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The function E(T) is used to denote the error term in the mean-square estimate 
for the Riemann zeta-function on the half-line. In this paper we will prove a variety 
of new results concerning this function. The general aim is to extend the analogy of 
this function with the error term in Dirichlet’s divisor problem. There are three 
main themes that we stress. The first theme is representations for the integral 
E,(T) = jl E(t) dt. The forms these take are similar to (but more complicated than) 
the analogous formulas due to Voronoi in the divisor problem. The proof proceeds 
somewhat as the proof Atkinson used to get his representation for E(T) itself, and 
is about as difficult. The extra averaging does not seem to aid the method 
significantly, as it did for Voronoi. The second theme is upper and lower bound 
results. Essentially we show that the best bounds known in the divisor problem also 
hold for this function as well. These include both omega-plus and omega-minus 
results for E(T) and for E,(T). The results for E,(T) completely determine its 
order. The methods used here are again similar to ones used in the divisor problem. 
However, some recent innovations are needed to account for the lack of 
arithmetical structure and the complicated natures of our representation for E,(T) 
and Atkinson’s for E(T). Finally, we prove a mean-square estimate for E,(T). This 
estimate indicates that this function frequently achieves its maximal order. :x- 1989 

Acadtxmc Press. Inc. 

1. INTRODUCTION 

Mean-square estimates have always played a central role in the theory of 
the Riemann zeta-function i(s). Let, as usual, for T> 2, 
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1.52 HAFNER AND IVIk 

denote the error term in the mean-square formula for i(s) on the “critical 
line” Se s = t (y is Euler’s constant). This function has a rich but difficult 
history, and we refer the reader to [ 18, Chap. 151 for a comprehensive 
account. An important explicit formula for E(T) was established long ago 
by F. V. Atkinson [ 11. If AT< N< A’T for any two fixed constants 
0 <A <A’, then Atkinson’s result may be written as 

E(T)=C,(T)+Z,(T)+O(log’T), 

where 

(1.1) 

z-,(T)= -2 1 $$log T,2m) ml cod g( T, ~11, 
tr< N’ 

(1.2) 

and 

~j(T,~)=(l+~)~“4{($)1i2arsinh(~)”’}-’ (j=1,2), (1.4) 

f(T,n)=2Tarsinh +(27~nT+n~n’)~~~-~, 

g(T,n)= Tlog & -T+$, 
i > 

(1.7) 

and as usual d(n) = Ciilrl 1 is the number of divisors of n and 

ar sinh x= log(.u+,/&?). (The function ez(T, n) will appear in the 
mean-value formula (2.4).) One of the motivations for Atkinson’s work was 
a certain analogy between E(T) and 27cA(T/27r), where 

A(x) = c d(n) - .x log x - (2~ - 1) x 
n< Y 

is the error term in the asymptotic formula for the summatory function of 
d(n) (Dirichlet’s divisor problem). Indeed, the first o(T’j3) terms in C,(T) 
are asymptotically equal (apart from the (- 1)” factor) to the 
corresponding terms in the famous Voronoi formula for 2nA(T/2x) (see 
[ 18, Chap. 31). This analogy is also present in the mean-square formulas 

(67~‘)~’ f d2(n)n 3’1 7-312 + ‘,( 7-5!4 + C) 

n=I 
(1.8) 
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and 

s 

r 
E*(t)& f(2n)-1” f d2(n)n--“‘* ~‘/‘+qy+/Q,~* T). (1.9) 

2 n=l 

The asymptotic formula (1.8) is a classical result of H. Cramer [6] (see 
also [lS, Chap. 131 for a proof), and the error term has been improved to 
0( Tlog’ 7’) by K.-C. Tong [27]. The mean-square result (1.9) was proved 
by D. R. Heath-Brown [ 141 who used Atkinson’s formula and Cramer’s 
method. The error term here has been improved only recently to 
O(Tlog’ T) by T. Meurman [25]. Estimates for the higher power 
moments of both d( Z’) and E(T) were derived by A. Ivic [ 171, and all 
these results show the analogy between the two functions. 

