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Abstract

In a recent paper O. Pavlov proved the following two interesting resolvability results:

(1) If a T1-space X satisfies Δ(X) > ps(X) then X is maximally resolvable.
(2) If a T3-space X satisfies Δ(X) > pe(X) then X is ω-resolvable.

Here ps(X) (pe(X)) denotes the smallest successor cardinal such that X has no discrete (closed discrete) subset of that size and
Δ(X) is the smallest cardinality of a non-empty open set in X.

In this note we improve (1) by showing that Δ(X) > ps(X) can be relaxed to Δ(X) � ps(X), actually for an arbitrary topological
space X. In particular, if X is any space of countable spread with Δ(X) > ω then X is maximally resolvable.

The question if an analogous improvement of (2) is valid remains open, but we present a proof of (2) that is simpler than Pavlov’s.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Given a cardinal κ > 1, a topological space is called κ-resolvable iff it contains κ many disjoint dense subsets.
Denoting by τ ∗(X) the family of non-empty open subsets of a topological space X, we say that the space X is maxi-
mally resolvable iff it is Δ(X)-resolvable, where Δ(X) = min{|G|: G ∈ τ ∗(X)} is the so-called dispersion character
of X. A space is called (<κ)-resolvable iff it is μ-resolvable for all μ < κ . In this introduction we shall give three
lemmas that provide sufficient conditions for κ-resolvability. Finally, a space that is not κ-resolvable is also called
κ-irresolvable.
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El’kin proved in [3] that, for any cardinal κ , every space may be written as the disjoint union of a hereditarily
κ-irresolvable open subset and a κ-resolvable closed subset. As Pavlov observed in the introduction of [10], this
statement has the following reformulation.

Lemma 1.1. A topological space X is κ-resolvable iff every non-empty open subspace of X includes a non-empty
κ-resolvable subset, in other words: iff X has a π -network consisting of κ-resolvable subsets.

For any topological space X we let ls(X) denote the minimum number of left-separated subspaces needed to
cover X. The following lemma is implicit in the proof of [10, Theorem 2.8] and easily follows from the well-known
fact that every space has a dense left-separated subspace, see e.g. [7, 2.9.c].

Lemma 1.2. If for each U ∈ τ ∗(X) we have ls(U) � κ , that is no non-empty open set in X can be covered by fewer
than κ many left separated sets, then X is κ-resolvable.

Our next lemma generalizes Propositions 2.3 and 3.3 from [10]. We believe that our present approach is not only
more general but also simpler than that in [10]. To formulate the lemma, we need to introduce a piece of notation.

Given a family of sets A and a cardinal κ , we denote by Sκ(A) the collection of all disjoint subfamilies of A of
size less than κ , i.e.

Sκ(A) = {
A′ ∈ [A]<κ : A′ is disjoint

}
.

Lemma 1.3. Let us be given a topological space X, a dense set D ⊂ X, an infinite cardinal κ � |D|, moreover a
family I ⊂ P(X) of subsets of X. If for each x ∈ D and for any Y ∈ Sκ(I) there is a set Z ∈ I such that

⋃
Y ∩Z = ∅

and x ∈ Z then X is κ-resolvable.

Proof. Let {xα: α < κ} = D be a κ-abundant enumeration of D, that is for any point x ∈ D we have ax = {α: xα =
x} ∈ [κ]κ . By a straightforward transfinite recursion on α < κ we may then choose sets Zα ∈ I ∩ P(X \ ⋃

ν<α Zν)

with xα ∈ Zα for all α < κ . (Note that we have {Zν : ν < α} ∈ Sκ(I) along the way.)
For any ordinal i < κ and for any point x ∈ D let αx

i be the ith element of the set ax and set

Di =
⋃

{Zαx
i
: x ∈ D}.

Then clearly D ⊂ Di , hence {Di : i < κ} is a disjoint family of dense sets, witnessing that X is κ-resolvable. �
As an illustration, note that if |X| = Δ(X) = κ > λ and t (x,X) � λ holds for all points x ∈ D of a set D which

is dense in the space X, then D, X, κ , and I = [X]�λ satisfy the conditions of Lemma 1.3 and so X is κ-resolvable.
Thus we obtain the following result as an immediate corollary of Lemma 1.3.

Corollary 1.4. If Δ(X) > sup{t (x,X): x ∈ D} for some dense set D ⊂ X then X is maximally resolvable. In partic-
ular, if Δ(X) > t(X) then X is maximally resolvable.

The second statement is a theorem of Pytkeev from [11].

2. Improving Pavlov’s result concerning spread

As was mentioned in the abstract, in [10] Pavlov defined ps(X) as the smallest successor cardinal such that X has
no discrete subset of that size. We recall from [7, 1.22] the related definition of ŝ(X) that is the smallest uncountable
cardinal such that X has no discrete subset of that size. Clearly, one has ŝ(X) � ps(X) and ŝ(X) = ps(X) iff ŝ(X) is a
successor. Finally, let us define rs(X) as the smallest uncountable regular cardinal such that X has no discrete subset
of that size. Then we have ŝ(X) � rs(X) � ps(X) and ŝ(X) = rs(X) iff ŝ(X) is regular.

