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Abstract The translation initiation factors eIF4E and eIF
(iso)4E play a key role during virus infection in plants. During
mRNA translation, eIF4E provides the cap-binding function
and is associated with the protein eIF4G to form the eIF4F
complex. Susceptibility analyses of Arabidopsis mutants
knocked-out for At-eIF4G genes showed that eIF4G factors are
indispensable for potyvirus infection. The colonization pattern
by a viral recombinant carrying GFP indicated that eIF4G is in-
volved at a very early infection step. Like eIF4E, eIF4G isoforms
are selectively recruited for infection. Moreover, the eIF4G selec-
tive involvement parallels eIF4E recruitment. This is the first
report of a coordinated and selective recruitment of eIF4E and
eIF4G factors, suggesting the whole eIF4F recruitment.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Recessive resistance; eIF4E; eIF4G; Plant potyvirus
1. Introduction

As obligatory parasites and because their genome encodes

only a limited number of proteins, viruses have to reroute

the host cellular machinery to their own advantage. Therefore,

the success of the viral infection cycle depends on complex

interplays between functions encoded by the viral and host

genomes [1].

Eukaryotic translation initiation factors (eIF4E and eIF

(iso)4E) are key determinants of the interactions between

plants and several RNA viruses [2,3]. Viruses requiring these

factors mainly belong to the genus Potyvirus, the largest and

the most diverse genus of plant viruses [4,5]. Their positive sin-

gle-stranded RNA genome of about 10 kb is 3 0-polyadenylated

and covalently linked at the 5 0 end to a virus-encoded protein
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(VPg) [6]. The potyvirus RNA encodes a polyprotein which is

processed into ca. 10 mature proteins by viral proteinases [7].

In eukaryotes, eIF4E belongs to the eIF4F complex which

recruits ribosomes and the cellular mRNAs to initiate protein

synthesis. eIF4F includes eIF4E, which binds the cap structure

at the 5 0 end of mRNAs, eIF4A, a DEAD-box RNA helicase

that unwinds the mRNA 5 0UTR to facilitate the ribosome

binding, and eIF4G, a scaffold protein which interacts with

many other translation machinery components [8]. In plants,

there is a second eIF4F complex, eIF(iso)4F, containing the

isoforms eIF(iso)4E and eIF(iso)4G [9].

Potyviruses recruit selectively eIF4E isoforms. Indeed, the

disruption of At-eIF(iso)4E gene in Arabidopsis results in

resistance to Turnip mosaic virus (TuMV), Lettuce mosaic virus

(LMV) and Plum pox virus (PPV) while the disruption of

eIF4E gene results in resistance to Clover yellow vein virus

(ClYVV) [10–12].

In addition to its central role in cellular translation, eIF4G is

involved in the cap-independent translation process of viruses,

including picornaviruses (animal RNA viruses with a 5 0 VPg

and a 3 0 polyA, like potyviruses) and the potyvirus Tobacco

etch virus (TEV), which is mediated only by the association

between a viral IRES element, eIF4G and ribosomes [13,14].

Therefore, eIF4G was chosen as a candidate which could be

involved in plant–potyvirus interactions. In the genome of

A. thaliana, three genes encode members of eIF4G family:

At-eIF4G, At-eIF(iso)4G1 and At-eIF(iso)4G2. To address

the involvement of eIF4G factors in potyvirus infection, the

susceptibility of A. thaliana plants disrupted in eIF4G genes

to several potyviruses (ClYVV, LMV, PPV and TuMV) was

evaluated.
2. Materials and methods

2.1. Plant material
A. thaliana Columbia-0 plants were grown in a greenhouse or in

growth chambers at 25 �C with a 16-h light period. Susceptibility
assays were performed on T-DNA insertion lines ordered from
the SALK collection: eIF4G (At3g60240) mutant = SALK112882,
blished by Elsevier B.V. All rights reserved.
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eIF(iso)4G1 (At5g57870) mutant = SALK009905 and eIF(iso)4G2
(At2g24050) mutant = SALK076633. The T-DNA insertion and the
homozygous state of the mutant lines were tested by PCR of genomic
DNA using primers defined on the SALK web site (http://sig-
nal.salk.edu/tdnaprimers.2.html). Homozygous mutants were back-
crossed once to wild-type plants and the F2 progeny screened again
for the homozygous state. Double mutants were obtained by crossing
the relevant single mutants and selfing the F1 hybrid to obtain F2
progenies that were screened by PCR for the double homozygous state.
The phenotypic analysis of these mutants which do not have obvious
phenotype in growth or flowering will be described elsewhere, with
data on absence of mRNA and protein expression (L. Allen, A. Lellis
and K. Browning, unpublished data).