The asymptotic formulas (1.8) and (1.9) provide at once the weak omega 
results d(T) = Q( T1’4) and E(T) = Q( T’14), where f(x) = Q(g(x)) as 
x -+ cc means that f(x) = o(g(x)) does not hold. The latter result was 
proved, independently of (1.9) by A. Good [8]. Here the situation is 
markedly different, since there is a long history of improvements in both 
D + and Q ~ results for d(T), while nothing beyond E(T) = Q( T”4) seems 
to have been published heretofore. We recall that f(x) = 52 + (g(x)) means 
that there exists a positive constant C and a sequence x, tending to infinity 
such that f(x,) > Cg(x,) for all n. Analogously, f(x) = Q_ (g(x)) means 
that the inequality f(y,) < - Cg( vn) holds for another sequence ,v,. The 
best known omega results for d(T) are at present 

d(T)=R+{(Tlog T)“4(loglog T)‘3+‘0g4)‘4exp{-C&gZg&?)} 

(1.10) 

and 

(log log T)“4 

(log log log T )3’4 
(1.11) 

for some suitable positive constants C and D. Of these, (1.10) is due to 
J. L. Hafner [lo], while (1.11) was proved by K. Corradi and I. Katai [S]. 
These papers contain references to previous work on the same subject. By 
analogy between E(T) and 2nA(T/2n), one expects that sharper omega 
results than E(T) = sZ( T1j4) should hold, as was hinted in [ 18, p. 4821. 

2. STATEMENT OF RESULTS 

Our main aim lies in obtaining omega results for E(T) and establishing a 
sharp asymptotic formula for jr E(t) dt. In trying to establish the analogues 
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of (1.10) and (1.11) for E(T), one encounters the following difficulties. 
First, the Voronoi formula (weak version) 

is considerably simpler than Atkinson’s formula for E(T), which contains 
two fairly complicated sums whose length is O(T). Moreover, the sum 
C,(T) in Atkinson’s formula contains the oscillating factor (- 1)“. It was 
expected by many (including the authors) that this oscillating factor would 
hinder an effective L?+ result for E(T). It will be shown, however, that the 
method of [lo] can be applied in this situation. The result is the following. 

THEOREM 1. There exists a positive constant C such that 

E(T) =Q+ {( Tlog T)‘j4 (log log T)‘3+‘og4)‘4 exp( -CJ&-l&%g?)). 

(2.1) 

To deal with the analogue of (1.11) for E(T) we shall use the ideas 
developed in [ 111, where sharp omega results for A(x; a, b) (the error term 
in the asymptotic formula for xmOnh G ‘i 1, 1 < a < b fixed integers) are 
established. Therein some fundamental ideas of Corradi and Katai [S] are 
used, which lead to the proof of (1.11). Here we shall prove the following. 

THEOREM 2. There exists a positive constant D such that 

E(T)=Q {T’,4exp(D (10g10gT)“4 >>- 
(log log log T)3’4 

12.2) 

The omega results of Theorems 1 and 2 are best possible in the sense 
that they correspond to currently best known omega results in Dirichlet’s 
divisor problem. Since problems involving E(T) are, in general, more 
difficult than the corresponding problems involving d(T), it is hard to 
imagine improvements over (2.1) and (2.2) which would not entail 
corresponding improvements in ( 1.10) and (1.11). In analogy with the 
classical conjecture A(T) < T”4+E, one expects also E(T) % T”4cE to hold, 
so actually both (2.1) and (2.2) should be fairly close to the truth. 

In connection with the proof of Theorem 2, we should point out that the 
method used by Corradi and Katai [IS] requires a functional equation for 
the generating functions of the arithmetical functions involved. In the case 
of E(T) we are not dealing with a situation of this type. The new idea 
introduced in [ 111 is that it is really the Voronoi-type series representation 
for the error term that provides the essential tool and not the functional 
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equation from which it is usually derived. But Atkinson’s formula (1.1) is 
not an infinite series representation for E(T), so that it cannot be used 
directly in this context. However, besides the explicit formula for d(T), 
G. F. Voronoi [28] also proved 

& f $sin(4n$?--z/4)+0(1). (2.3) 
n=l 

(This also follows from [ 18, Eqs. (3.26) and (3.31)].) Thus before proving 
Theorem 2 we shall establish the analogue of (2.3) for E(T), which will 
then be used in proving Theorem 2. This is an interesting problem in itself 
and the result is an asymptotic formula with a sharp error term. 

