On Medial Semigroups*

J. L. Chrislock

University of California, Santa Cruz, California 95060

Received March 20, 1968

1. Introduction

Tamura and Kimura [11] proved that any commutative semigroup is a semilattice of Archimedean semigroups. Subsequently, Tamura ([7], [10]), Petrich [4], and Hewitt and Zuckerman [2] have investigated commutative Archimedean semigroups. The purpose of this paper is to generalize some of their results to medial semigroups (\(xab y = xby \)).

A congruence \(\tau \) on a semigroup \(S \) will be called a semilattice congruence if \(S/\tau \) is a semilattice (\(x^2 = x, xy = yx \)). There exists a semilattive congruence on a semigroup \(S \) which is contained in all others. This congruence is unique, and we will denote it by \(\sigma_s \). Tamura ([6], [9]) and later Petrich [5] proved that a congruence class \(\tau' \) of \(S \) modulo \(\sigma_s \) has no nontrivial semilattice congruence, that is, \(T \) as a semigroup has \(a\sigma_s b \) for all \(a, b \in T \).

A semigroup \(S \) will be called Archimedean if for all \(a, b \in S \) there is an \(n \in \mathbb{N} = \{1, 2, 3, \ldots \} \) such that \(a^n \in \mathbb{S}S \) and \(b^n \in S\mathbb{S} \). In Section 2, we give \(\sigma_M \) explicitly for a medial semigroup \(M \) and prove that the congruence classes of \(\sigma_M \) are Archimedean semigroups. In Sections 3 and 4 we investigate Archimedean semigroups which contain idempotents and extend a result in [11]. Finally in Section 5, medial separative semigroups (\(x^2 = xy = y^2 \) implies \(x = y \)) are studied, and it is proved that any such semigroup can be embedded in a semigroup which is a union of groups.

Clifford and Preston [1] contains all undefined terms. In addition, it contains in Section 4.3 those results generalized here.

2. Medial Semigroups

A semigroup \(M \) is medial if \(xab y = xby \) for all \(x, a, b, y \in M \). Such a semigroup \(M \) satisfies \((xy)^n = x^n y^n \) and \((MxM)^n = M^n x^n M^n \) for all \(x, y \in M \) and \(n \in \mathbb{N} \).

* Presented to the American Mathematical Society, August 31, 1967.

Theorem 2.1. For a medial semigroup M, aa_Mb ($a, b \in M$) if and only if $a^n \in MbM$ and $b^n \in MaM$ for some $n \in \mathbb{N}$. Furthermore, the congruence classes of σ_M are medial Archimedean semigroups.

Proof. Define a relation ρ on M by $a \rho b$ if $a^n \in MbM$ and $b^n \in MaM$ for some $n \in \mathbb{N}$. Reflexivity and symmetry of ρ are obvious. To show its transitivity and compatibility, let $a \rho b$, $b \rho c$, and $d \in M$. Then $a^n \in MbM$, $b^n \in MaM$, $c^n \in McM$, and $e^n \in MbM$ for some $m, n \in \mathbb{N}$. Thus

$$a^m e (MbM)^m = M^m b^m M^m \subseteq M^m McM M^m \subseteq McM.$$

Similarly, $c^n e \in MaM$. Thus $a \rho c$. The proof that ρ is compatible involves four statements like the following:

$$(ad)^{n+1} = a^{n+1} d^{n+1} \in MbMd^{n+1} \subseteq MbdMd^n \subseteq MbdM.$$

It now follows easily that ρ is a semilattice congruence, for $x^y \in Mx^y M$, $(xy)^z \in Mxy M$, and $(yx)^z \in Myx M$ for every $x, y \in M$. Hence $\sigma_M \subseteq \rho$. Conversely, if $a \rho b$ then $a^n = ubv$ and $b^n = waz$ for some $n \in \mathbb{N}$ and $u, v, w, z \in M$. Thus

$$a_\sigma_M a_\sigma_M ubv_\sigma_M ubv_\sigma_M a_\sigma_M b_\sigma_M w_\sigma_M a_\sigma_M z_\sigma_M b_\sigma_M w_\sigma_M b_\sigma_M.$$

Therefore $\rho \subseteq \sigma_M$. Hence $\rho = \sigma_M$.

