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1. Introduction

The generalization of the concept of derivative and integral to a noninteger orderα has
been subjected to several approaches and some various alternative definitions of fr
derivatives appeared [1–6]. In the last few years fractional calculus was applied su
fully in various areas, e.g., chemistry, biology, modelling and identification, electro
and wave propagation. Fractional calculus, has played an important role in engine
science, and pure and applied mathematics [7–9]. Fractional derivatives were app
recent studies of scaling phenomena [10–12]. Classical mechanics is one of the field
fractional calculus found many applications [13–19]. Riewe has used the fractional
lus to obtain a formalism which can be applied for both conservative and nonconse
systems [13,14]. Although many laws of nature can be obtained using certain funct
and the theory of calculus of variations, not all laws can be obtained by this manner. A
known, almost all systems contain internal damping, yet traditional energy based ap
cannot be used to obtain equations describing the behavior of a nonconservative
[13,14]. Using the fractional calculus one can obtain the Lagrangian and the Hamil
equations of motion for the nonconservative systems.

The understanding of constrained dynamics [20], both at the classical and qu
level, has been a subject of long standing theoretical interest, which has seen im
contributions ever since Dirac’s quantization of the electromagnetic field. The path in
approach and the canonical one are two main approaches of quantization.

Recently, an extension of the simplest fractional problem and the fractional varia
problem of Lagrange was obtained [17,18]. Even more recently, this approach w
tended to Lagrangians with linear in velocities [21,22], which represents a typical ex
of second-class constrained systems in Dirac’s classification [20]. These Lagrangia
important because their Euler–Lagrangian equations become systems of first ord
ferential equations in contrast with second order corresponding to the regular on
addition, these systems may possess gauge symmetries and gauge ambiguities.

From these reasons it is interesting to study the fractional Hamiltonian formulati
constrained systems.

The aim of this paper is to obtain the fractional Hamiltonian equations of motio
Lagrangians with linear velocities.

The plan of our paper is as follows. In Section 2 some basic tools of fractional d
atives as well as Riewe’s approach of the fractional Lagrangian and Hamiltonian
presented. In Section 3 the Euler–Lagrange equations were obtained using the Ag
approach and the fractional formulation of systems with constraints is introduced. In
tion 4 the fractional Hamiltonian analysis of the systems possessing linear veloci
analyzed. Section 5 is dedicated to our conclusion.

2. Fractional Lagrangian and Hamiltonian formulations

In this section we briefly present the definition of the left and right derivatives tog
with Riewe’s formulation of Lagrangian and Hamiltonian dynamics. The left Riema

Liouville fractional derivative is defined as
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. If

La-
ction
aDα
t f (t)

1

Γ (n − α)

(
d

dt

)n
t∫

a

(t − τ)n−α−1f (τ) dτ, (1)

and the right Riemann–Liouville fractional derivative has the form

tDα
bf (t)

1

Γ (n − α)

(
− d

dt

)n
b∫

t

(τ − t)n−α−1f (τ) dτ, (2)

where the orderα fulfills n − 1 � α < n andΓ represents the Euler’s gamma function
α is an integer, these derivatives are defined in the usual sense, i.e.,

aDα
t f (t) =

(
d

dt

)α

, tDα
bf (t) =

(
− d

dt

)α

, α = 1,2, . . . . (3)

Now we shall briefly review Riewe’s formulation of fractional generalization of
grangian and Hamiltonian equations of motion [13,14]. The starting point is the a
function of the form

S =
b∫

a

L
({

qr
n,Q

r
n′

}
, t

)
dt. (4)

Here the generalized coordinates are defined as

qr
n := (

aDα
t

)n
xr(t), Qr

n′ := (
tDα

b

)n′
xr(t), (5)

and r = 1,2, . . . ,R represents the number of fundamental coordinates,n = 0, . . . ,N,

the sequential order of the derivatives defining the generalized coordinatesq, andn′ =
1, . . . ,N ′ the sequential order of the derivatives in definition of the coordinatesQ. A nec-
essary condition forS to posses an extremum for given functionsxr(t) is thatxr(t) fulfill
the Euler–Lagrange equations [13,14]