THEOREM 3. For T> 2, 

-2 1 F (log T/2mP2 sin(g(T, n))+O(T1j4), (2.4) 
fI<COT 

where e,(T, n), f(T, n), and g( T, n) are giuen hy (1.4), (1.5), and (1.6) 

respectively, and cO = 1/21r + l/2 - dw. 

This formula may be proved in a more general form (see (4.19)) with 
the ranges of summation n d N and n < N’, respectively, as in Atkinson’s 
formula. A rather simple consequence of (2.4) is the asymptotic formula 

3’4 2 (-l)“$sin 
n=l 

+ O( T2’3 log T). (2.5) 

This will be the necessary tool in the proof of Theorem 2. The formulas 
(2.3) and (2.5) also support the analogy between E(T) and 2nd(T/271), 
since apart from the factor (- 1)” the series in (2.5) is the same as the one 
in (2.3) with T/27t in place of T. To obtain (2.5) from (2.4) note that, by 
standard complex integration methods, 

where as usual p( 0) = lim sup! _ lr log I [(a + it)l/log t. Hence the classical 
bound p(f) d i is already more than sufficient for the error term in (2.5). 
The first sum in (2.4) is then split at T “3 The terms for which n 2 T”’ are . 
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estimated trivially, and the remaining ones are simplified by using Taylor’s 
formula. This leads to (2.5). We are aided here by the fact that the series in 
(2.5) is absolutely convergent. 

We now define, for T> 2, 

G(T)=j’E(t)dt-XT. (2.7) 
2 

Then from (2.4) or (2.5) it follows easily that G(T) = O(T3j4). It seemed 
interesting to investigate this function G(T) more closely. Our results for 
this function are summarized in the following theorem. 

THEOREM 4. If G( T) is defined as above, then 

s 

7‘ 

G2( t) dt = BT512 + 0( T’), B= 14(5/2) = 0.079320 . (2.8) 
2 57&&5) 

and moreover 

G(T)=R,(T3’4). (2.9) 

From (2.8) it follows immediately that G(T) =Q(T3j4) but (2.9) is shar- 
per, since it means that both G(T) = Q+(T3j4) and G(T) =Qmm(T3’4) are 
true. Thus apart from the value of the numerical constants involved, the 
order of magnitude of G(T) is precisely determined. Using (2.3) one can 
obtain the analogue of Theorem 4 for d(T), but the proof in this case 
would be simpler and we omit it. 

Besides being needed for the proof of Theorem 2, the result of Theorem 3 
may be used in various other problems involving E(T). One is determining 
upper bounds for E(T). Without any use of exponential sums we can prove 
very simply that 

E(T) < T’13 log T. (2.10) 

This result was first obtained relatively recently by R. Balasubramanian 
[2], who integrated the classical Riemann-Siegel formula to derive an 
expression for E(T) different from Atkinson’s formula. Our proof of (2.10) 
uses (2.5), (7.1) and (7.2) with x = T113. The details are analogous to those 
in the corresponding result for d(T), which can be found in [4, 
Chap. VIII]. For this reason we omit them, besides a better result is given 
below. 

Naturally, deep exponential sum techniques should lead to sharper 
results than (2.10). Using the method of G. Kolesnik [23] it was indicated 
in [ 18, Chap. 151 that one can obtain the bound E(T) < T35’108 +‘. This 
result depended on an estimate of M. Jutila [20] [ 18, Eq. (15.84)], which 
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is the analogue of the truncated Voronoi formula for d(x), for which 
Kolesnik’s method yields the estimate d(x) < .X~~“~* +E. Meanwhile, 
Kolesnik [24] developed his techniques still a little further, so that now 
it is possible in both problems to replace the exponent 35/108 = 
0.324074.. . by 139/429 = 0.324009 . . . This is close to the theoretical limit 
of the method in question, which is 0.3239247 ... , as discussed by 
S. W. Graham [9]. In both cases the “a” can be replaced by a suitable 
logarithm factor, which in view of Jutila’s estimate will be poorer in the 
case of E(T). However, using Theorem 3, we obtain a result with a much 
better log-factor: 

THEOREM 5. We have 

E(T) < T I39/429( log T) 1467/429. (2.11) 

