth root of unity η ∈ Z[ξp]. We show that η has to be ±1.



1472 T. Feng, Q. Xiang / Journal of Combinatorial Theory, Series A 115 (2008) 1456–1473
Assume to the contrary that η �= ±1. Then from Δ f1(1 − η) = 2(b + d) and Δ f1(1 + η) = 2(a + c)
we find that 2| f1. It follows that 2| f2. We thus have f1 = 2η1 and f2 = 2η2 for some roots of unity
η1, η2 ∈ Z[ξp]. Denote a + c = (η1 + η2)Δ by x and b + d = (η1 − η2)Δ by y. Expanding |(a − c) +
(b − d)i|2 = |(x − 2c) + (y − 2d)i|2 = 4p and noting that 1, i are linearly independent over Z[ξp], we
get

xc̄ + x̄c + yd̄ + ȳd = 2cc̄ + 2dd̄,

xd̄ + ȳc − yc̄ − x̄d − 2cd̄ + 2dc̄ = p(η − η̄).

Here we have used the facts that xx̄ + y ȳ = 4p and xȳ − x̄y = 2p(η − η̄). In Z[ξp], we have
x ≡ y (mod 2), x̄ ≡ ȳ (mod 2). So from the above two equations we have p(η − η̄) ≡ 0 (mod 2):
a contradiction. Therefore we have proved that η = ±1. It follows that for an arbitrary character χ
of H that is non-principal on N we have

χ(R0 + R2) = 0,
∣∣χ(R1 + R3)

∣∣ = √
4p,

or

χ(R1 + R3) = 0,
∣∣χ(R0 + R2)

∣∣ = √
4p.

We also note that for a non-trivial character χ of H that is principal on N we have χ(R0 + R2) =
χ(R1 + R3) = 0 (the argument is similar to the one we used to find |R j |). By the inversion formula,
the coefficient of the identity in (R0 + R2)(R0 + R2)

(−1) is

1

p2

(
4p2 + 4pz

) = 4 + 4z

p
,

where

z = ∣∣{χ ∈ Ĥ: χ |N �= 1,
∣∣χ(R0 + R2)

∣∣ = √
4p

}∣∣.
Hence we have p|z. Noting that the above set of characters is stable under the action of Gal(Q(ξp)/Q)

on Ĥ , we see that its elements are partitioned into orbits, each of size p −1. Hence (p −1)|z. So z = 0
or z = (p − 1)p. If z = (p − 1)p, then χ(R1 + R3) = 0 for all non-principal character χ of H . It follows
that R1 + R3 = λH for some positive integer λ. This is clearly impossible since |R1| = |R3| = p. The
case z = 0 is similarly ruled out. The proof is complete. �

By the analysis at the very beginning of this section, and combining Theorems 4.1 and 4.2 with
the known example of a (12,3,12,4) RDS in Z2

2 × Z2
3 in [6] we have

Theorem 4.3. Let p be an odd prime. An abelian group G of order 4p2 contains a (4p, p,4p,4) relative
difference set if and only if G = Z2

2 × Z2
3 .

5. Conclusion

A (v,k, λ) difference set D in a non-abelian group of order v is said to be genuinely non-abelian
if none of the abelian groups of the same order contains a difference set with these parameters. The
first genuinely non-abelian difference set was constructed by K. Smith in [21], and its parameters are
(100,45,20).

We define a genuinely non-abelian relative difference set in the analogous way. Combining the
construction in Section 2 and the non-existence results in Section 4, we therefore have constructed
an infinite family of genuinely non-abelian semi-regular relative difference sets with parameters
(4p, p,4p,4), where p ≡ 1 (mod 4) is a prime and p > 9. As far as we know, this is the first in-
finite family of genuinely non-abelian (m,n,m,m/n) relative difference sets with n > 2.
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