2.2. Virus inoculation and detection
The isolates PPV-NAT [15], PPV-PS [16] and PPV-R3-GFP [17]

were used in this work. A recombinant LMV, LMV-ExbaAF [18],
was selected for its capacity to systemically infect Columbia-0. The
ClYVV isolate PV-0367 was obtained from the DSMZ Plant Virus
Collection (Germany). The TuMV isolates used were CDN1 and
UK1 [19,20]. Except for PPV-R3-GFP, viruses were inoculated
mechanically [10]. Virus accumulation in inoculated and apical non-
inoculated leaves (above the rosette leaves) was analyzed by ELISA
and/or RT-PCR. Five microliters of total RNAs [21] were used for
RT-PCR using Abgene-reverse transcriptase and the DyNA-
zymeEXT� DNA polymerase (Finnzyme), in the presence of virus-spe-
cific primers (Table 1). PPV-R3-GFP was inoculated as described
previously by infiltration with Agrobacterium tumefaciens C58C1 cells
carrying the infectious clone pBINPPV-NK-GFP construct [17,22].
GFP fluorescence was monitored using a fluorescence stereomicro-
scope (MZ FLIII, Leica Microsystems) equipped with a filter with
an excitation window at 470 ± 20 nm and an arrest window at
525 ± 25 nm.
Table 1
Oligonucleotides used in this work

Name Sequence (50 fi 30)

PPV-F CAGACTACAGCCTCGCCAGA

PPV-R ACCGAGACCACTACACACTCCC

LMV-F ACAATCTCAAACTTCTCCAT

LMV-R GCAGCTCCAAAATAGTGTTCCA

ClYVV-F GAGTGGACAATGATGGATGG

ClYVV-R AATTTAWWGACGGATACTCTA

TuMV-F TATGGATGGTTGTTCAACAC

TuMV-R TTGTGAGATGACAAATGTTG

Fig. 1. Infection of the wild-type and eIF4G Arabidopsis mutants with th
molecular weight marker; ‘‘�’’, negative control. The expected position of t
genotype.
2.3. Functional complementation
The At-eIF(iso)4G1 cDNA was inserted in the binary vector

pFP108 [23] to yield pFP108-iso4G1 and introduced in A. tumefaciens
C58C1. Cultures carrying the PPV-R3-GFP infectious clone and the
pBin61-35S:P19 plasmid [24] were mixed (v/v/v) with or without the
culture carrying pFP108-iso4G1 in order to perform complementation
experiments as described [22].
3. Results

3.1. eIF(iso)4G1 is necessary for PPV infection

The involvement of eIF4G in the PPV–Arabidopsis interac-

tion was evaluated by analyzing the susceptibility of A. thali-

ana T-DNA insertion mutants disrupted in each of the three

eIF4G genes. Knock-out (KO) mutant lines were inoculated

with PPV-PS in four independent experiments. The presence

of PPV was evaluated by RT-PCR in non-inoculated tissues

at 21 days post-inoculation (dpi). In all experiments, PPV-PS

was detected in the At-eIF4G and At-eIF(iso)4G2 KO mutants

as well as in wild-type plants (WT), but never in the At-eIF

(iso)4G1 mutant (Fig. 1). The same behavior was observed

with two other PPV isolates, PPV-NAT and PPV-R3-GFP

(Fig. 1).

To determine at which level the block in the PPV infection

occurred in the At-eIF(iso)4G1 mutant, virus accumulation

was monitored using a recombinant PPV isolate expressing

GFP, PPV-R3-GFP. In the At-eIF4G and At-eIF(iso)4G2 mu-

tants as well as in WT, infection foci on inoculated leaves
Fragment amplified

a 243-bp fragment of PPV CP sequence

a 483-bp fragment of LMV CI-6K2 sequence

a 429-bp fragment of PPV CI sequence

a 686-bp fragment of TuMV VPg sequence

ree PPV isolates. Virus accumulation was assayed by RT-PCR. M,
he RT-PCR fragment is arrowed. Three plants were assayed for each
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Fig. 2. PPV-R3-GFP infection pattern in eIF4G mutants. GFP
fluorescence was visualized in wild-type (A, B), At-eIF4G (C, D), At-
eIF(iso)4G1 (E, F) and At-eIF(iso)4G2 (G, H) mutants in inoculated
(A, C, E and G) and non-inoculated tissues (B, D, F and H).