Naturally, the above estimate holds also for d(T). But after the first ver- 
sion of this paper was written, we have been informed by H. Iwaniec and 
C. J. Mozzochi that they have just completed their important work [ 191, 
where they proved d(x) 6 .x7122 +’ (and the analogous bound for the circle 
problem). They started from the elementary formula 

d(x)=-2 1 $ ; +0(l) 
0 

(Ii/(t) = t- [t] - l/2), (2.12) 
.<J< 

and used a method similar to the one developed recently by E. Bombieri 
and H. Iwaniec [3] in proving [(f + it) < t9i56+E. The exponent 
& = 0.3 18 18 18 . . is a considerable improvement over the exponent 
g = 0.324009 . . . , which follows from Kolesnik’s method. However, note 
that no analogue of (2.12) is known to hold for E(T). Hence it does not 
seem possible at present to use this new technique to improve on (2.11), 
which is thus the sharpest known bound for E(T). We thank Iwaniec and 
Mozzochi for kindly making available to us the preprint of their work 
c191. 

3. PROOF OF THE Q, RESULT 

To avoid the square roots which appear in Atkinson’s formula we pass 
from E(T) to the more convenient function 

E,(t) = (2t) -“2 E(2nP). (3.1) 

We use (l.l)-( 1.7) and choose N = t’ so that N’ = crt’, with c1= (3 - >)/2. 
This gives 

E,(f) = E,(f) + EB(f) + a 1 ), 
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E/l(t)= c (-l~~~~E1(I,n)COs~f:((f,n)), 
n<N 

E,(r)== -(2t)p* XN, g (log f/j;;) ’ cos(gA4 n)), 

and 

~~(~,~)=(l+$)P”4{~arsinh~}P’. 

fa(t, n) = 27rt & {$ arsinh$+(l +-$)“2}-t, 

Next for positive integers n we let L,, = 47~ & and 

the Fejer kernel of index ;1,/2. Finally for a large positive integer M, let 

E*(l)=\’ E,(t+u)k,(u)du. 
1 (3.2) 

This averaging is essential to be able to eliminate the contribution from Z;, 
in Atkinson’s formula as well as isolate the relevant terms of C’. Because 
k,(u) > 0 and 0 < s’ ’ kM(u) du < 1, Theorem 1 will be an immediate con- 
sequence of the following statement: There exist absolute positive constants 
A and C such that 

E*(t)> A(tlog t)‘14 (log log t)‘3+‘og4”4exp{ -CJ&6&g-r} (3.3) 

holds for some arbitrarily large values of t. To obtain (3.3) we need a 
suitable expression for E*(t). This is contained in the following lemma. 

LEMMA 1. Zf 1 <Mb t’f* then 

E*(t)= c (-I)“$$ cos(47&2-7c/4)+0(1). (3.4) 
” < M 

The sum in (3.4) closely resembles the corresponding expression for the 
52, result in the divisor problem (see [lo]), only now the alternating 
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factor (- 1)” is present. This forces us to be more careful than in the 
divisor problem. The basic idea, however, is the same. By Dirichlet’s 
approximation theorem (see, e.g., [ 18, Lemma 9.11) we shall optimally 
select the cosines (of even index) to be positive on a thin set of integers. 
These integers will have about twice the normal number of distinct prime 
divisors. Such a set has been constructed in [lo]. We formulate the result 
for our convenience: 

LEMMA 2. For each positive constant C and positive integer K> 2, there 
is a set P, G { 1, 2, . . . . K) such that uniformly 

and if 1 P,] denotes the cardinality of P,, then 

lpc] gK(logK)1-‘“g4exp{C,lloglogK}. 

Postponing the proof of Lemma 1, we proceed to deduce (3.3) from 
(3.4). Let K= [M/2] and P, be as in Lemma 2 for this K and some C 
to be chosen later. By Dirichlet’s approximation theorem there exists t 
satisfying 

M2<t<M’(64)‘PC” (3.5) 

and such that for each m in P,, and n=2m we have It&-x,, <Q for 
some integers x,. For these n and this t, it follows that 

Note that each pair M, t constructed in this way satisfies the hypotheses of 
Lemma 1. Now (3.4) allows us to deduce that for this pair 

n=2m ” = 2m fl=Zm+ I 
?llEPC m$pC 
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c d(n)= 1 l+ 1 1- 1 1 
n < x k1C.r kl<.r kl& ‘: 

n=2m /=2m k=2m k=Zm,./=?m~ 

=;10g.x+;10gx-~logx+O(x) 

