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Abstract

This paper presents a higher order gradient multi-slip formulation to model the effect of inhomogeneous deformation in
granular materials. The effects of heterogeneity and porosity anisotropy within the multi-slip formulation are taken into
consideration through the modification of the mobilized friction. The mobilized friction is assumed to be a direct function
of either the gradient of the porosity distribution or the fabric tensor. The formulation with two active slip planes was
implemented into a finite element code and used to simulate biaxial shear tests on dry sand. The analysis quantifies most
of the shear band characteristics observed by past experimentation. It is shown that the localization and shear band char-
acteristics in granular materials are very much dependent on the initial fabric and slip system arrangement.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanical behavior of granular materials is strongly influenced by its microstructure. Porosity is often
used to characterize the state of packing in these materials. This scalar measure, however, has been found to be
insufficient to characterize their directional behavior and higher order microstructure variables known as ‘‘fab-
ric tensors’’ have been used to describe the distribution and orientation of grains and voids (Oda et al., 1985;
Mehrabadi et al., 1982; Tobita, 1989; Pietruszczak and Krucinski, 1989a; Bathurst and Rothenburg, 1990;
Muhunthan et al., 1996). Models incorporating these fabric measures are also extant in the literature (Chang
and Hicher, 2005; Kachanov and Sevostianov, 2005).

Experiments on various assemblies of discrete particles have shown the overall deformation of a granular
mass to consist of simple dilatant shearing deformations on a number of active shearing planes (Oda et al.,
1982, 1985; Nemat-Nasser, 2000; Nemat-Nasser and Zhang, 2002). ‘‘Double-shearing’’ plane strain type
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constitutive models have been used in the past by many researchers to describe the mechanics of granular
materials (Spencer, 1964, 2003; Rudnicki and Rice, 1975; Mehrabadi and Cowin, 1978; Anand, 1983; Zbib,
1991, 1993; Nemat-Nasser and Zhang, 2002). Granular dilatancy has also been incorporated into the dou-
ble-slip model (Anand and Gu, 2000).

The shear band phenomenon in granular materials has been studied extensively (Roscoe, 1970; Zbib and
Aifantis, 1989; de Borst and Muhlhaus, 1992; Vardoulakis, 1996; Oda et al., 1998; Oka et al., 2002; Gajo
et al., 2004; Al Hattamleh et al., 2004; Liu et al., 2005). Some of these studies have introduced different higher
gradient measures to incorporate microstructure length scale into the classical formulations to model strain
localization and shear bands. The performance of higher-order plasticity theories for predicting size effects
and localization has been discussed by Engelen et al. (2006).

This paper presents a second order gradient multi-slip plasticity formulation to study strain localization in
granular materials. The effects of heterogeneity and anisotropy within the multi-slip formulation are account-
ed for through the modification of the mobilized friction. The mobilized friction is assumed to be a function of
either the gradient of the porosity distribution or the fabric tensor. A two-active slip-plane version of the mul-
ti-slip formulation is implemented in ABAQUS (2003) and used to study shear bands and post localization
behavior in granular materials.
2. Mathematical preliminaries

The velocity gradient (Lij) of a continuous medium undergoing smooth deformation can be split into two
parts; symmetric and skew-symmetric. The symmetric part represents the pure stretching tensor, Dij, and the
skew-symmetric part represents the spin tensor, Wij:
Dij ¼
1

2
Lij þ LT

ij

� �
ð1Þ

W ij ¼
1

2
Lij � LT

ij

� �
ð2Þ
The stretching tensor Dij can be decomposed as:
Dij ¼ De
ij þ Dp

ij ð3Þ
where De
ij and Dp

ij are the elastic and plastic parts, respectively. Similarly, the spin can be written as:
W ij ¼ xij þ W p
ij ð4Þ
where xij is the spin of microstructure, and W p
ij the plastic spin.

The equation of equilibrium for quasi-static loading conditions is given by:
rij;j þ bi ¼ 0 ð5Þ
where rij is the Cauchy stress tensor and bi is the body force per unit volume. The elastic tensor of stretching
De

ij is assumed to follow Hooke’s law:
r
o

ij ¼Ce
ijklD

e
kl ð6Þ

Ce
ijkl ¼G dikdjl þ dildjk þ

2m
1� 2m

dijdkl

� �
ð7Þ
where Ce
ijkl is the elasticity tensor, G the shear modulus, m the Poisson’s ratio, and dij the Kronecker delta. The

Jaumann rate of Cauchy stress tensor r
o

ij is defined with respect to the frame rotating with the material as:
r
o

ij ¼ _rij � xikrkj þ rikxkj ð8Þ
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3. Multi-slip model for plastic flow

Experiments on various assemblies of discrete particles have shown that the overall deformation of a gran-
ular mass consists of sliding and rolling along active shearing planes (Oda et al., 1982, 1985; Nemat-Nasser,
2000). Fig. 1 shows a typical shear plane in a granular material. The deformations along shearing planes are
similar to those on slip planes in crystal plasticity where plastic deformation is assumed to take place along
well-defined slip directions (Nemat-Nasser, 2000; Anand and Gu, 2000).