In [10] it was shown that if a space X satisfies Δ(X) > ps(X) then X is maximally (i.e. Δ(X)) resolvable. The aim
of this section is to improve this result by showing that the assumption Δ(X) > ps(X) can be relaxed to Δ(X) � rs(X).
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Before doing that, however, we have to give an auxiliary result that involves the cardinal function h(X), or more
precisely its “hatted” version ĥ(X). We recall that ĥ(X) is the smallest uncountable cardinal such that X has no right
separated subset of that size, or equivalently, the smallest uncountable cardinal κ with the property that any family U
of open sets in X has a subfamily V of size < κ such that

⋃
V = ⋃

U , see e.g. [7, 2.9.b].

Lemma 2.1. If κ is an uncountable regular cardinal and

|X| � κ � ĥ(X)

then X contains a κ-resolvable subspace X∗.

Proof. We can assume without loss of generality that X = 〈κ, τ 〉. Let us denote by NS(κ) the ideal of non-stationary
subsets of κ and set G = {U ∈ τ : U ∈ NS(κ)}. Since ĥ(X) � κ there is G′ ∈ [G]<κ with

⋃
G′ = ⋃

G = G. Then
G ∈ NS(κ) because the ideal NS(κ) is κ-complete.

Let us now consider the set

T = {
x ∈ κ: ∃Cx ⊂ κ club (∀S ⊂ Cx if S ∈ NS(κ) then x /∈ S)

}
.

Claim 2.1.1. T ∈ NS(κ).

Assume, on the contrary, that T is stationary in κ . Fix for each x ∈ T a club Cx as above. Then the diagonal
intersection

C = �{Cx : x ∈ T }
is again club and so C ∩ T is stationary in κ as well. We may then choose a set S ∈ [C ∩ T ]κ that is non-stationary.
But then for each x ∈ S we have

S \ (x + 1) ⊂ C \ (x + 1) ⊂ Cx,

hence by the choice of Cx we have x /∈ S \ (x + 1). Consequently, S is right separated in its natural well-ordering,
contradicting the assumption ĥ(X) � κ , and so our claim has been verified.

Finally, put X∗ = X \ (G ∪ T ) and I = NS(κ) ∩ P(X∗). Then Lemma 1.3 can be applied to the space X∗, with
itself as a dense subspace, the cardinal κ , and the family I . Indeed, for any point x ∈ X∗ and for any non-stationary
set Y ⊂ X∗ there is a club set C ⊂ X∗\Y , and then x /∈ T implies that x ∈ Z for some non-stationary set Z ⊂ C. (We
have, of course, used here that I is κ-complete.) This shows that X∗ is indeed κ-resolvable. �

We are now ready to formulate and prove the promised improvement of Pavlov’s theorem.

Theorem 2.2. Let X be a space and κ be a regular cardinal such that

ŝ(X) � κ � Δ(X),

then X is κ-resolvable. Consequently, if Δ(X) � rs(X) holds for a space X then X is maximally resolvable. In
particular, any space of countable spread and uncountable dispersion character is maximally resolvable.

Proof. In view of Lemma 1.1 it suffices to show that any non-empty open subset G of X includes a κ-resolvable
subspace. To this end, note that, trivially, for each G ∈ τ ∗(X) we have either

(i) ls(H) � κ for all H ∈ τ ∗(G), or
(ii) ls(H) < κ for some H ∈ τ ∗(G).

In case (i) G itself is κ-resolvable by Lemma 1.2. In case (ii) we claim that ĥ(H) � κ holds true and therefore H (and
hence G) contains a κ-resolvable subset by Lemma 2.1. Assume, on the contrary, that R ⊂ H is right-separated and
has cardinality κ . Since H = ⋃{Lα: α < ls(H)}, where the sets Lα are all left-separated, there is an α < ls(H) < κ

such that |R ∩ Lα| = κ because κ is regular. But then the subspace R ∩ Lα is both right and left separated, hence (see
e.g. [7, 2.12]) it contains a discrete subset of size |R ∩ Lα| = κ , contradicting our assumption that ŝ(X) � κ .
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If Δ(X) is regular then this immediately yields that X is maximally resolvable, while if Δ(X) is singular then, as
rs(X) is regular, we have

Δ(X) > rs(X)+ � ps(X),

hence Pavlov’s result [10, 2.9] may be applied to get the second part, of which the third is a special case. (We should
mention here that, formally, the reference to Pavlov’s result applies only to T1 spaces as in [10] all spaces are assumed
to be T1. However, a closer examination shows that the result we referred to is proved there without the use of any
separation axiom. Below we shall present our version of this proof.) �

It is natural to raise the question if Theorem 2.2 could be further improved by replacing rs(X) with ŝ(X) in it. Of
course, this is really a problem only in the case when

Δ(X) = ŝ(X) = λ

is a singular cardinal. Recall now that Hajnal and Juhász proved in [6] (see also [7, 4.2]) that ŝ(X) cannot be singular
strong limit for a Hausdorff space X. Consequently, the above mentioned strengthening is valid for Hausdorff spaces
provided that all singular cardinals are strong limit, in particular if GCH holds.