∂L

∂qr
0

+
N∑

n=1

(
tDα

b

)n ∂L

∂qr
n

+
N ′∑

n′=1

(
aDα

t

)n′ ∂L

∂Qr
n′

= 0. (6)

Using the references [13,14], the generalized momenta have the following form:

pr
n =

N∑
k=n+1

(
tDα

b

)k−n−1 ∂L

∂qr
k

,

πr
n′ =

N ′∑
k=n′+1

(
aDα

t

)k−n′−1 ∂L

∂Qr
k

. (7)

Thus, the canonical Hamiltonian is given by

H =
R∑N−1∑

prqr +
R∑N ′−1∑

πr′Qr ′ − L. (8)

r=1 n=0

n n+1
r=1 n′=0

n n +1
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∂H

∂qr
N

= 0,
∂H

∂Qr
N ′

= 0. (9)

Forn = 1, . . . ,N , n′ = 1, . . . ,N ′ we have the following equations of motion:

∂H

∂qr
n

= tDα
bpr

n,
∂H

∂Qr
n′

= aDα
t πr

n′ , (10)

∂H

∂qr
0

= − ∂L

∂qr
0

= tDα
bpr

0 + aDα
t πr

0 . (11)

The remaining equations are given by

∂H

∂pr
n

= qr
n+1 = aDα

t qr
n,

∂H

∂πr
n′

= Qr
n+1 = tDα

bQr
n′ , (12)

∂H

∂t
= −∂L

∂t
, (13)

wheren = 0, . . . ,N , n′ = 1, . . . ,N ′.

3. Fractional Euler–Lagrange equations

Recently Agrawal has obtained the Euler–Lagrange equations for fractional varia
problems [17]. In the following we like to present briefly his approach.

Consider the action function

S
[
q1

0, . . . , qR
0

]=
b∫

a

L
({

qr
n,Q

r
n′

}
, t

)
dt, (14)

subject to the independent constraints

Φm

(
t, q1

0, . . . , qR
0 , qr

n,Q
r
n′

) = 0, m < R, (15)

where the generalized coordinates are defined as

qr
n := (

aDα
t

)n
xr(t), Qr

n′ := (
tD

β
b

)n′
xr(t). (16)

Then, the necessary condition for the curvesq1
0, . . . , qR

0 with the boundary condition
qr

0(a) = qra
0 , qr

0(b) = qrb
0 , r = 1,2, . . . ,R, to be an extremal of the functional given

Eq. (14) is that the functionsqr
0 satisfy the following Euler–Lagrange equations [17]:

∂L̄

∂qr
0

+
N∑

n=1

(
tDα

b

)n ∂L̄

∂qr
n

+
N ′∑

n′=1

(
aDα

t

)n′ ∂L̄

∂Qr
n′

= 0, (17)

whereL̄ has the form [17]

L̄
({

qr
n,Q

r
n′

}
, t, λm(t)

) = L
({

qr
n,Q

r
n′

}
, t

) + λm(t)Φm

(
t, q1

0, . . . , qR
0 , qr

n,Q
r
n′

)
. (18)
Here the multipleλm(t) ∈ Rm are continuous on[a, b].
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3.1. Fractional Hamiltonian formulation of Agrawal’s approach

In order to obtain the Hamilton’s equations for the fractional variational problems
redefine the left and the right canonical momenta as

pr
n =

N∑
k=n+1

(
tDα

b

)k−n−1 ∂L̄

∂qr
k

,

πr
n′ =

N ′∑
k=n′+1

(
aDα

t

)k−n′−1 ∂L̄

∂Qr
k

. (19)

Using (19), the canonical Hamiltonian becomes

H̄ =
R∑

r=1

N−1∑
n=0

pr
nq

r
n+1 +

R∑
r=1

N ′−1∑
n′=0

πr
n′Qr

n′+1 − L̄. (20)