In the multi-slip model for soils, plastic deformation is viewed in terms of slips on planes-defined by their
normal unit vector ni and slip direction mi. Therefore, it is necessary firstly to choose a set of active planes.
While in polycrystalline metals, slip systems are uniquely defined; slip planes in soils are not unique. In most
cases, these planes have been identified with the slip systems with directions that are symmetrically disposed
about the maximum principal stress direction (Mehrabadi and Cowin, 1978; Anand, 1983). However, discrete
simulations of granular materials as well as experimental observations have shown that the direction of slip
and subsequent plastic deformation is influenced very much by the depositional microstructure.

A typical conjugate slip system for plane strain conditions is as shown in Fig. 2. The components of the slip
systems s(1) are given by:
Fig. 1. Schematic representation of dilatant shearing plane.
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Fig. 2. Typical double-slip system.
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mð1Þi ¼ � cos f1 � e1 � sin f1 � e2 ð9aÞ
nð1Þi ¼ � sin f1 � e1 þ cos f1 � e2 ð9bÞ
where f is the angle measured with respect to minor principal stress axis and e1, e2 are the unit vectors in the
Cartesian coordinate system.

The plastic strain rate tensor consists of simple shearing strain rates _cpðsÞ on each of the slip system s, and
this shearing is accompanied by shear-induced dilatancy rate _mðsÞ in the directions normal to the shear
directions:
Dp
ij ¼

XsT

s¼1

_cpðsÞM ðsÞ
ij þ

XsT

s¼1

_mðsÞN ðsÞij ð10Þ

M ðsÞ
ij ¼ðm

ðsÞ
i nðsÞj þ nðsÞi mðsÞj Þ=2 ð10aÞ

N ðsÞij ¼nðsÞi nðsÞj ð10bÞ

W p
ij ¼

XsT

s¼1

_cpðsÞV ðsÞij ð11Þ

V ðsÞij ¼ ðm
ðsÞ
i nðsÞj � nðsÞi mðsÞj Þ=2 ð11aÞ
where Dp
ij is the plastic strain rate tensor, W p

ij the plastic spin, _cpðsÞ ð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
dpðsÞ

ij dpðsÞ

ij

q
Þ the effective plastic shear

strain rate on the sth slip system, _mðsÞ ¼ b _cpðsÞ the dilatation rate, with b being the mobilized dilatancy coefficient
and sT the total number of slip planes. The effective plastic strain is defined by cp ¼

R
_cp dt. Moreover, it is

assumed that the slip planes are oriented initially at a given angle relative to some plane in space (e.g., the
directions of minor principal stresses). This angle is treated as a material parameter and the rotation of the
slip line is evaluated as (Asaro, 1979):
_mi ¼xijmj ð12aÞ
_ni ¼xijnj ð12bÞ
where xij is the spin of microstructure as given by Eq. (4).
The total number of independent slip planes depends on the problem under investigation. For three-dimen-

sional deformation of compressible materials, the minimum number of conjugate slip systems is six whereas
for incompressible materials it is five. For two-dimensional problems, two slip planes are sufficient (Hirth,
1992).

3.1. Yield functions

The set of yield functions on the slip systems of the granular material is assumed to follow the gradient
criterion, f(s):
f ðsÞ ¼ qðsÞ � lpðsÞ � c1r2cpðsÞ ð13Þ
where qðsÞ and pðsÞ are the resolved shear and normal stresses, respectively. They are expressed in terms of the
Cauchy stress tensor as:
qðsÞ ¼rij : M ðsÞ
ij ð14Þ

pðsÞ ¼rij : N ðsÞij ð15Þ
c1 represents the first gradient coefficient and $2cp represents the Laplacian of effective plastic strain. The
hardening/softening behavior due to redistribution of contacts is modeled through an evolution law for the
mobilized friction coefficient, l (e.g., Zbib and Aifantis, 1989; Vardoulakis, 1996; Anand and Gu, 2000).

The plastic dilatancy for most materials is on the order of the measurement error and can be assumed zero
in the absence of phase change and significant void nucleation during plastic deformation. However, dilation



O.A. Hattamleh et al. / International Journal of Solids and Structures 44 (2007) 3393–3410 3397
in granular materials is pronounced. The parameter _mðsÞ ¼ b _cpðsÞ in Eq. (10) captures induced dilation in the
current granular materials model.