It remains to show that a congruence class L of σ_M is an Archimedean semigroup. By what was mentioned in the introduction, aa_Lb for every $a, b \in L$. But L is a medial semigroup, and we therefore can apply the explicit formulation of σ_L above. Thus L is Archimedean.

For a medial semigroup M, we will call the congruence classes of M modulo σ_M the Archimedean components of M and will say that M is a semilattice of Archimedean semigroups and write $M = U [M_a : a \in Y]$, where $Y = \{a_\sigma M : a \in M\}$.

3. Archimedean Semigroups

In this section we investigate Archimedean semigroups containing idempotents. We do not require mediality.

A subset A of a semigroup S will be called a root of S if for each $a \in S$ there is some $n \in \mathbb{N}$ such that $a^n \in A$. A semigroup S will be called rooted if it contains an idempotent and if the union of all its subgroups is a root for S.

The proof of the following is a direct application of the definition of an Archimedean semigroup.

Lemma 3.1. A semigroup S is Archimedean if and only if each of its ideals is a root of S.
THEOREM 3.2. A semigroup S is Archimedean and contains an idempotent if and only if it possesses an ideal K which is both a simple semigroup with an idempotent and a root of S.

Proof. Let e be an idempotent of an Archimedean semigroup S. Since every ideal of S is a root of S, e belongs to all ideals of S. Thus S contains a minimal ideal K. This ideal K is obviously a root of S, and by Corollary 2.30 of [1], it is a simple semigroup.

Conversely, if S possesses an ideal K which is a simple semigroup, then K must be the minimal ideal of S. Thus if it is a root of S, every ideal of S is a root of S. By Lemma 3.1, S is Archimedean.

COROLLARY 3.3. A semigroup S is Archimedean and rooted if and only if it contains an ideal K which is both a completely simple semigroup and a root of S.

Proof. If S is Archimedean and rooted, it has a simple ideal K as a root, by Theorem 3.2. But K itself must be rooted if S is. Thus by Theorem 2.55 of [1], K is completely simple.

If a semigroup S contains a completely simple ideal K which is a root of S, then S is Archimedean by Theorem 3.2. In addition, since K is the union of all subgroups of S, S is rooted.

COROLLARY 3.4. Let S be Archimedean and rooted. For all idempotents e, f of S, eS is a right group, Sf is a left group, and eSf is a group.

Proof. The semigroup S has an ideal K which is completely simple. Since K contains all idempotents of S, $eS = e(eS) \subseteq eK \subseteq eS$ for every idempotent e of S. Hence $eS = eK$. Similarly, $Se = Ke$ and $eSf = eKf$ for all idempotents e and f of S. Using a representation of K as triples ([1], Theorem 3.5), we can easily show, for instance, that $eK = eS$ is a right group.

We end our discussion of Archimedean semigroups by merely stating two results. A semigroup T is right Archimedean if, for all $a, b \in T$, $a^n \in bT$, and $b^n \in aT$ for some $n \in \mathbb{N}$.

THEOREM 3.5. A semigroup T is right Archimedean and contains an idempotent if and only if it possesses an ideal which is both a right group and a root of T.

COROLLARY 3.6. If T is a right Archimedean semigroup containing idempotents e and f, then eT is a right group and $Te = fTe$ is a group. Furthermore, the set of all idempotents E of T is a right zero semigroup and $eT \cong Te$ for all $e \in E$.

It is interesting to notice that the presence of an idempotent in a right Archimedean semigroup T guarantees that T will be rooted.

4. Medial Archimedean Semigroups

Theorem 2.1 certainly motivates us to study medial semigroups which are Archimedean. We begin by studying such semigroups which contain idempotents.

Let L and R be non-empty sets, and make both into semigroups by defining $l \cdot m = l(l, m \in L)$ and $r \cdot s = s(r, s \in R)$. The direct product $L \times R$ is called a rectangular band. If a semigroup is isomorphic to the direct product of a group and a rectangular band, it will be called a rectangular group. Ivan [3] has proved that a semigroup is a rectangular group if and only if it is a completely simple semigroup in which the idempotents form a subsemigroup.