Corollary 2.3. Assume that for every (infinite) cardinal κ the power 2κ is a finite successor of κ (or equivalently, all
singular cardinals are strong limit). Then every Hausdorff space X satisfying Δ(X) � ŝ(X) is maximally resolvable.

It is also known (see e.g. [7, 4.3]) that ŝ(X) cannot have countable cofinality for a strongly Hausdorff, in particular
for a T3 space X. Hence the first interesting ZFC question that is left open by Theorem 2.2 is the following.

Problem 2.4. Assume that X is a T3 space satisfying

ŝ(X) = Δ(X) = ℵω1 .

Is X then (maximally) resolvable?

It is clear that if in Theorem 2.2 we have Δ(X) = λ > rs(X) then the first part may be applied to any regular
cardinal κ with rs(X) � κ � λ, hence if λ is singular then we obtain that X is (<λ)-resolvable without any reference
to Pavlov’s result. This is of significance because the proof of Pavlov’s theorem in the case when Δ(X) is singular
is rather involved. However, if in addition λ has countable cofinality then no reference to Pavlov’s proof is needed
because of the following result of Bhaskara Rao.

Theorem. (Bhaskara Rao [1]) If cf(λ) = ω and the space X is (<λ)-resolvable then X is also λ-resolvable.

The question if the analogous result can be proved for singular cardinals of uncountable cofinality is one of the
outstanding open problems in the area of resolvability and was already formulated in [8]. We just repeat it here.

Problem 2.5. Assume that λ is a singular cardinal with cf(λ) > ω and the space X is (<λ)-resolvable. Is it true then
that X is also λ-resolvable?

We close this section by giving a partial affirmative answer to Problem 2.5. At the same time we shall also show how
the first part of Theorem 2.2 implies the second in case Δ(X) is singular, thus making our proof of 2.2 self-contained.
To do this, we shall first fix some notation.

Definition 2.6. For any space X we let D(X) denote the family of all dense subsets of X. Next, we set

F(X) =
⋃{

D(U): U ∈ τ ∗(X)
};

we call the members of F(X), i.e. dense subsets of (non-empty) open sets, fat sets in X.
For a subspace Y ⊂ X and a cardinal ν we let

H(Y, ν) = F(X) ∩ [Y ]�ν,
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in other words, H(Y, ν) is the family of all fat (in X!) subsets of Y of size at most ν. It is easy to see that if c(X) � ν

and H(Y, ν) is non-empty then there is a member H(Y, ν) ∈ H(Y, ν) of maximal closure, i.e. such that

H(Y, ν) =
⋃

H(Y, ν).

(If H(Y, ν) is empty then we set H(Y, ν) = ∅.) Clearly, if Y ⊂ Z ⊂ X and c(X) � ν then we have

H(Y, ν) ⊂ H(Z,ν).

Finally, we define the local density d0(X) of the space X by

d0(X) = min
{
d(U): U ∈ τ ∗(X)

}
.

Clearly, we have

d0(X) = min
{|A|: A ∈ F(X)

} = min
{
Δ(D): D ∈ D(X)

}
.

The following result is obvious but very useful.

Lemma 2.7. Let X be a space and λ a singular cardinal such that every D ∈ D(X) is (<λ)-resolvable. Then X is
λ-resolvable.

As an immediate consequence of Lemma 2.7 and of the first part of Theorem 2.2 we obtain that if λ is singular and
s(X) < λ � d0(X) then X is λ-resolvable. (Of course, here s(X) < λ is equivalent with ŝ(X) < λ or with ps(X) < λ.)

The following lemma shows that, under certain simple and natural conditions, if a space X is not μ-resolvable for
some cardinal μ then some open set V ∈ τ ∗(X) satisfies a condition just slightly weaker than μ � d0(V ).

Lemma 2.8. Let X and μ be such that c(X) < μ � Δ(X). Then either X is μ-resolvable or

(∗) there is V ∈ τ ∗(X) such that for each κ < μ there is T ∈ [V ]<μ with d0(V \T ) > κ .

If μ is regular then V ∈ τ ∗(X) and T ∈ [V ]<μ may even be chosen so that d0(V \T ) � μ.

Proof. Let us first consider the case when μ is regular and assume that for all V ∈ τ ∗(X) and T ∈ [V ]<μ we have
d0(V \T ) < μ. We define pairwise disjoint dense sets Dα ∈ D(X) ∩ [X]<μ for α < μ by transfinite recursion as
follows.