Fig. 3. At-eIF(iso)4G1 mutant complementation. (A) GFP fluores-
cence in wild-type and At-eIF(iso)4G1 plants agroinfiltrated with
PPV-R3-GFP. Complemented plants correspond to the At-eIF
(iso)4G1 mutant agroinfiltrated with the mix [PPV-R3-GFP + eIF
(iso)4G1]. (B) The presence of PPV was assayed by RT-PCR. M,
molecular weight marker; ‘‘�’’, negative control. Three plants were
assayed for each genotype.
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could be visualized by fluorescence microscopy, starting at

5 dpi. At 14 dpi, GFP fluorescence was observed in non-inoc-

ulated leaves, in stems (Fig. 2), flowers and roots (not shown).
In contrast, no GFP fluorescence was detected in inoculated or

non-inoculated tissues, up to 2 months after inoculation in the

At-eIF(iso)4G1 mutant (Fig. 2).

In order to demonstrate that eIF(iso)4G1 functions as a sus-

ceptibility factor for PPV infection, complementation experi-

ments were performed in the At-eIF(iso)4G1 mutant.

Agrobacterium-mediated transient expression of eIF(iso)4G1

was performed in PPV-inoculated leaves in the presence of

the silencing suppressor P19 [24]. At 8 dpi, PPV-R3-GFP fluo-

rescence was detected in agroinfiltrated leaves of both WT and

complemented-At-eIF(iso)4G1 plants (Fig. 3A). In contrast,

no GFP fluorescence was observed in the non-complemented

At-eIF(iso)4G1 mutant. These results were confirmed by

RT-PCR (Fig. 3B).

Therefore, eIF(iso)4G1 is specifically required for the PPV

cycle in A. thaliana. Since PPV-R3-GFP fluorescence was

never observed in eIF(iso)4G1 mutants, even at the single cell

level, it is likely that eIF(iso)4G1 plays a role in the early

events of the infection process.

3.2. eIF4G isoforms are not equivalent for potyvirus infection

To accomplish their infectious cycle, different potyviruses re-

cruit selectively eIF4E or eIF(iso)4E isoforms [11]. In order to

test if a selective involvement also occurs for eIF4G family

members, the susceptibility of eIF4G mutants to three other

potyviruses was assayed (ClYVV, LMV and TuMV). Virus

accumulation was analyzed by RT-PCR in non-inoculated tis-

sues at 21 dpi. As for PPV, LMV did not accumulate in the At-

eIF(iso)4G1 mutant. In contrast, ClYVV accumulated in the

At-eIF(iso)4G1 mutant but not in the At-eIF4G mutant. All

three mutants were susceptible to TuMV (Fig. 4). Comparable

results were obtained with the virus inoculated leaves (not

shown).

3.3. TuMV infection requires both eIF(iso)4G1 and

eIF(iso)4G2

The observation that TuMV is able to multiply in the three

eIF4G mutants could indicate that either eIF4G factors are not

needed for TuMV infection, or that TuMV is able to recruit

several isoforms of this factor, complementing the absence of

one of them by the recruitment of another one. In order to test



Fig. 4. Infectivity of LMV, ClYVV and TuMV in wild-type and eIF4G mutants. Virus accumulation was assayed by RT-PCR. M, molecular weight
marker; ‘‘�’’, negative control. The expected position of the RT-PCR fragments are arrowed. Three plants were assayed for each genotype.
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this, the susceptibility of double mutants to TuMV was ana-

lyzed. Despite repeated efforts, the At-eIF4G · At-eIF(iso)4G2

double mutant could not be obtained (L. Allen and K. Brown-

ing, unpublished data), indicating that the simultaneous inac-

tivation of these two isoforms is probably lethal in A.

thaliana. The At-eIF4G · At-eIF(iso)4G1 double mutant was

susceptible to TuMV-CDN1 (not shown). In contrast, all 40

plants of the At-eIF(iso)4G1 · At-eIF(iso)4G2 double mutant

were ELISA negative at 10 and 20 dpi. These results were con-

firmed by RT-PCR at 5, 7, 10 and 20 dpi, showing that TuMV

does not accumulate in this double mutant (Fig. 5A). Similar

resistance was observed with the TuMV-UK1 isolate (not

shown). In order to confirm the role of eIF(iso)4G1 and eIF

(iso)4G2 in TuMV infection, the genetic linkage between the
Fig. 5. TuMV infectivity in At-eIF(iso)4G1 and At-eIF(iso)4G2 single
and double mutants. (A) Detection of TuMV by RT-PCR. M,
molecular weight marker; ‘‘�’’, negative control. (B, C) Genotyping
for eIF(iso)G1 (B) and eIF(iso)G2 (C) of F2 plants resistant to TuMV
compared to WT and single mutants.
resistance phenotype and the simultaneous disruption of the

genes eIF(iso)4G1 and eIF(iso)4G2 was studied. Among the

160 F2 plants of an At-eIF(iso)4G1 KO · At-eIF(iso)4G2

KO cross, eight plants did not accumulate TuMV and were

ELISA negative at 20 dpi. This ratio of 152 susceptible to eight

resistant fits with the segregation of two recessive factors in-

volved in TuMV resistance (v2 [1R:15S] = 0.426; P = 51.4%).