Theorem 4.1. Let M be a medial semigroup. M is an Archimedean semigroup possessing an idempotent if and only if M contains an ideal J which is both a rectangular group and a root of M.

Proof. Let M be Archimedean with an idempotent. By Theorem 3.2, M contains a simple ideal J which is a root of M. Let e, f, be idempotents of J such that $ef = fe = e$. Since J is simple, $f \cdot xey$ for some $x, y \in J$. Thus

$$f = f^2 = xef = xef = xeyef = fef = ef = e.$$

So every idempotent of J is primitive ([1], p. 76), and hence J is a completely simple semigroup ([1], p. 76). But the idempotents of a medial semigroup form a subsemigroup. Therefore, by Ivan’s result, J is a rectangular group.

Since a rectangular group is simple with an idempotent, the converse is a trivial consequence of Theorem 3.2.

Corollary 4.2. Let M and J be as in Theorem 4.1. If E is the set of idempotents of M, then E is a rectangular band; eMf is an abelian group for all $e, f, g \in E$, and $J \cong eMf \times E$ for all $e, f \in E$.

Proof. All idempotents of M lie in J. But if $J \cong G \times \Gamma$, G a group and Γ a rectangular band, then Γ is isomorphic to the set of all idempotents of J. Hence E is isomorphic to the rectangular band Γ. Furthermore, since M is rooted, eMf, for all $e, f, g \in E$, is a group by Corollary 3.4, and since M is medial, eMf is abelian. Finally, we saw in the proof of Corollary 3.4 that $eMf \cong G$. Thus $J \cong eMf \times E$ for all $e, f \in E$.

Corollary 4.3. Let M, J, and E be as in Corollary 4.2. There exists a congruence relation ρ on M such that M/ρ is isomorphic to the rectangular
band E and such that each congruence class $M_e(e \in E)$ of ρ contains an ideal G_e which is both an abelian group and a root of the semigroup M_e.

Proof. Since J is isomorphic to the direct product $G \times E$ of a group G and the rectangular band of idempotents E, we can think of J as a disjoint union of groups G_e, where $G_e = \{(g, e) : g \in G\}$. Now let

$$M_e = \{a \in M : a^n \in G_e \text{ for some } n \in N\}.$$

Since the G_e's are disjoint subsemigroups and since $J = \bigcup_{e \in E} G_e$ is a root of M, the M_e's induce an equivalence relation ρ on M. To verify the compatibility of ρ, let $a^n, b^m \in G_e$ and $d \in M$. Clearly $d^p \in G_f$ for some $f \in E$ and $p \in N$. Therefore

$$(ad)^{np} = a^{np}d^m \in G_e G_f \subseteq G_{ef}.$$

Similarly, $(bd)^{np} \in G_{ef}$. Thus $ad \rho bd$. Likewise, $da \rho db$.

The fact that M/ρ is isomorphic to E is easily seen since E is a representative system for the congruence ρ and at the same time a semigroup. Finally, let M_e be a congruence class of ρ, $M_e \cap J = G_e$, and since J is an ideal of M, G_e is an ideal of M_e. The definition of M_e clearly implies that G_e is a root of M_e. The proof is complete.

It is obvious from Theorem 4.1 that a medial Archimedean semigroup is rooted if and only if it contains an idempotent. Consequently, every Archimedean component of a medial semigroup N satisfies Theorem 4.1 if and only if N is rooted.

5. Separative Semigroups

A semigroup is called separative if $x^2 = xy = y^2$ implies $x = y$. We will call a semigroup left [right] separative if $x^2 = xy$ and $y^2 = yx$ imply $x = y$. If a medial semigroup is left [right] separative, then it is separative. A rectangular band $L \times R$ with $|L| \geq 2$ and $|R| \geq 2$ shows that the converse is false.