Assume that {Dβ : β ∈ α} ⊂ D(X) ∩ [X]<μ have already been defined and set T = ⋃{Dβ : β ∈ α}, then |T | < μ

as μ is regular. Let W be a maximal disjoint collection of open sets W ∈ τ ∗(X) such that d(W\T ) < μ. By our
assumption, then

⋃
W is dense in X and hence so is

⋃{W\T : W ∈ W}. So if for each W ∈W we fix DW ∈ D(W\T )

with |DW | < μ then Dα = ⋃{DW : W ∈ W} is dense in X as well and clearly |Dα| < μ. The family {Dα: α < μ}
witnesses that X is μ-resolvable.

So let us assume now that μ is singular and fix a strictly increasing sequence 〈μα: α < cf(μ)〉 of regular cardinals
converging to μ with c(X) · cf(μ) < μ0.

We then define a cf(μ) × μ type matrix {Aα
ξ : α < cf(μ), ξ < μ} of pairwise disjoint subsets of X, column by

column in cf(μ) steps, as follows:

Xα = X \
⋃{

A
β
ξ : β < α, ξ < μ

}
,

Aα
ξ = H

(
Xα \

⋃{
Aα

ζ : ζ < ξ
}
,μα

)
.

Observe that we have |Aα
ξ | � μα , moreover

Aα
ξ ⊇ Aα

η whenever α < cf(μ) and ξ � η < μ. (†)

Let us put Aξ = ⋃{Aα
ξ : α < cf(μ)} for ξ < μ. The sets Aξ are pairwise disjoint, so if they are all dense in X then

X is μ-resolvable. Thus we can assume that at least one of them is not dense in X, hence there is a non-empty open
set V ⊂ X and an ordinal ξ� < μ such that V ∩ Aξ� = ∅. Then we also have

V ∩ Aη = ∅ for each η � ξ� (‡)
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because of (†).
For κ < μ pick β < cf(μ) with κ � μβ and put

T =
⋃{

Aα
ξ : α � β, ξ < ξ∗}.

Then |T | � μβ · |ξ∗| < μ and it is immediate from our definitions that then we have

d0(V \T ) > μβ � κ. �
Before giving our next result we introduce a refined version of the family of fat sets H(Y, ν) defined above and of

the associated operator H(Y, ν). If a cardinal � < ν is also given, then we let

H(Y,�, ν) = {
A ∈H(Y, ν): Δ(A) � �

}
.

Again, if c(X) � ν and H(Y,�, ν) is non-empty then H(Y,�, ν) has a member H(Y,ρ, ν) of maximal closure. (If
H(Y,�, ν) is empty then we set H(Y,�, ν) = ∅.)

Lemma 2.9. Assume that X is a topological space and μ is a singular cardinal with c(X) < μ � Δ(X), moreover X

satisfies condition (∗) from Lemma 2.8, i.e. for every κ < μ there is a set T ∈ [X]<μ such that d0(X\T ) > κ . Then
we have either (i) or (ii) below.

(i) There is a disjoint family {Dα: α < cf(μ)} ⊂ F(X) ∩ [X]<μ such that Δ(Dα) converges to μ, moreover⋃
{Dγ : γ � α} ∈ D(X)

for all α < cf(μ).
(ii) There are an open set W ∈ τ ∗(X) and a set T ∈ [X]<μ with d0(W\T ) � μ.

Proof. Fix the same strictly increasing sequence 〈μα: α < cf(μ)〉 of regular cardinals converging to μ with c(X) ·
cf(μ) < μ0 as in the above proof. Note that then for each α < cf(μ) we have

μ−
α = sup{μβ : β < α} < μα.

Then by a straightforward transfinite recursion on α < cf(μ) we define disjoint sets Dα ∈ [X]<μ as follows.
If Dβ has been defined for each β < α then set

Dα = H
(
X\ ∪ {Dβ : β < α},μ−

α ,μα

)
.

(Note that Dα may be empty but it is a member of F(X) if it is not.) Next, for each α < cf(μ) we let

Eα =
⋃

{Dγ : γ � α}.
Assume first that Eα ∈ D(X) for all α < cf(μ). In particular, then Dα �= ∅ for cofinally many α < cf(μ), hence

by re-indexing we may actually assume that Dα �= ∅ for all α < cf(μ). Now, Δ(Dα) > μ−
α immediately implies that

Δ(Dα) converges to μ, hence (i) is satisfied.
Next, assume that some Eα is not dense, hence there is a W ∈ τ ∗(X) with W ∩ Eα = ∅. Since X satisfies (∗) there

is a set S ∈ [X]<μ such that d0(X\S) > μα . Let us set

T =
⋃

{Dβ : β < α} ∪ S,

then |T | < μ as well, moreover we claim that d0(W\T ) = κ � μ.
Assume, indirectly, that U ∈ τ ∗(W) and d(U\T ) = κ < μ. Since U\T ⊂ X\S we have κ > μα , hence if δ < cf(μ)

is chosen so that

μ−
δ � κ < μδ

then α < δ. Let A be any dense subset of U\T of size κ , then clearly Δ(A) = κ as well, moreover A ⊂ X\ ∪
{Dβ : β < δ} holds because W ∩ Eα = ∅. But then, by our definition, we have

A ∈H
(
X\ ∪ {Dβ : β < δ},μ−,μδ

)
,
δ
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hence A ⊂ Dδ , contradicting that W ∩ Dδ = ∅. �
We now give one more easy result that, for a limit cardinal λ, may be used to conclude λ-resolvability.