3.2. Effective plastic shear strain rate and stiffness tensors

Utilizing the yield and consistency conditions, f = 0; _f ¼ 0, along with Eqs. (6), (13), (14) and (15), the
effective plastic strain rate can be evaluated as (Al Hattamleh, 2003):
_cpðsÞ ¼
M ðsÞ

ij þ aldij

� �
: Dij � c1r2 _cpðsÞ

.
G

1:0þ pðsÞj jht=Gþ ablþ c01r2cpðsÞ
�

G
ð16Þ
where ht ¼ ol
ocp, is the strain hardening/softening modulus, c01 ¼ dc1

dcp, a = K/G, and K and G are the bulk and
shear moduli, respectively. Substituting Eq. (16) into Eq. (6) and combining it with Eq. (10) and letting
c01 ¼ 0 leads to:
r
o

ij ¼ CijklDkl � r
o g

ij ð17Þ

Cijkl ¼Ce
ijkl � Cp

ijkl ð17aÞ

r
o g

ij ¼
Xs

s¼1

c1r2 _cpðsÞ M ðsÞ
ij þ abdij

� �.
H ðsÞ ð17bÞ
where H(s) = 1.0 + jp(s)jht/G + abl;
The resultant plastic stiffness tensor is given as:
Cp
ijkl ¼

G

H ðsÞ
M ðsÞ

ik þ abdik

� �
M ðsÞ

jl þ aldjl

� �
ð18Þ
The framework of this model does not involve higher-order stress, and the strain gradient effects come into
play via the incremental plastic strain. Therefore, it falls into the strain gradient type framework that preserves
the structure of conventional plasticity theories. Thus, the equilibrium equations and boundary conditions are
the same as the conventional continuum theories (Shizawa and Zbib, 1999; Huang et al., 2004).

3.3. Friction and dilatancy

The mobilized friction coefficient l (Eq. (13)) is assumed to be a function of the effective plastic strain:
lðcpÞ ¼ lcv þ x1 cp þ l0 � lcv

x1

� �
expð�x2c

pÞ ð19Þ
where lcv is the internal friction at constant volume, l0 the initial mobilized friction, and x1, x2 are material
parameters determined from experimental results. Similar formulations relating l to lcv have been used in the
past (Balendran and Nemat-Nasser, 1993a; Anand and Gu, 2000).

Following the work of Taylor (1948) the mobilized dilatancy is expressed as (Vardoulakis, 1996):
bðcpÞ ¼ lðcpÞ � lcv ð20Þ

Han and Drescher (1993) have reported some biaxial shear tests on dry sand. A prismatic specimen of

40 mm width, 80 mm length, and 140 mm height was used. The specimen was enclosed between two rigid walls
80 m apart and placed on a platen, which rested on a linear bearing. The linear bearing provided kinematic
freedom for the formation of shear bands with the lower portion of the specimen sliding horizontally. The
apparatus was placed inside a pressure chamber and the specimen was subjected to a confining pressure
and kinematically or statically controlled axial load.

Biaxial tests were performed on coarse, poorly graded Ottawa sand with rounded particles of mean grain
diameter D50 = 0.72 mm. Homogenous dense specimens, with an initial porosity of n0 = 0.32–0.33, were pre-
pared. All tests were performed with displacement controlled axial loading. Additional details of the test
device and measurements of relevant parameters are provided in Han and Drescher (1993). The data for
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mobilized friction reported by Han and Drescher (1993) is re-plotted as l versus cp and fitted using the pro-
posed evolution equation (Eqs. (19) and (20)) as shown in Fig. 3.

The heterogeneous porosity and fabric anisotropy of granular materials are known to affect the mobilized
friction coefficient. Therefore, the formulation presented above is modified to account for these characteristics.
3.3.1. Effect of porosity heterogeneity on mobilized friction
High-degree of heterogeneity in the porosity, n = (void volume/total volume), distribution within the rep-

resentative volume element (RVE) in granular materials is shown in Fig. 4. The use of simple homogenized
values such as average porosity will not be sufficient to capture this variation. Assume that the actual distri-
bution of the porosity n(x) is known at the microscopic level (the particle length scale) at every material point,
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Fig. 3. Fitted mobilized friction evolution equation from experimental data of Han and Drescher (1993).

Fig. 4. Variation of porosity in neighborhood of point as function of averaging volume (modified after Bachmat and Bear, 1985).
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and since the scale of the RVE is a few orders of magnitude higher than the particle length scale. Therefore, the
RVE scale can be defined as a mesoscale for the continuum description of granular materials. Consequently,
the average porosity over a meso-domain located at position x can be given as (Abramowitz and Stegun, 1965;
Zbib, 1994; Vardoulakis and Sulem, 1995):
nðxÞ ¼ 1

V

Z
V

gðx� rÞnðrÞdV ð21Þ
where (R � r) defines the size of the meso-domain (Fig. 4), g(x � r) is a probability distribution (density) func-
tion and V is the weighted volume. By expanding n(r) around x we obtain:
nðrÞ ¼ nðxÞ þ rn:ðr � xÞ þ 1

2!
rð2Þn : ðr � xÞ � ðr � xÞ

þ 1

3!
rð3Þn : ðr � xÞ � ðr � xÞ � ðr � xÞ þ 1

4!
rð4Þn : ðr � xÞ . . . ð22Þ
Substituting Eq. (22) into 21 and setting r = 0 results in:
nðxÞ ¼ nðxÞ þ a1r2nðxÞ þ a2r4nðxÞ þ . . . ð23Þ

with a1,a2, . . . being explicit functions of the size of the RVE (meso-domain). Note that because of spherical
symmetry, the average porosity does not involve odd order gradients. Limiting the terms up to a second order
for simplicity, Eq. (23) reduces to:
nðxÞ ¼ nðxÞ þ a1r2nðxÞ ð23aÞ