= a .Y log .Y + O(x), 

and thus also 

1 d(n)=~xlogx+O(x). 
n<r 

n=2m+l 

Partial summation gives easily the following: 

c 
n=Zm+l<M 

Using Lemma 2 and these estimates we infer from (3.6) for this pair t, M 
and C sufficiently large that 

E*(t)~(~+O(C~~))M”410gM+O(M”~)3~M”~logM. (3.7) 

Now the right-hand side of the inequality (3.5) and the second part of 
Lemma 2 imply 

M~logt(loglogr)‘“g4~‘exp-j-CJ~} (3.8) 

for some (perhaps other) C>O. From (3.7) and (3.8) we obtain (3.3) and 
so Theorem 1. It should be remarked that we may take t to be arbitrarily 
large by taking M large. This is guaranteed by the left-hand side of the 
inequality in (3.5). 

It remains to prove Lemma 1. This will be achieved in two steps. The 
first step is to show that the sum E,(t) contributes at most 0( 1) to (3.4) 
that is, if 

then 

x Pgw+~)lJh-’ Wg,(f + u, n)) k,(u) du, (3.9) 

E;(t) = O( 1). (3.10) 
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Observe first that in the sum in (3.9) we ma replace the range of 
summation n da(t+ u)* by n <ccl2 (a= (3 - P 5)/2) with an error of 
O(t-l/* log t). Furthermore, by Taylor’s formula we have 

A- {log((t + 24)/&)} -1 =i {log(rlJ;I)}P’ + O(fC3/2). 
&G J; 

Thus this error can be absorbed as well. This leaves the following 
expression to estimate: 

The integral will be estimated by replacing the exponent by its Taylor 
polynomial of degree two. We need this many terms to make the error 
small enough. Thus 

gR(t+U,n)=gB(trn)+8nrlog(t/~)u+4~{log(t!’j;;)+1} u2+O(t-1). 

Again the error term here can be ignored. The remaining relevant integral 
is 

where for t fixed 

fj(z.4) = 8nt log( r/J;;) U + 47I{ log( r/,/l;) + 1 } 24* = xu + YU2, 

say. We integrate by parts to obtain 

If we use 

k,(u)~I,min(l, (n,u))*), kb(u) 6 A’, min(l,u, (;l,u)-‘), 

x< I #(u)l % x, cp”=2Y, X$rtlogt$ Y, 

then the left-hand side of (3.12) is seen to have order at most M”2t-‘. In 
view of the inequality M d t ‘I2 the expression in (3.11) is then , 

.i~~~~~~,*~.M~~2~-~~,. 

and so (3.10) follows. 
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To complete the proof of Lemma 1 we must show 

E:(l)=[l E,(t+u)k,(u)du ~1 

( - 11, gj e,(t + u, n) cos(f,(t + u, n)) k,(u) du 

= 1 (-I)“$ cos(4ntv:;;-~/4)+0(1), (3.13) 
,I < M 

where eA andf, are given after (3.1). We proceed as in the proof of (3.10), 
first to change the range of summation to n 6 t’ and then using Taylor’s 
formula to simplify the second integral in (3.13 ). Writing 

where for t fixed 

say, we obtain 

iP’U’kM( u) du } + o( 1 ). 

(3.14) 

We shall evaluate the integral in (3.14) by using 

e’P’“‘k,u( u) du 

To see that (3.15) holds integrate first by parts as in (3.12) and note that 
for l<n<t’, we have J’- n G V < A,,. This gives easily the first bound in 
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(3.15). For the second and third parts of (3.15) observe that W<,,h/r, 
which yields the error term 0(&/t). Next we recall the estimate 

if VGA,, 

j 

I 
f?%,(u) du = 

i 

l-p+0 L ) 
M 0 V 

-1 
0 ;, 

0 

if V3 I.,. 

This can be found, for example, in [lo]. Hence for V 2 I., we have n 3 M 
so that 

This proves part of the second case. To complete the proof we only have to 
add the following claim: For V< AM 

I-c=max(O, I-&)+0(+). 