Lemma 2.10. Let X be a space and λ a limit cardinal and assume that {Dα: α < cf(λ)} are disjoint subsets of X such
that ⋃{

Dα: β � α < cf(λ)
} ∈ D(X)

for every β < cf(λ). Assume also that Dα is κα-resolvable for each α < cf(λ) and the sequence 〈κα: α < cf(λ)〉
converges to λ. Then X is λ-resolvable.

Proof. For each α < cf(λ) fix a disjoint family{
Eα

ξ : ξ < κα

} ⊂ D(Dα),

then for any ξ < λ set

Eξ =
⋃{

Eα
ξ : ξ < κα

}
.

Since the κα converge to λ, for any fixed ξ < λ we eventually have ξ < κα and so Eξ is dense in X. Consequently the
disjoint family {Eξ : ξ < λ} witnesses that X is λ-resolvable. �

From the above results and the first part of Theorem 2.2 we may now easily obtain the “missing” second part.
Indeed, assume that λ is singular and s(X) < Δ(X) = λ. Reasoning inductively, we may assume that if s(Y ) <

Δ(Y ) < λ then Y is maximally, that is Δ(Y)-resolvable.
Now, by Lemma 1.1, to prove that X is λ-resolvable it suffices to show that some subspace of X is. Since c(X) �

s(X), from Lemmas 2.8 and 2.9 it follows that, if X itself is not λ-resolvable, then either there are a W ∈ τ ∗(X) and
a T ∈ [W ]<λ such that d0(W\T ) � λ or there is a V ∈ τ ∗(X) with disjoint sets {Dα: α < cf(λ)} ⊂ F(V ) such that
Δ(Dα) converges to λ and⋃{

Dγ : α � γ < cf(λ)
} ∈ D(X)

for all α < cf(λ). But we have seen that in the first case W\T (and hence W ), while in the second V is λ-resolvable.
We are now ready to present our result that, under certain conditions, enables us to deduce λ-resolvability from

(<λ)-resolvability for a singular cardinal λ. We first recall that ĉ(X) is defined as the smallest (uncountable) cardinal
such that X has no disjoint family of open sets of that size. As was shown in [4] (see also [7, 4.1]), ĉ(X) is always a
regular cardinal. We also note that if λ is a limit cardinal then every (<λ)-resolvable space S has dispersion character
Δ(S) � λ.

Theorem 2.11. Assume that X is a topological space, λ is a singular cardinal, and ĉ(X) � cf(λ) < λ � Δ(X). If
every dense subspace S ⊂ X satisfying Δ(S) � λ is (<λ)-resolvable then X is actually λ-resolvable.

Proof. Let us start by pointing out that if A is fat in X then S = A ∪ (X\A) ∈ D(X), moreover Δ(A) � λ implies
Δ(S) � λ. So, every fat set A ∈ F(X) that satisfies Δ(A) � λ is (<λ)-resolvable. It immediately follows from this
that the conditions on our space X are inherited by all non-empty open subspaces, hence by Lemma 1.1 it is again
sufficient to prove that X has some λ-resolvable subspace.

Now, if some A ∈ F(X) satisfies d0(A) � λ then Δ(B) � λ holds for every B ∈ D(A), hence all dense subsets of
A are (<λ)-resolvable. But then, by Lemma 2.7, A is λ-resolvable.

Therefore, from here on we may assume that d0(A) < λ for all A ∈ F(X). Actually, we claim that then even
d(A) < λ holds whenever A ∈ F(X). Indeed, if A ∈ D(U) for some U ∈ τ ∗(X) then let W be a maximal disjoint
family of open sets W ⊂ U such that d(A ∩ W) < λ. Then ĉ(X) � cf(λ) = κ implies |W| < κ , moreover

⋃
W is

clearly dense in U by our assumption. But then
⋃

W ∩ A is dense in A and so

d(A) � d
(⋃

W ∩ A
)

=
∑{

d(W ∩ A): W ∈ W
}

< λ.
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(We note that this is the only part of the proof where ĉ(X) � cf(λ) is used rather than the weaker assumption
c(X) < λ.)

By Lemma 2.8, if X itself is not λ-resolvable then there is a V ∈ τ ∗(X) that satisfies condition (∗). We shall show
that then V is λ-resolvable.