Theorem 5.1. If M is a medial semigroup with Archimedean components $M_a(x \in Y)$, then

1. M is separative if and only if in each M_a $ax = ay$ and $xb = yb$ implies $x = y$,

2. M is left [right] separative if and only if each M_a is left [right] cancellative, and

3. M is left and right separative if and only if each M_a is cancellative.
Proof. Let M be a separative medial semigroup. If, for $n \geq 2$, $x^{n+1} = x^n y (x, y \in M)$, then

$$\begin{align*}
(x^n)^2 &= x^{n-1} x^{n+1} = x^{n-1} x^n y = x^n (x^{n-1} y) \\
&= x^{n-1} x^n y = x^n (x^{n-1} y) = (x^n y)^2,
\end{align*}$$

where $x^n y = y$ if $n = 2$. Thus $x^n = x^{n-1} y$, by the separativity of M. Repeating this process $n - 1$ times, we get $x^2 = xy$. Similarly, $x^{n+1} = y x^n$, $n \in N$, implies $x^2 = y x$.

Now suppose $a, x, y \in M_\alpha (\alpha \in Y)$ such that $ax = ay$. Then for some $u, v, \in M$ and $n \in N$, $x^n = u a v$.

Thus $x^{n-1} = u a v x = u a v y = u a v = x^n y$.

By the above, $x^2 = xy$. A similar argument proves $xb = yb(x, y, b \in M_\alpha)$ implies $yb = y$, since M is separative, $ax = ay$ and $xb = yb(a, b, x, y \in M_\alpha)$ implies $x = y$. This proves half of (1).

Conversely, let each $M_\alpha (\alpha \in Y)$ satisfy this condition, and suppose $x^2 = xy = y^2$ for $x, y \in M$. Recalling the definition of σ_M,

$$x \sigma_M x^2 \sigma_M y^2 \sigma_M y.$$

Therefore, x and y are in the same Archimedean component. Since $xx = xy$, $xy = yx$, $x = y$. The proof of (1) is complete. The proof of (2) is similar, and (3) follows immediately from (2).

If ρ is a congruence on a semigroup S, the elements of S/ρ will be denoted by $\overline{x} (x \in S)$.

LEMMA 5.2. Let L be a medial semigroup in which $ax \equiv ay$ and $xb \equiv yb$ imply $x \equiv y$. Define a relation η on the semigroup $L^* := L \times L \times L$ by $(a, b, c) \eta (a', b', c')$ if $cab'c' = c' a' b c$. This relation is a congruence relation, and L^*/η is a rectangular group. Moreover, the mapping $\varphi : L \to L^*/\eta$ defined by $(a) \varphi = (\overline{a}, a^2, a)$ is an isomorphism.

Proof. Let L, η, L^*, and φ be as stated above. Reflexivity and symmetry of η follow immediately. To prove transitivity, let $(a_1, b_1, c_1) \eta (a_2, b_2, c_2)$ and $(a_2, b_2, c_2) \eta (a_3, b_3, c_3)$. By the definition of η, $c_2 a_2 b_2 c_2 = c_3 a_3 b_2 c_3$ and $c_2 a_2 b_2 c_2 = c_2 a_2 b_2 c_2$. We get

$$c_2 a_2 b_2 c_2 c_2 a_2 b_2 c_2 = c_3 a_3 b_3 c_3.$$

$$c_2 a_2 b_2 c_2 c_2 a_2 b_2 c_2 = c_3 a_3 b_2 c_3.$$

Similarly, $(c_3 a_3 b_2 c_3) b_2 c_2 c_2 = (c_3 a_3 b_1 c_1) b_2 c_2 c_2$.

Therefore, x and y are in the same Archimedean component. Since $xx = xy$, $xy = yx$, $x = y$. The proof of (1) is complete. The proof of (2) is similar, and (3) follows immediately from (2).

If ρ is a congruence on a semigroup S, the elements of S/ρ will be denoted by $\overline{x} (x \in S)$.
By our assumption on L, $c_1 a_1 b_1 c_2 = c_2 a_2 b_2 c_1$, in other words, $(a_1, b_1, c_1) (a_2, b_2, c_2)$. The proof that η is compatible involves a routine application of mediality.