Thus, the addition of the Laplacian term in effect captures the deviation of porosity from its homogenous

state in the meso-domain, i.e., it is a measure of the heterogeneity.
Neglecting the volumetric elastic deformation, the evolution of porosity is governed by mass conservation

as (Vardoulakis and Sulem, 1995):
_n ¼ ð1� nÞ � Dp
kk ð24Þ
The formulation is now completed by assuming the mobilized friction coefficient to be a function of the
second order gradient of porosity and, consequently, rewriting Eq. (19) as:
lðcp; nÞ ¼ lc þ x1 cp þ l0 � lc

x1

� �
exp �x2c

pð Þ ð25Þ
where lc is evaluated by:
lc ¼ lcv 1:0þ a3 ncrit � nm þ a1r2nm

� 	� 	� 	
ðfor n < ncritÞ ð25aÞ
or by:
lc ¼ lcv ðfor n P ncritÞ ð25bÞ

nm and ncrit are the mean porosity (the porosity at x = 0) and the critical porosity, respectively. a3 is an addi-
tional material parameter. When it equals zero the above reduces to its homogeneous form (Eq. (19)).

3.3.2. Effect of fabric anisotropy on mobilized friction

The directional distribution of porosity n(v) = n (#, g) within an REV can be approximated by (Kanatani,
1984; Pietruszczak and Krucinski, 1989a,b; Muhunthan et al., 1996).
nðvÞ ¼ nmð1þ XijvivjÞ ð26Þ

where, the components of the unit vector v are given by v1 = sin# sing, v2 = cos#, and v3 = sin# cosg. The
angles # and g are shown in Fig. 5. The ‘‘mean porosity’’, nm, and the ‘‘fabric tensor’’, Xij, are given respec-
tively by:
nm ¼
1

4p

Z
nðvÞdv ð27Þ



Fig. 5. Spherical coordinate system for a representative volume element.
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and,
Xij ¼ 15
2
ðwij � 1

3
dijÞ ð28Þ
with the second moment tensor wij (Kanatani, 1984):
wij ¼
1

4pnm

Z
vivjnðvÞdv ð29Þ
Note that when the components of the fabric tensors are zero, Eq. (26) reduces to its isotropic form with
mean porosity. Thus, the fabric tensor is a measure of the anisotropic distribution of porosity.

Fabric effects are incorporated into the multi-slip formulation by assuming the porosity in the mobilized
friction to be directional. Consequently, l (cp, n) becomes l (cp, nm, Xij).

Since the fabric tensor Xij is deviatoric (Eq. (28)), it is possible to represent its rate of change with deviatoric
plastic stretching, dp

ij, using an isotropic tensor valued functional representation (Boehler, 1987):
_Xij ¼ _XijðXkl; d
p
ij; nmÞ ð30Þ
The functional form is generally complex. However, if the principal axes of dp
ij and Xij are assumed to be coin-

cident, the relation can be modeled as (Muhunthan et al., 1996):
_Xij ¼ kdp
ij ð31Þ
with:
k ¼ a4ðnmÞ þ a5ðnmÞXikXki ð31aÞ

where a4 and a5 are scalar functions of the mean porosity. The formulation is now completed by rewriting the
mobilized friction as:
lðcp; nm;XijÞ ¼ lðcp; kÞ ð32Þ

Thus, Eqs. (25a) and (25b) can be modified to:
lc ¼ lcvð1þ a6:kÞ ðfor n < ncritÞ ð32aÞ

or:
lc ¼ lcv ðfor n P ncritÞ ð32bÞ

where a6 is a material constant. Note that if a6 equals zero the form in Eq. (32a) reduces to the isotropic
case.
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4. Shear band characteristics

The multi-slip gradient plasticity formulation has been implemented in ABAQUS (2003) as a User Material
subroutine (designated as UMAT) for the case of two conjugate slip systems. The double-slip gradient model
was used to study the characteristics of strain localization and shear band initiation in a biaxial test.

The biaxial test has been modeled using a plane strain finite element analysis. All analyses were carried out
using four-node plane strain elements with reduced integration (designated in ABAQUS as CPE4R). The total
number of mesh elements was varied in order to study the effect of strain localization and shear band on mesh
sensitivity. The lower boundary of the mesh is assumed to be rigid. Simulations were carried out to ensure that
localization characteristics were not affected by the friction imposed along the rigid boundary for the aspect
ratio (height/width) of 3.5 used here (see also Albert and Rudnicki, 2001).

In the first phase, a confining pressure was applied to consolidate the specimen isotropically. Thereafter,
axial compression was applied by increasing the vertical displacement on the top of the specimen. Based on
the characteristics of the sand and the test conditions, the following material constants were used in the gra-
dient multi-slip model:

• elastic properties: stiffness modulus (E) = 180 MN/m2, poisson ratio (m) = 0.2,
• mobilized friction function (Eq. (19), Fig. 3): initial mobilized friction (lo) = 0.01; constant volume friction

(lcv) = 0.61; x1 = 25.0; x2 = 55.0,
• critical porosity of the sand, ncrit = 0.43,
• active slip systems initial orientation f1 = p/4 + //2 and f2 = �p/4 � //2 where / is the mobilized friction

angle of the sand at failure measured in the experiment, / = 31.5� was used.