Since V < A,, we easily deduce 

1 -;>max(O, 1-G). 

~~~~~ since v< 2M implies n < M < t, there is a positive constant C such 

that 

I/>, I.,, - cn3jrt -’ >, I., - C/J. 

Thus 

as claimed. Combining the relevant formulas we complete the proof of 
(3.15). 

We may now easily finish the proof of (3.12). The terms in (3.14) for 
which M5/* < n < t’ contribute, by the first part of (3.15), no more than 

O( M ~ ‘P log M) = O( 1). 
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The contribution of the terms with M < n 6 M512 is, by the second part of 
(3.15), bounded by 

since M < r’/‘. Finally, the terms with 1 <n < M give 

This is still not exactly in the form given by (3.13). To obtain this note that 
for 1dn<M6t’i2 we have 

e,(t, n) = 1 + O(nt-‘), fA(t,n)=4ntj;l-~+O(n3’2tm’), 

and that the contribution of the error terms to the above sum will be 0( 1). 
This establishes (3.13), completing the proof of Lemma 1 and thus of 
Theorem 1. 

We remark that there are two other approaches to the proof of 
Theorem 1. One alternative is to use the mean value of E(T) given by (2.5) 
to provide a shorter proof of Lemma 1. (See [ll], where the details are 
worked out in a similar problem.) Let 

f(f)&wq (E(27$)-n)ydy, 
2 

so that by (2.5) 

/(I)=& f (-l)‘$sin(i.,,t-n/4)+0(1), 
?7=1 

and by direct computation, 

E,(i)=$f(r)+O(t~‘“). (3.17) 

Using (3.17) in (3.2) integrating by parts, and using (3.16), we get for 
t>M2, 
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The last integral can be evaluated easily as 

if n<M, 

s 

I 
e’“+‘,(u) du = 

i 

-i&J *) l-2 +0(l), 

-I 
O(l), if n>M. 

The result is then exactly Lemma 1. We have given the longer proof here, 
first because the proof of (2.5) is even longer and so little is actually gained, 
and second, because of the historical point: the techniques used in the 
proof of Lemma I have been available certainly since Atkinson proved his 
formula. Thus, there has really been no obstable to an Q, result at least as 
good as Hardy’s classical theorem [ 123 for Dirichlet’s divisor problem: 

d(x)=&?+ {(xlogx)“4loglogx}. 

The second alternative to the proof of Theorem 1, which we found out 
about during the preparation of this paper, was found independently by 
T. Meurman. His proof is also based on the ideas of the first author’s 
paper [lo] (see Lemma 2), but there are differences between his proof and 
ours. While we work with the FejCr kernel, he employs an averaging 
technique similar to [ 18, Eq. (15.71)]. We thank T. Meurman for letting us 
know of his work. 

4. THE MEAN VALUE OF E(T) 

We shall now prove Theorem 3, which will be used in Section 5 in the 
proof of the Q- result for E(T). In proving this theorem we would 
naturally wish to use Atkinson’s formula, but unfortunately the error term 
O(log2 T) in (1.1) is much too large for this purpose. However, his method 
of proof may be used, in the sense that we shall integrate the integrals 
which appear in the derivation of Atkinson’s formula. We start from (all 
the notation and references are to [ 18, Chap. 151) 

where g is the analytic continuation of the function defined, for !Re u < 0, 
by the series expansion 

g(u, l-u)=2 f d(n)Jos y-y 1 + y)“- ’ cos(2rLny) dy. 
II=1 
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Using Stirling’s formula for the gamma-function it follows that 

~~TE(t)dr=iil’,K(j+io,jio)~~dr+O(l) 

s 

27 
= {Z,(r)-Z,(t)+Z,(t)-z,(t)j &+0(l), (4.1) 

T  