Since L/η^* is obviously medial, the proof that it is a rectangular group will be complete once we show that it is simple and contains an idempotent (Theorem 4.1). The existence of an idempotent is easy. Any element of the form (a, a, a) is idempotent. Now let $(a, b, c), (e, f, g) \in L^*/\eta$. Since $(b, a, g)(a, b, c)(e, f, g) \eta(e, f, g), L^*/\eta$ is simple.

To show that φ is an isomorphism, let $\varphi(a) = \varphi(b) (a, b \in L)$. By the definition of φ, $(a, a^2, a) \eta(b, b^2, b)$. Thus

$$a^2 b^3 = a b b^2 = b b a^2 = b^2 a^3.$$ Consequently,

$$(b^2 a^2) a = b (b^2 a^2) = b (a^2 b^3) = (b^3 a^2) b,$$

and

$$a (a^2 b^3) - (a^2 b^3) (a b^2) - (b^2 a^3) (a b^2) - (b b a^3) ab$$

$$= b (a^2 b^3) ab = b (b^2 a^2) b^2 = b (a^2 b^3) b^2 = b (a b^3).$$

By our assumption on L, $a = b$. Finally, φ is a homomorphism since $\varphi(a) \varphi(b) = (ab, a^2 b^2, ab) = (ab, (ab)^2, ab) = \varphi(ab)$.

Theorem 5.3. A medial semigroup can be embedded in a semigroup which is a union of groups if and only if it is separative.

Proof. Let S be a semigroup which is a union of groups, and let M be a subsemigroup of S. To prove separativity, suppose $x^2 = xy = y^2$ for $x, y \in M$. By ([1], p. 23), S is a disjoint union of groups. Therefore x and y must be elements of a common subgroup of S. But in this group $x = y$. Thus $x = y$.

Conversely, Let M be a separative medial semigroup with Archimedean components $M_\alpha (\alpha \in Y)$. Combining Theorem 5.1 and Lemma 5.2, we can embed each M_α, using a congruence relation η_α, into a rectangular group R_α. Now if $(a, b, c) \in R_\beta$ and $(x, y, z) \in R_\gamma (\beta, \gamma \in Y)$, define a product on $R = U\{R_\alpha : \alpha \in Y\}$ by

$$(a, b, c) \cdot (x, y, z) = (ax, by, cz) \in R_\beta \gamma.$$ To show that the product is well defined, let $(a, b, c) \eta_\beta (a', b', c')$ and $(x, y, z) \eta_\gamma (x', y', z')$. Then in $R_\beta \gamma$,

$$(ax, by, cz) = (a' x', b' y', c' z')$$

since

$$(cz)(ax)(b'y')(c' z') = (cab' c')(zxy' z') = (c'a' bc)(z' x' yz)$$

$$= (c' z')(a' x')(by)(cz).$$
The operation is obviously associative. Finally, define a mapping \(\Psi : M \to R \) by
\[
(a, a^2, a) \in R \] if \(a \in M \). Since the restriction of \(\Psi \) to each \(M \) is one-to-one (Lemma 5.2) and since \((M \alpha) \Psi \cap (M \beta) \Psi = \emptyset \) if \(\alpha \neq \beta \), \(\Psi \) is 1 – 1. It is also a homomorphism since
\[
(ab) \Psi = (ab, (ab)^2, ab) = (ab, ab^2ab) = (a) \Psi \cdot (b) \Psi.
\]
Thus \(\Psi \) is embedded in the union of groups \(R \).

A congruence \(\xi \) on a semigroup \(S \) will be called a [left, right] separative congruence if \(S/\xi \) is [left, right] separative. The following theorem determines explicitly the least [left, right, left and right] separative congruence on a medial semigroup.

Theorem 5.4. Let \(M \) be a medial semigroup. The relation \(\xi \) defined by
\[
\xi = \{(a, b) \mid a^n = a^n b \text{ and } b^n = b^n a \text{ for some } n \in \mathbb{N}\}
\]
is the smallest left separative congruence on \(M \). The smallest right separative congruence \(\eta \) on \(M \) is defined dually. The relation \(\xi_0 = \xi_1 \cap \xi_2 \) is the smallest separative congruence on \(M \), and the relation \(\xi_3 \) defined by \(\xi_3 = \{(a, b) \mid a^n = a^n b a \text{ and } b^n = b^n a b \text{ for some } n \in \mathbb{N}\} \) is the smallest left and right separative congruence on \(M \).