The complete force displacement curve predicted by the FE analysis is compared with the test observation
as shown in Fig. 6. It can be seen that the model here leads to good predictions regardless of the differing mesh
sizes used. However, the use of the finer mesh provided better convergence of the results. The final deformed
shapes of the FE mesh are as shown in Fig. 7. It can be seen that deformation localizes into a narrow shear
band whether a weak element is present (Fig. 7b) or not (Figs. 7a and c). The introduction of a weak element is
achieved here by using reduced values of constant volume friction (lcv) (Fig. 7b). It can also be seen that shear
band characteristics is very much dependent on the initial slip system (cf. Fig. 7a and c) and on the location of
the weak element (Fig. 7b). The inclination of the resulting shear band with the introduction of weak elements
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Fig. 7. Deformed shapes of 10 · 35 elements, a3 and a6 = 0.0 (a) f1 = p/4 + //2, f2 = �p/4 � //2 (b) f1 = p/4 + //2 and f2 = �p/4 + //2
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in the central portion of the mesh was measured to be 53� ± 2� relative to the minor principal stress axis
(Fig. 7b). The experimentally measured angle was found to vary between 55� and 56� for confining pressure
of 200 kPa (Han and Drescher, 1993).

The variation of the orientation angle between shear bands and the direction of minor principal stress is
shown in Fig. 8 as a function of different initial slip systems. The shear band inclination angles vary essentially
between 48� and 60.5� depending on the initial slip system arrangement. On the basis of force equilibrium and
Coulomb’s theory the theoretical inclination of the shear band orientation angle is found to be h = p/4 + //2.
The upper limit of the results obtained here correspond to this angle (/ = 31.5�). Roscoe (1970) suggested that
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the friction angle in Coulomb’s orientation must be replaced with the angle of dilation w, i.e., h = p/4 + w/2.
The lower limit of the results here corresponds to this value. Arthur et al. (1977) found that shear bands were
inclined between the Coulomb and Roscoe directions and proposed that the average of the two angles h = p/
4 + (w + /)/4 be used to define the orientation. Theoretical analyses by Vardoulakis (1980) supported this lat-
ter orientation. Examination of the results here show that a majority of the orientation angles lie between Ros-
coe’s and Arthur’s directions. Numerical analysis conducted by Vermeer (1990) shows that shear band
inclination in plane strain tests is limited between the Coulomb and Roscoe directions and that the actual incli-
nation is very sensitive to the boundary conditions imposed. Here, we have essentially found the same obser-
vation based on the use of different initial slip systems but with the same boundary conditions. Experimental
measurements of shear band orientations on Santa Monica Beach sand reported by Lade (2003) and Lade and
Wang (2001) show them to locate between locate Coulomb and Arthur inclination. Further, their results show
that the shear band orientation in dense sands to favor the Coulomb direction. The above discussion suggests
that shear band orientation is complex and that it depends on initial slip system, packing density, and bound-
ary conditions.
Fig. 9. Effect of non orthogonal conjugate slip system on the pattern of the deformation with weak element seeded (shown as a dot) (a)
f1 = 58.00�, f2 = 145.25�, (b) f1 = 58.25�, f2 = 145.5�, (c) f1 = 59.00�, f2 = 146.00�, (d) f1 = 60.0�, f2 = 149.25� (e) f1 = 60.75�,
f2 = 150.75�, (f) f1 = 58.75�, f2 = 148.75�.
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The effects of the non-orthogonality of the initial slip systems on shear band characteristics are as shown in
Fig. 9. It can be seen that slight deviations from orthogonality would lead to changes in the location of the
shear band in spite of the weak elements being kept at the same location within the specimen.
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Fig. 11. Effect of gradient coefficient, a1 in axial force axial displacement curve, a3 = 0.335.



Table 1
Summary of the experimental results on shear band localization (Desrues and Viggiani, 2004)

Test c0 (kN/m3) e0 r03 ðkPaÞ H0/L0 Lubrication (Y/N) End plates (L/R/TT)a Observed localization ‘imperfections’

SH00 15.75 0.650 80 2.00 N L

Shf00 14.93 0.741 90 2.00 Y L

shf01 14.93 0.741 90 2.00 Y L

shf02 13.68 0.900 85 2.20 N R

shf03 14.05 0.850 90 2.20 Y L

shf04 13.68 0.900 80 3.60 N L

shf05 15.65 0.661 80 2.00 Y L

shf06 15.65 0.661 80 2.00 Y R Left tilting

shf07 15.65 0.661 80 2.00 Y L Right tilting

shf08 15.65 0.661 80 2.00 Y R

shf09 15.65 0.661 80 2.00 Y L

shf10 15.65 0.661 80 2.00 Y L Soft inclusion

shf11 15.47 0.680 80 2.00 Y L Hard inclusion

shf12 15.65 0.661 80 2.00 Y TT Lateral load

(continued on next page)
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Table 1 (continued)