where I, = Z,,(t) is as in [ 18, Eq. (15.30)], only with T replaced by t and 
N = [T]. To prove Theorem 3, it will suffice to prove 

s 2T 

E(t)dt=nT+H(2T)-H(T)+K(2T)-K(T)+0(T”4), (4.2) 
T  

where (using the notation of (1.5) and (1.6)) 

K(x) = -2 1 $ (log x/2rrn)--’ sin(g(x, n)), (4.4 
n<c”r 

) 

and then to replace T by T2-’ and sum or j= 1,2, . . . . Here 
c0 = l/271 + l/2 - J1/4 + l/271. The main term XT in (4.2) comes from Z,(t), 
while the sums defined by H will appear in the evaluation of j’,’ I, (t ) dt, 
where, for T 6 t 6 2T, 

Z,(t)=4 c d(n)/, 
sin( t log( 1 + l/v)) cos(2nny) 

p2( 1 +y)“2 log( 1 + l/y) 
CiV. (4.5) 

?I<7 

This exponential integral was evaluated directly in (15.39) of [ 18) but this 
contains the error term 0( TP “4) which, when integrated, is too large for 
our purposes. To avoid this difficulty we take advantage of the extra 
averaging over t via the following lemma. 

LEMMA 3. Let c[, /I, y, a, h, k, T be real numbers such that M, b, y are 
positiveandbounded, a#l, O<a<f, a<TJExk, b>T, k>l, T>l, 

L(t)=f(2kvl;;)-’ t1’2VP~-‘(r) 
-B 

xexp 
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und 

x exp { it log( 1 + l/y) + 27&y) dv dt. (4.6) 

Then uniformlv for ICY- 1 1 > E, 1 < k < T + 1, we have 

J(T)=L(2T)-L(T)+O(a’P”)+O(Tk?h’P”Pfl) 

+0((W) (i’+‘-a-fl)/2 T-‘/4k- 5/4), (4.7) 

A similar result, without L(2T) -L(T), holds for the corresponding integral 
with -k in place of k. 

This result is a modified version of [ 18, Lemma 15.11, originally due to 
F. V. Atkinson [ 11. The proof follows from a theorem of Atkinson I: l] 
(this is [la, Theorem 2.21) on exponential integrals, similar to the proof of 
[ 18, Lemma 15.11, so we outline the key steps. One takes (in the proof of 
the aforementioned Theorem 2.2) 

j”(z)=$og+I, 
z 

@(X)=.Ca(l +.u)- B, F(x)=&, p(x) = ;. 

The contribution of the integrals IX, + I,,, present on [ 18, p. 631, is 
contained in the O-terms in (4.7), since in our case we find that 

if k > log’ T, 

if k d log2 T. 

Likewise, the error terms 

@,(If:+kl +L”“‘I-‘, Qh(lf;+kI +f/,“‘!2)P’ 

give after integration O(a’ -“) + 0( Tk- ‘h;’ “-“), which are present in 
(4.7). The main contribution comes from I,,, only now one has to integrate 
over t. This leads to the same type of integral (the factor l/i is unimpor- 
tant) at 2T and T, respectively. The only change is that y + 1 appears 
instead of y, because of the extra factor log( 1 + l/y) in the denominator. 
Hence the main terms will be L(2T) - L(T), and as in [18, Theorem 2.21, 
the error term is @opoF;3/2 with again y + 1 replacing y. This gives the last 
O-term in (4.7) (see the analogous computation in [18, p. 453]), and 
completes the proof of Lemma 3. 
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We return now to the proof of Theorem 3. We first write 

I 
2T 

Z,(t) dt 
T  

2r 
=4 1 d(n) lim lim 

n<T 
5 s 

h sin( t log( 1 + l/y)) cos(2nny) 
%+1/2+Oh+z T  y”( 1 + yP2 log( 1 + l/y) 

dy dt 
0 

h exp( it log( 1 + l/y) + 27ciny) 
y”( 1 + y)“2 log( 1 + l/-y) dy dt 

+ O( T”4). (4.8) 

The first equality is justified because the integral defining Z,(t) converges 
uniformly at 03 and 0 for f < c1< 1 -E. Also, the second equality follows 
because the other two integrals coming from sin( . . . ) cos( . ) in (4.5) are 
estimated by Lemma 3 as O(T”4), using the estimate for the case “-k in 
place of k.” We evaluate the double integral above by applying Lemma 3 
with B=& y=l, a+O. Then we let h+cc and c(+t+O. We obtain 

I 
2TI,(t)dt=H(2T)-H(T) 