All F2 plants were genotyped for eIF(iso)4G1 and eIF(iso)

4G2 and only the 8 F2 plants resistant to TuMV were found

to be double homozygous mutants (Fig. 5B and C).

These results indicate that the simultaneous disruption of the

eIF(iso)4G1 and eIF(iso)4G2 genes lead to lack of susceptibil-

ity to two TuMV isolates, indicating that either of these factors

can be recruited during TuMV infection in A. thaliana and that

the disruption in either one of these genes can be comple-

mented by the other one.
4. Discussion

Although mechanisms of plant infection remain poorly

understood, recent studies have demonstrated the key role of

eIF4E factors during potyvirus infection [1,2,12]. Moreover,

a physical interaction between eIF4E and the VPg of potyvi-

ruses has been demonstrated in several plant–potyvirus sys-

tems [25–29].

The present work demonstrates a crucial role of the eIF4G

factors during A. thaliana infection by potyviruses since the

At-eIF4G mutant is resistant to ClYVV, the At-eIF(iso)4G1

mutant is resistant to PPV and LMV and the At-eIF(iso)4-

G1 · At-eIF(iso)4G2 double mutant is resistant to TuMV.

The resistance of the At-eIF(iso)4G1 mutant to PPV-R3-

GFP is effective at the single cell level in inoculated leaves, sug-

gesting that the eIF4G proteins are required at a very early

step of the infection process. Recently, the analyses of the rice

rymv1 and Arabidopsis cum2 resistance genes, conferring the

resistance to Rice yellow mottle sobemovirus and Cucumber mo-

saic cucumovirus, were shown to encode eIF4G factors [30,31],

suggesting that eIF4G contributes to a general mechanism of

plant susceptibility to viruses.

How eIF4G factors are involved in potyvirus infection is not

understood currently. As eIF4E and eIF4G are both needed

for host–virus compatibility, the obvious hypothesis is that



Table 2
Involvement of eIF4E and eIF4G family members in the cycle of potyviruses

WT At-eIF4E1 At-eIF(iso)4E At-eIF4G At-eIF(iso)4G1 At-eIF(iso)4G2 At-eIF(iso)4G1 · At-eIF(iso)4G2

PPV + +a �c + � + �
LMV + +a �d + � + nt
ClYVV + �b +b � + + nt
TuMV + +b �d + + + �
Susceptibility of eIF4E and eIF4G mutants to several potyviruses: PPV, LMV, ClYVV and TuMV. +, virus accumulation; �, no virus detected; nt,
not tested.
a(Nicaise V., unpublished data).
bRef. [11].
cRef. [12].
dRef. [10].
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potyviruses recruit the whole eIF4F complex for their cycle.

However, in two different families of RNA viruses with a 5 0

VPg including potyviruses, cap-independent translation medi-

ated only by the association between an IRES element, eIF4G

and ribosomes was described [13,14], suggesting that the role

of eIF4G in infection could be eIF4E-independent.

The existence of two eIF4F complexes to initiate protein syn-

thesis is a peculiarity of plants. Although the eIF4F and eIF

(iso)4F complexes are considered equivalent for in vitro transla-

tion of some mRNAs, they may differ functionally in cellular

translation. Indeed, they differ in their expression pattern

in vivo and show some specificity for different capped mRNAs

[32]. Here, we demonstrate that potyviruses selectively use

members of eIF4G family in a fashion that parallels their selec-

tive recruitment of eIF4E isoforms [11]: ClYVV recruits eIF4E

and eIF4G while PPV, LMV and TuMV recruit eIF(iso)4E and

one or several eIF(iso)4G factors (Table 2). Therefore, it seems

that the potyvirus cycle requires the same eIF4E–eIF4G com-

plexes, which are functional for cellular translation. This is

the first report bringing to light a collaborative recruitment of

both eIF4E and eIF4G factors during the potyvirus infection.

Thus, this is in favor of a possible role of both eIF4E and

eIF4G through the eIF4F complex recruitment.

To date however, the function of eIF4E and eIF4G during

the infection process remains to be elucidated. Roles in the

early events of infection are the main candidate hypotheses:

viral RNA translation and/or replication, circularization of

viral RNA, host protein sequestration, or virus movement

from infected to uninfected cells.
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