Test c0 (kN/m3) e0 r03 ðkPaÞ H0/L0 Lubrication (Y/N) End plates (L/R/TT)a Observed localization ‘imperfections’

shf13 15.65 0.661 80 2.00 Y L

shf14 15.65 0.661 80 3.55 Y L

shf15 15.65 0.661 80 3.55 Y L

shf16 15.65 0.661 80 3.55 N L

shf17 15.65 0.661 80 2.00 N L

shf18 15.65 0.661 80 3.55 N L

shf19 15.65 0.661 80 3.55 Y R + TT

shf20 13.97 0.860 80 2.00 Y R + TT

a L, both platens locked, i.e., prevented from rotating and translating in the horizontal direction; R, both platens allowed to rotate
without translating; TT, top platen free to translate in the horizontal direction, but not to rotate, while the bottom platen is locked in
place.
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One of the features of strain localization is the sharp variation of porosity across the shear band (Fig. 10).
Therefore, the resulting higher gradients in the porosity need to be taken into account to properly account for
modeling the post localization behavior in granular materials. The gradient term in the mobilized friction
accounts for this phenomenon here and its performance depends on the values of parameter a1. The effect
of parameter a1 (Eq. (25a)) on localization was studied using a fixed mesh size of (10 · 35). It can be seen that
a1 diffuses the concentration of the porosity within the shear band by making it more uniform across the local-
ized region (Fig. 10). Further, its use affects the post peak strain-softening segment of the load displacement
curve as shown in Fig. 11. The negative values of a1 lead to a decrease in the strain softening effect whereas the
opposite is true in the case of positive values of a1. This is mainly because a negative value of a1 will generate
an increase in lc (Eq. (25)). This in turn would lead to an increase in the post peak value of the mobilized
friction and the strengthening the granular material.

Desrues and Viggiani (2004) have summarized experimental evidence on plane strain tests which suggests
the shear band characteristics to be very much dependent on test arrangement and conditions of the specimen
(Table 1). It is also worth noting that shear bands occur with or without the inclusions (cf. Table 1 and Fig. 7).
Since the directionality of the porosity depends on the porosity fabric tensor, it was decided to use some data
on photo elastic measurements of initial fabric for samples reported by Oda et al. (1985) in biaxial shear tests.
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The specimens consisted of circular and oval shaped particles deposited at different angles. From the reported
photo elastic measurements of Oda et al. (1985) the porosity distribution was calculated by Muhunthan
(1991) using a stereological procedure. The corresponding values for the porosity fabric tensor Xij are as
shown in Table 2. These values are used to study the influence of initial fabric on the localization in biaxial
shear tests.

The deformed model configurations for the different deposition angle and particle shapes are as shown in
Fig. 12. It can be seen that the localization of deformation into shear band is dependent very much on the type
of particle shape as well as the depositional angle. In circular shaped particles, the deformation does not
appear to localize into a defined shear band whereas in oval shaped particles it does so. Furthermore, such
localization is very much dependent on the angle of deposition as well as the shape of the particles. Thus,
the use of fabric tensor may enable the quantification of shear bands and their orientation in granular
materials.
Fig. 12. Deformation shape for a mesh with 10 · 35 elements for ideal particle shapes, a4, a5, and a6 = 0.33, 0.0648, and 0.0175, f1 = p/
4 + //2 and f2 = �p/4 � //2 (see Table 2 for case legend).

Table 2
Void fabric tensor measurements on biaxial test (Muhunthan, 1991)

Case No. Particle shape/deposition angle,a hd X11 X12 X22

I Circular, hd = 0� 1.32 �0.03 �1.32
II Oval I, hd = 0� 0.53 �0.08 �0.53
III Oval II, hd = 0� �0.04 0.07 0.04
IV Oval II, hd = 60� 0.86 0.16 �0.86
V Oval II, hd = 90� 0.54 0.09 �0.54

a
b

Oval I: a/b=1.1/1.0
Oval II: a/b=1.4/1.0
a Deposited with respect to the horizontal bedding plane.
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5. Conclusions

A multi-slip gradient formulation is presented in this paper to model strain localization in granular mate-
rials. The double slip version of the model has been incorporated into a finite element code and used to sim-
ulate plane strain test results on dry sand. The effects of granular microstructure have been accounted for by
assuming the mobilized friction to be a function of either porosity gradient or the use of fabric tensor measure.
Based on the analysis reported, the following conclusions can be drawn:

(a) The presence of weak element shifts the location and orientation of the shear band; however, it has
nothing to do with the presence/occurrence of strain localization.

(b) Strain localization and shear band characteristics are highly dependent on the initial slip system of the
granular materials.

(c) The shear band orientation angle is bounded by h = p/4 + w/2 (Roscoe) and h = p/4 + //2 (Coulomb).
The specific location of the orientation angle within these bounds, however, is the result of a combina-
tion of complex interaction among initial slip system, packing density, and boundary conditions.

(d) Sharp variation of porosity is found across the shear band with a pronounced peak along the midsec-
tion. The use of gradient term diffuses the porosity concentration within shear band and decreases the
softening effect on the post peak load displacement curve.