To see this, first fix a strictly increasing sequence 〈λα: α < κ〉 of cardinals converging to λ and then, using (∗), fix
for each α < κ a set Tα ∈ [V ]<λ with d0(V \Tα) > λα . Having done this, we define disjoint sets Dα ∈ D(V ) ∩ [V ]<λ

by transfinite induction on α < κ as follows.
Assume that α < κ and Dβ ∈D(V ) ∩ [V ]<λ has been defined for each β < α. Set

Zα = X \
(⋃

{Dβ : β < α} ∪ Tα

)
,

then Zα is dense in V because Δ(X) � λ. But then d(Zα) < λ, hence we may pick Dα ∈ D(Zα) ⊂ D(V ) with
|Dα| < λ. Note that as Dα ⊂ V \ Tα we also have Δ(Dα) > λα .

Now consider any partition {Jξ : ξ < κ} of κ into κ many sets of size κ and for each ξ < κ put

Eξ =
⋃

{Dα: α ∈ Jξ }.
Then each Eξ is dense in V and clearly Δ(Eξ ) = λ, hence it is (<λ)-resolvable. But the Eξ ’s are pairwise disjoint,
hence obviously V is λ-resolvable. �

We do not know if the assumption ĉ(X) � cf(λ) can be relaxed to c(X) < λ in Theorem 2.11, or even if it can be
dropped altogether.

3. A simpler proof of Pavlov’s theorem concerning extent

The extent e(X) of a space X is defined as the supremum of sizes of all closed discrete subspaces of X. (This is
Archangelskiı̆’s notation, in [10] ext(X) and in [7] p(X) is used to denote the same cardinal function.) Similarly as in
the previous section for the spread s(X), we may define ê(X) as the smallest infinite (but not necessarily uncountable)
cardinal such that X has no closed discrete subset of that size. Note that a space X is countably compact iff ê(X) = ω.
Clearly, one has ê(X) � pe(X) (the latter was defined in the abstract).

In [10] it was proved that Δ(X) > pe(X) implies the ω-resolvability of X for any T3 space X. In this section we
shall present our proof of the slightly stronger result in which only Δ(X) > ê(X) is used. We believe that this proof is
significantly simpler than the one given in [10], although it follows the same steps.

We start with giving our simplified proof of the following result of Pavlov concerning spaces that are finite unions
of left separated subspaces.

Theorem 3.1. (Pavlov [10, Lemma 3.1]) Assume that ls(X) < ω and κ � |X| is an uncountable regular cardinal.
Then there is a strictly increasing and continuous sequence 〈Fα: α < κ〉 of closed subsets of X with |Fα| < κ for all
α < κ .

Proof. We prove the theorem by induction on ls(X). So assume that it is true for ls(X) = k and consider X =⋃
0�i�k Li where the Li are disjoint and left separated, moreover ω < κ � |X|. We may clearly assume that the left

separating order type of each Li is � κ .
Assume that S is an initial segment of some Li with tp(S) < κ and |S| � κ (closures are always taken in X).

Since S ∩ Li = S we may apply the inductive hypothesis to S\S and find an increasing and continuous κ-sequence
〈Fα: α < κ〉 of its closed subsets of size < κ . But then the traces Fα ∩ S will stabilize and |Fα| � |Fα| + |S| < κ ,
hence a suitable final segment of 〈Fα: α < κ〉 is as required. Almost the same argument shows that the inductive step
can also be completed if |Li | < κ for some i. So we may assume that tpLi = κ for each i and that |A| < κ whenever
A ∈ [X]<κ .

Let yα denote the αth member of L0 and use the inductive assumption to find an increasing and continuous
κ-sequence 〈Fα: α < κ〉 of closed subsets of

⋃
1�i�k Li of size < κ , and then consider the set

I = {α < κ: yα ∈ Fα}.
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Assume first that |I | < κ and hence σ = sup I < κ . We claim that then the set

J =
{
β > σ : Fβ �=

⋃
γ<β

Fγ

}

is non-stationary in κ . Indeed, for each β ∈ J there must be some g(β) < κ with yg(β) ∈ Fβ \ ⋃
γ<β Fγ . Since

g(β) � β > σ would imply g(β) /∈ I and hence

yg(β) /∈ Fg(β) ⊃ Fβ,

we must have g(β) < β . But the regressive function g is clearly one-to-one on J , hence by Fodor’s (or Neumer’s)
pressing down theorem J is non-stationary. So there is a club set C in κ with C ∩ J = ∅, and then the sequence
〈Fα: α ∈ C\σ 〉 clearly satisfies our requirements.

So we may assume that |I | = κ . For each α < κ let us put Hα = {yγ : γ ∈ I ∩ α}. Note that we have Hα ⊂ Fα by
the definition of I . Next, consider the set

J =
{
α < κ: α is limit and Hα �=

⋃
γ<α

Hγ

}
.