Then, the modified canonical equations of motion are obtained as
{
qr
n, H̄

} = tDα
bpr

n,
{
Qr

n′ , H̄
} = aDα

t πr
n′ , (21){

qr
0, H̄

} = tDα
bpr

0 + aDα
t πr

0, (22)

wheren = 1, . . . ,N , n′ = 1, . . . ,N ′.
The other set of equations of motion are given by

{
pr

n, H̄
} = qr

n+1 = aDα
t qr

n,
{
πr

n′ , H̄
} = Qr

n+1 = tDα
bQr

n′ , (23)

∂H̄

∂t
= −∂L̄

∂t
. (24)

Here,n = 0, . . . ,N , n′ = 1, . . . ,N ′ and the commutator{· , ·} is the Poisson’s bracket de
fined as

{A,B}qr
n,pr

n,Qr
n′ ,πr

n′ = ∂A

∂qr
n

∂B

∂pr
n

− ∂B

∂qr
n

∂A

∂pr
n

+ ∂A

∂Qr
n′

∂B

∂πr
n′

− ∂B

∂Qr
n′

∂A

∂πr
n′

, (25)

wheren = 0, . . . ,N , n′ = 1, . . . ,N ′.

4. Equivalence of fractional Hamiltonian and Lagrangian formulations for systems
with linear velocities

Recently, for 0< α � 1, the Lagrangians with linear velocities were investigated
[21]. For example, the Euler–Lagrange equations of the following Lagrangian:

L′ = aj (q
i)aDα

t qj − V (qi), (26)

were obtained as [21]

∂aj (q
i) α j α i ∂V (qi)
∂qk aDt q + tDb ak(q ) −
∂qk

= 0. (27)
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Now we would like to obtain the Hamiltonian equations of motion for the same m
Let us define

xn
j = (

aDα
t

)n
qj , n = 0,1, . . . ,N − 1, j = 1,2, . . . ,R. (28)

The generalized momenta are given by

p0
j = ∂L

∂x0
j

= aj

(
x0
i

)
, p1

j = ∂L

∂x1
j

= 0. (29)

The canonical Hamiltonian reads as

H = (
p0

j − aj

(
x0
i

))
x1
j + V

(
x0
i

)
. (30)

The Hamiltonian equations of motion are calculated as

∂H

∂x1
j

= p0
j − aj

(
x0
i

) = (
tDα

b

)
p1

j = 0. (31)

In fact, this equation is the primary constraint in the Dirac’s formalism. The other equa
of motion are calculated as

∂H

∂x0
k

= −∂aj (x
0
i )

∂x0
k

x1
j + ∂V (x0

i )

∂qk
= (

tDα
b

)
p0

k , (32)

∂H

∂p0
k

= x1
k = (

aDα
t

)
qk. (33)

Making use of Eq. (31) we obtain

∂aj (q
i)

∂qk aDα
t qj + tDα

bak(q
i) − ∂V (qi)

∂qk
= 0. (34)

It is obvious the equivalence between Eqs. (34) and (27). An interesting point
specified here is that, primary constraints in the Dirac’s formalism are present as equ
of motion in our treatment, while the other Hamiltonian equations of motion are equiv
to the Lagrangian equations of motion as given in [21].

5. Conclusion

One of the main problems encountered in applying the fractional calculus to a
singular Lagrangian and Hamiltonian is the existence of multiple choices of the po
fractional generalizations. In addition, the solutions of the fractional Euler–Lagrange
tions contain more information than the classical ones. In this paper, Hamiltonian equ
have been obtained for systems with linear velocities, in the same manner as those o
by using the formulation of Euler–Lagrange equations for variational problems introd
by one of us [21]. We study the general model for systems with linear velocities and
observed that the Hamiltonian and Lagrangian equations which are obtained by t

methods are in exact agreement.
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