(e) Localization of deformation into shear band is dependent very much on the type of particle shape as
well as the depositional angle. In circular shaped particles, the deformation does not appear to localize
into a defined shear band whereas in oval shaped particles it does so.

It is noted that we had taken a bold step to construct a continuum theory macroscopically with explicit
consideration of microstructure bypassing the intermediate step of constructing a microscopic theory for each
individual phenomenon such as granular dilatancy. The numerical implementation of the theory addresses
directly the localization features of a continuum plasticity sand model with microstructure. Many of the
parameters of the various models albeit physically based are determined here by curve fitting. Further analysis
of these models preferably based on micromechanical considerations are needed to validate or improve upon
the parameters as used here.
Acknowledgement

The study was sponsored by the National Science Foundation under the Grant CMS-0010124 to Washing-
ton State University. This support is gratefully acknowledged.
References

ABAQUS, 2003. Hibbitt, Karlsson and Sorensen Inc, Pawtucket, RI.
Abramowitz, M., Stegun, I.A., 1965. Handbook of Mathematical Functions. Dover, NY.
Albert, R.A., Rudnicki, J.W., 2001. Finite element simulations of Tennessee marble under plane strain laboratory testing: effect of sample-

platen friction on shear band onset. Mech. Mater. 33, 47–60.
Al Hattamleh, O., 2003. Investigation of the deformation of granular materials: a micromechanics approach. Ph.D Thesis, Washington

State University.
Al Hattamleh, O., Muhunthan, B., Zbib, H.M., 2004. Gradient plasticity modeling of strain localization in granular materials. Int. J.

Numer. Anal. Methods Geomech. 28 (6), 465–561.
Anand, L., Gu, C., 2000. Granular materials: constitutive equations and strain localization. Int. J. Mech. Phys. Solids 48 (8), 1701–1733.
Anand, L., 1983. Plane deformation of ideal granular materials. J. Mech. Phys. Solids 31, 105–122.
Asaro, R.J., 1979. Geometrical effects in the inhomogeneous deformation of ductile single crystals. Acta Metallurgica 27 (3), 445–453.
Arthur, J., Dunstan, T., Al-Ani, Q., Assadi, A., 1977. Plastic deformation and failure in granular media. Geotechnique 27 (1), 53–74.
Balendran, B., Nemat-Nasser, S., 1993a. Double sliding model cyclic deformations of granular materials, including dilatancy effects. Int. J.

Mech. Phys. Solids 41 (3), 573–612.
Bathurst, R.J., Rothenburg, L., 1990. Observations on stress-force-fabric relationships in idealized Granular Materials. Mech. Mater. 9,

65–80.



O.A. Hattamleh et al. / International Journal of Solids and Structures 44 (2007) 3393–3410 3409
Bachmat, Y., Bear, J., 1985. On the concept and size of representative elementary volume. In: Advances in Transport Phenomena in
Porous Media, Proceeding of the NATO Advanced Study Institute, Conducted at Newyark, Martinus Nijhoff Publishers, DE, 1987,
pp. 3–20.

Boehler, J.P. (Ed.), 1987. Application of Tensor Functions in Solid Mechanics. Springer Verlag, New York.
Chang, C.S., Hicher, P.Y., 2005. An elasto-plastic model for granular materials with microstructural consideration. Int. J. Solids Struct. 42

(14), 4258–4277.
de Borst, R., Muhlhaus, H.B., 1992. Gradient dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35

(3), 521–539.
Desrues, J., Viggiani, G., 2004. Strain localization in sand: an overview of the experimental results obtained in Grenoble using

stereophotogrammetry. Int. J. Numer. Anal. Methods Geomech. 28 (4), 279–321.
Engelen, R.A.B., Fleck, N.A., Peerlings, R.H.J., Geers, M.G.D., 2006. An evaluation of higher-order plasticity theories for predicting size

effects and localization. Int. J. Solids Struct. 43 (7–8), 1857–1877.
Gajo, A., Bigoni, A.D., Wood, D.M., 2004. Multiple shear band development and related instabilities in granular materials. J. Mech.

Phys. Solids 52 (12), 2683–2724.
Han, C., Drescher, A., 1993. Shear bands in biaxial tests on dry coarse sand. Soils Foundations 33, 118–132.
Huang, Y., Qu, S., Hwang, K.C., Li, M., Gao, H., 2004. A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast.

20 (4–5), 753–782.
Hirth, J.P., 1992. Theory of Dislocations, second ed. Krieger Pub. Co., Malabar, FL.
Kachanov, M., Sevostianov, I., 2005. On quantitative characterization of microstructures and effective properties. Int. J. Solids Struct. 42

(2), 309–336.
Kanatani, K., 1984. Stereological determination of structural anisotropy. Int. J. Eng. Sci. 24 (2), 207–222.
Lade, P., 2003. Analysis and prediction of shear banding under 3D conditions in granular materials. Soils Foundations 43 (4), 161–

172.
Lade, P., Wang, Q., 2001. Analysis of shear banding in true triaxial tests on sand. J. Eng. Mech., ASCE 127 (8), 762–768.
Liu, X., Scarpas, A., Blaauwendraad, J., 2005. Numerical modelling of nonlinear response of soil. Part 2. Strain localization investigation

on sand. Int. J. Solids Struct. 42 (7), 1883–1907.
Mehrabadi, M.M., Cowin, S.C., 1978. Initial planar deformation of dilatant granular materials. J. Mech. Phys. Solids 26, 269–284.
Mehrabadi, M.M., Nemat-Nasser, S., Oda, M., 1982. On statistical description of stress and fabric in granular materials. Int. J. Numer.