We claim that this set J is again non-stationary. Indeed, for every α ∈ J we may pick a “witness” zα ∈ Hα \⋃
γ<α Hγ .

Now, if zα ∈ L0 then zα = yg(α) for some g(α) < α because L0 is left separated. If, on the other hand, zα /∈ L0 then
zα ∈ Hα ⊂ Fα implies zα ∈ Fα because Fα is closed in X\L0. But the sequence 〈Fα: α ∈ κ〉 is continuous, hence in
this case we can choose an ordinal g(α) < α such that zα ∈ Fg(α).

In other words, this means that if g(α) = β then zα ∈ {yβ} ∪ Fβ . Now, the sequence 〈zα: α ∈ J 〉 is obviously
one-to-one, hence for each β < κ we have |g−1{β}| � |Fβ |+ 1 < κ , consequently, again by Fodor, J is not stationary.
So there is a club C ⊂ κ \ J and then 〈Hα: α ∈ C〉 is increasing and continuous, however maybe it is not strictly
increasing. But |I | = κ clearly implies that the union of the Hα’s is of size κ and so an appropriate subsequence of
〈Hα: α ∈ C〉 will be both continuous and strictly increasing. �

Before proceeding further, we need a simple definition.

Definition 3.2. Let X be a space and μ an infinite cardinal number. We say that x ∈ X is a Tμ point of X if for every
set A ∈ [X]<μ there is some B ∈ [X\A]<μ such that x ∈ B . We shall use Tμ(X) to denote the set of all Tμ points
of X.

For the reader familiar with Pavlov’s paper [10] we note that his trν+,ν(X) is identical with our Tν+(X). Note also
that if Y ⊂ X then trivially any Tμ point in Y is a Tμ point in X, that is, we have Tμ(Y ) ⊂ Tμ(X). Finally, if μ is
regular then the set Tμ(X) is clearly (<μ)-closed in X, i.e. for every set A ∈ [Tμ(X)]<μ we have A ⊂ Tμ(X).

Lemma 3.3. Assume that the space X may be written as the union of a strictly increasing continuous chain
〈Fα: α < κ〉 of closed subsets of X with |Fα| < κ for all α < κ , where κ is an uncountable regular cardinal. Then
Tκ(X) = ∅ implies that there exists a set D ⊂ X with |D| = κ such that every subset Y ∈ [D]<κ is closed discrete in
X. In particular, we have ê(X) � κ .

Proof. The assumption Tκ(X) = ∅ implies that for every point x ∈ X we may fix a set Ax ∈ [X]<κ such that x /∈ B

whenever B ∈ [X\Ax]<κ . By the regularity of κ , the set

C = {
α < κ: ∀x ∈ Fα (Ax ⊂ Fα)

}
is club in κ . For each α ∈ C let us pick a point xα ∈ Fα+1\Fα and then set D = {xα: α ∈ C}.

To see that this D is as required, it remains to show that all “small” subsets of D are closed discrete. This in turn
will follow if we show that all proper initial segments of D are. So let γ < κ and consider the set S = {xα: α ∈ C ∩γ }.
For every point y ∈ X there is a β < κ such that y ∈ Fβ+1\Fβ . Let δ be the largest element of C with δ � β and ε the
smallest element of C above β , hence we have δ � β < ε.
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Then, on one hand, {xα: α < δ} ⊂ Fδ ⊂ Fβ , while on the other hand, Ay ⊂ Fε and {xα: ε � α < γ } ⊂ X\Fε , which
together imply that y has a neighbourhood U such that U ∩ S ⊂ {xδ}. �

We need one more result making use of the operator Tμ.

Lemma 3.4. If a space X satisfies Tμ(X) = X for a regular cardinal μ then X is μ-resolvable.

Proof. Clearly, Tμ(X) = X implies Tμ(U) = U for all open subsets U ⊂ X, hence by Lemma 1.1 it suffices to show
that X includes a μ-resolvable subspace Y .

Since every point of X is a Tμ point, for any set A ∈ [X]<μ we may fix a disjoint family B(A) ⊂ [X\A]<μ with
|B(A)| = |A| < μ such that

A ⊂
⋃{

B: B ∈ B(A)
}
.

We now define sets Aα in [X]<μ by induction on α < μ as follows. Let x ∈ X be any point and start with A0 = {x}.
Assume next that 0 < α < μ and the sets Aβ ∈ [X]<μ have been defined for all β < α. Then we set

Bα =
⋃

B
(⋃

{Aβ : β < α}
)

and Aα =
⋃

{Aβ : β < α} ∪ Bα.

After the induction is completed we let

Y =
⋃

{Aα: α < μ}.
It is clear from the construction that the Bα’s are pairwise disjoint, moreover for every set s ∈ [μ]μ the union⋃

α∈s Bα is dense in Y . But then Y is obviously μ-resolvable. �
We are now ready to state and prove our promised result.