Proof. Since all four proofs are similar, we will prove the theorem just for \(\xi_0 \). Both \(\xi_2 \) and \(\xi_3 \) are easily shown to be congruences. Hence \(\xi_0 = \xi_1 \cap \xi_2 \) is also. To show that \(\xi_0 \) is separative, let \(x \xi_0 y, x \xi_0 y' \) for some \(x, y \in M \). By the definition of \(\xi_0 \), we have \(x^2 \xi_1 xy, xy \xi_1 y^2 \), and \(x^2 \xi_1 y^2 \). Thus for some \(n \in \mathbb{N} \),

1. \((x^2)^{n+1} = (x^2)^n \cdot xy \)
2. \((y^2)^{n+1} = (y^2)^n \cdot xy \)
3. \((y^2)^{n+1} = (y^2)^n \cdot x^2 \)

Multiplying (1) by \(x^2 \), we get
\[
(4) \quad x^{2n+4} = x^{2n+3}y,
\]
Multiplying (3) by \(y^2 \) and using (2), we get
\[
(5) \quad y^{2n+4} = y^{2n+2}x^2 = y(y^{2n}xy) = y^2y^{2n-2} = y^{2n+4}x.
\]
Statements (4) and (5) imply \(x \xi_1 y \). Similarly, \(x \xi_2 y \).

Hence \(x \xi_0 y \).

It remains to prove that \(\xi_0 \) is the smallest such congruence. Let \(\xi \) be another separative congruence on \(M \), and let \(a \xi b(a, b \in M) \). Since \(a \xi b \) and \(a \xi b \),
\[
a^{n+1} = a^n b \text{ and } b^{n+1} = ab^n \text{ for some } n \in \mathbb{N}.
\]
Letting \(M/\xi = P \), we get
\[
\bar{a} = \bar{a} \xi \bar{b} = \bar{a} \xi \bar{b}.
\]
Hence \(\bar{a} \) and \(\bar{b} \) are in the same Archimedean component of \(P \). But \(P \) is separative. Thus by (1) of Theorem 5.1, \(\bar{a} = \bar{b} \) since \(\bar{a}^{n+1} = \bar{a}^n \bar{b} \) and \(\bar{b}^{n+1} = \bar{a}^n \bar{b} \). In other words, \(a \xi b \). This completes the proof.
Note: Results have been avoided for Archimedean semigroups without an idempotent. In fact, the only result known in the commutative case requires cancellation. See [7] or ([1], p. 136). Related results appear in [4] and [10]. A similar characterization is possible for medial Archimedean semigroups without an idempotent if we require left cancellation (we will call these N^\ast-semigroups) and goes as follows. Let H be a medial right group and I be a function from $H \times H$ to Z (the set of non-negative integers) which satisfies

1. $I(\alpha, \beta y) + I(\beta, y) = I(\alpha, \beta) + I(\alpha \beta, y) - I(\beta, \gamma) + I(\beta, \alpha),$

for each $\alpha \in H$ there is an $n \in N$ such that $I(\alpha^n, \alpha) > 0$, and

2. there is a left identity e of H such that $I(e, e) = 1$. Define a product on $Z \times H$ by

$$(n, \alpha) \cdot (m, \beta) = (n + m + I(\alpha, \beta), \alpha \beta).$$

Then $\{Z \times H, \cdot\}$ is an N^\ast-semigroup. Conversely, for an N^\ast-semigroup S there is a right group H and a function $I : H \times H \rightarrow Z$ satisfying (1), (2), and (3) such that $\{Z \times H, \cdot\}$ is isomorphic to S. We have also proved the following generalization of [4]. Let S be an N^\ast-semigroup. S is finitely generated if and only if each of its associated right groups is finite. Furthermore, each associated right group of S is periodic if and only if for each $x, y \in S$ there exist $p, q \in N$ such that $x^p = y^q$.

References

7. TAMURA, T. Commutative nonpotent Archimedean semigroup with cancellation law I. J. Gakugei Takushina Univ. 8 (1957), 5–11.