Anal. Meth. Geomech. 6, 95–98.
Muhunthan, B., 1991. A micromechanics of steady state, collapse and stress strain modeling of soils. Ph.D. Thesis, Purdue

University.
Muhunthan, B., Chameau, J.L., Masad, E., 1996. Fabric effects on the yield behavior of soils. Soils Foundations JSGE 36 (3), 85–97.
Nemat-Nasser, S.A., 2000. Micromechanically based constitutive model for frictional deformation of granular materials. Int. J. Mech.

Phys. Solids 48, 1463–1541.
Nemat-Nasser, S., Zhang, J., 2002. Constitutive relations for cohesionless frictional granular materials. Int. J. Plast. 18 (2002), 531–

547.
Oda, M., Konishi, J., Nemat-Nasser, S., 1982. Experimental micromechanical evaluation of strength of granular materials: Effect of

particle rolling. Mech. Mater. 1, 267–283.
Oda, M., Nemat-Naaser, S., Konish, J., 1985. Stress-induced anisotropy in granular masses. Soils Foundations 25 (3), 85–97.
Oda, M., Kazama, H., Konishi, J., 1998. Effects of induced anisotropy on the development of shear bands in granular materials. Mech.

Mater. 28 (1–4), 103–111.
Oka, F., Higo, Y., Kimoto, S., 2002. Effect of dilatancy on the strain localization of water-saturated elasto-viscoplastic soil. Int. J. Solids

Struct. 39 (13–14), 3625–3647.
Pietruszczak, S., Krucinski, D., 1989a. Description of anisotropic response of clays using a tensorial measure of structural disorder. Mech.

Mater. 8, 237–249.
Pietruszczak, S., Krucinski, D., 1989b. Considerations on soil response to the rotation of principal stress directions. Comput. Geotech. 8,

89–110.
Roscoe, k., 1970. The influence of strains in soil mechanics. Geotechnique 20 (2), 129–170.
Rudnicki, J.W., Rice, J.R., 1975. Conditions for the localization of deformation in pressure sensitive dilatant materials. J. Mech. Phys.

Solids 23, 371–394.
Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals.

Int. J. Plast. 5 (9), 899–938.
Spencer, A.J.M., 1964. A theory of the kinematics of ideal soils under plane strain condition. J. Mech. Phys. Solids 12, 337–351.
Spencer, A.J.M., 2003. Double-shearing theory applied to instability and strain localization in granular materials. J. Eng. Math. 45 (1), 55–

74.
Taylor, D.W., 1948. Fundamentals of Soil Mechanics. Wiley, New York.
Tobita, Y., 1989. Fabric tensors in constitutive equations for granular materials. Soils Foundations 29 (4), 99–104.
Vardoulakis, I., 1980. Shear band inclination and shear modulus in biaxial tests. Int. J. Numer. Anal. Methods Geomech. 4, 103–119.
Vardoulakis, I., Sulem, J., 1995. Bifurcation Analysis in Geomechanics. Blackie Academic, Glasgow.
Vardoulakis, I., 1996. Deformation of water-saturated sand: I. uniform undrained deformation and shear banding. Geotechnique 46 (3),

441–456.
Vermeer, P.A., 1990. The orientation of shear bands in biaxial tests. Geotechnique 40 (2), 223–236.



3410 O.A. Hattamleh et al. / International Journal of Solids and Structures 44 (2007) 3393–3410
Zbib, H.M., Aifantis, E.C., 1989. A gradient-dependent flow theory of plasticity: application to metal and soil instabilities. J. Appl. Mech.
Rev., ASME 42 (11, 2), 295–304.

Zbib, H.M., 1991. On the mechanics of large inelastic deformations: noncoaxiality, axial effects in torsion and localization. Acta
Mechanica 87, 179–196.

Zbib, H.M., 1993. On the mechanics of large inelastic deformations; kinematics and constitutive modeling. Acta Mechanica 96, 119–
138.

Zbib, H.M., 1994. Size effects and shear banding in viscoplasticity with kinematic hardening. In: Batra, R.C., Zbib H.M. (Eds.),
International Mechanical Engineering Congress and Exposition, pp. 19–33.


	Multi-slip gradient formulation for modeling  microstructure effects on shear bands in granular materials
	Introduction
	Mathematical preliminaries
	Multi-slip model for plastic flow
	Yield functions
	Effective plastic shear strain rate and stiffness tensors
	Friction and dilatancy
	Effect of porosity heterogeneity on mobilized friction
	Effect of fabric anisotropy on mobilized friction


	Shear band characteristics
	Conclusions
	Acknowledgement
	References