Theorem 3.5. Assume that the regular closed subsets of the space X form a π -network in X and Tμ(X) is dense in X

for some regular cardinal μ > ê(X). Then X is ω-resolvable. In particular, any T3 space X satisfying Δ(X) > ê(X)

is ω-resolvable.

Proof. Assume, indirectly, that X is ω-irresolvable. By Lemmas 1.1 and 1.2 then there is a regular closed subset K

of X that is both hereditarily ω-irresolvable and satisfies ls(K) < ω.
Let us now define the sequence of sets {Kn: n < ω} by the following recursion: K0 = K and Kn+1 = Tμ(Kn).

Since Tμ(Y ) is (<μ)-closed in Y for any space Y , we may conclude by a simple induction that Ki is (<μ)-closed in
K and hence ê(Ki) � ê(K) < μ for all i < ω.

We next claim that, for each n < ω, Kn+1 = Tμ(Kn) is dense in Kn and hence in K . For n = 0 this follows
immediately from our assumption that Tμ(X) ∈ D(X).

Clearly, any neighborhood of a Tμ point in any space must have size at least μ. Hence if our claim holds up to (and
including) n then we also have Δ(Kn) � μ and since Kn ∈ D(K) the regular closed subsets of Kn form a π -network
in Kn. (The latter holds because the regular closed subsets of a dense subspace are exactly the traces of the regular
closed sets in the original space.)

Now, let U be any non-empty open subset of Kn. We show first that then |U ∩ Kn+1| � μ, hence Δ(Kn+1) � μ.
(In other words, Kn+1 is not only dense but even μ-dense in Kn.) To see this, let ∅ �= F ⊂ U be regular closed in Kn,
then |F | � μ and ls(F ) < ω imply, in view of Theorem 3.1, the existence of a strictly increasing continuous sequence
〈Fα: α < μ〉 of closed subsets of F (and hence of X) with |Fα| < μ. Then we may apply Lemma 3.3 to any final
segment of the sequence 〈Fα: α < μ〉 to conclude that Fα ∩ Tμ(Kn) = Fα ∩ Kn+1 �= ∅ for cofinally many α < μ,
hence |U ∩ Kn+1| � |F ∩ Kn+1| � μ.

But Δ(Kn+1) � μ implies that for any non-empty regular closed set H in Kn+1 we have |H | � μ, and so, using
again ls(H) < ω and ê(Kn) < μ, we obtain from Theorem 3.1 and Lemma 3.3 that Tμ(H) is non-empty, i.e. Kn+2 is
indeed dense in Kn+1.

Now suppose that there is an n < ω such that Kn\Kn+1 is not dense in Kn. This would imply that for some
U ∈ τ ∗(Kn) we have U ⊂ Kn+1 and hence Tμ(U) = U . But that would imply by Lemma 3.4 that U is μ-resolvable,
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a contradiction. Therefore, we must have that Kn\Kn+1 is dense in Kn and hence in K for all n < ω. But then K

would be ω-resolvable, which is again absurd. This contradiction then completes the proof of the first part of our
theorem.

To see the second part note that, by Lemma 1.2 and by considering regular closed subsets of X, it suffices to prove
the ω-resolvability of X under the additional condition ls(X) < ω. But then Tμ(X) ∈D(X) follows immediately from
Theorem 3.1 and Lemma 3.3 with the choice μ = ê(X)+. �

Since for any crowded (i.e. dense-in-itself) countably compact T3 space X one has Δ(X) � c � ω1, Theorem 3.5
immediately implies the following result of Comfort and Garcia-Ferreira.

Theorem. (Comfort and Garcia-Ferreira [2, Theorem 6.9]) Every crowded and countably compact T3 space is ω-
resolvable.

Note that the assumption of regularity in this theorem is essential because of the following two results.

Theorem. (Malykhin [9, Example 14]) There is a countably compact, irresolvable T2 space.

Theorem. (Pavlov [10, Example 3.9]) There is a countably compact, irresolvable Uryshon space.

Pytkeev has recently announced in [12] that a crowded and countably compact T3 space is even ω1-resolvable. We
have not seen his paper but would like to point out that this stronger result is an immediate consequence of an old (and
deep) result of Tkačenko and of Lemma 1.2.

Tkačenko proved in [13] that if X is a countably compact T3 space with ls(X) � ω then X is compact and scattered.
In [5] it was shown that this statement remains valid if T3 is weakened to T2, hence we get the following result.

Theorem 3.6. If X is a crowded and countably compact T2 space in which the regular closed subsets form a π -network
then X is ω1-resolvable.

Proof. By the above result from [5], every non-empty regular closed subset F ⊂ X must satisfy ls(F ) � ω1. But then
X is ω1-resolvable by Lemma 1.1. �

Any crowded and countably compact T3 space has dispersion character �c. Hence the following interesting, and
apparently difficult, problem is left open by Theorem 3.6.

Problem 3.7. Is a crowded and countably compact T3 space c-resolvable or even maximally resolvable?
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