T  

x(arsinh&) ’ sin(f(2r, n)) + 0( P4), (4.9) 

where H(x) is given by (4.3). 
Henceforth we set for brevity X= [T] + $. The contribution of the 

integral 

Z2W=4d(X)jo sin(t log( 1 + l/y)) cos(2rcXy) 
y1’2( 1 + y)1’2 log( 1 + l/y) 4 

in (4.1) is estimated again by Lemma 3. Using d(X)+ X’13, it follows at 
once that 

Z,(t) dt < T- ‘lb. (4.10) 
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We now turn to 

‘3(l)= -z(10gx+2y) j. y3/2(~+y)1/2~og(~+~,y) 

m sin(t log( 1 + l/v)) sin(2nXy) alv 

= -j(logX+Zy)z3,(r)+~13,(f), 

say. It follows from [ 18, p. 4571 that 

Z,(t) = 7x+ O( T- “2 log T) (T< t<2T), 

hence 

s 2T 

f,(t) dt = nT+ O(T”’ log T), 
T  

(4.11) 

but the error term here is too large. Thus to prove (2.4) we must sharpen 
(4.11). We have first 

= 
i 

3~{cos(Tlog(l+1/~))-cos(2Tlog(l+l/~))~sin(2n~~)d~ 

0 y3’2( 1 + y)‘12 log2( 1 + l/y) 

+ O(T-‘) 

on estimating JFT.. . as 0( T -‘) by writing the sine terms in Z,,(t) as 
exponentials, and using the standard elementary estimate for exponential 
integrals [ 18, Lemma 2.11. The remaining integral above is split as 

say. Using the second mean value theorem for integrals we have I’ 6 T-II2 
by the argument at the top of [ 18, p. 4561, while I” < T-Ii2 follows on 
applying [ 18, Lemma 15.11. Hence 

I 
2T 

f,,(t) dr 4 T-“2. 
T  

Next take 132(t) and write 



170 HAFNER AND IV16 

Z&t) = j; sln(;;xy’ dy j,:“.:’ ( 1 + l/y)” u ’ du 

say. The integral Z&(t) is 0( T-’ log T), as is shown (by an integration by 
parts) in [ 18, p. 4571. This gives 

s 

2T 

Z&(t) di < log T. 
T  

In r;,(t) we have 0 <y < 1, hence by the residue theorem 

I 

l/2 + I, 

(1 + l/Y)” ZJ 
112 -- II 

‘d~=2ni-(~~~~:“+i‘]::-:,i(l+l/y)’U~’dU. 

and an integration yields 

J;il;,(t)dt=n’iT-j-;ij: sin(:““‘j,,‘+;i’(l + l/y)"u-'dudydt 

ZT 1 sin(2nXvv) 12 - 0 

-.I s s 
(1+ l/y)3’.P’ du dy dt + O( 1). 

T  0 y -,.-,I 

(We have used the elementary estimate 

s 1 sin(2Sy) 
dy =;+ O(T ‘). 

0 4 > 

The triple integrals are estimated similarly, each being 6 T-‘12. Namely, 
changing the order of integration, and integrating by parts we have 

(1 + l/y)“c’dudt 

= 1”’ (1+1/y)” da 
~ ,-c 

j2~(l+l/y)“(~+it)-‘di 
T  

s 

112 (1 + l/y)2’T (1 + l/YYT = (l+ l/Y)” 
1 

. 
x z(a + 2iT) iog( 1 + l/y) - i((~ + iT) log( 1 + I/y) 

(1 + l/y)” 
+~~T(n+it)210g( 1 + l/Y) 

dt do 
I 

<T-’ 
i‘ 

“2 (1+1/Y)” da~T.,y~l,2 
~ ,x log(l + l/y, 
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for O<vd 1, and 

171 

Combining the preceding estimates we obtain 

s 

2T 

Z3( t) dr = XT+ O(log T). 
T 

(4.12) 

Finally, it remains to deal with the integral of Z4(t) in (4.1) where 

and 

h(u,x)=2 j=.y-“(1 +y)“--‘cos(2i~xy)dy 
0 

=2 ‘UT I H’ - “(x + w)” - ’ cos(27w) dw. 
0 

It is easy to see that this integral for h is uniformly convergent and so we 
can differentiate under the integral sign to get (after changing variables 
again ) 

This integral is absolutely convergent at both endpoints so we insert it in 
the definition for Z4(f) to get 

ZT s I Ii2 + it u- 112 

X du dt. 
T  l/Z-II 

We can now evaluate explicitly the integrals with respect to u and t. We 
will see from subsequent estimates that what remains provides absolute 
convergence for the integral in x, so that this procedure is justified. We 
obtain 

-[;TZ.Jt)dt=4j;T {Z(x, ZT)-Z(x, T)+r(x, T)) d.x, (4.13) 
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where 

= 
@, ;i=s, 

-z sin(z log( 1 + l/y)) cos(2nxy) 
y112( 1 +y)3’2 log2( 1 + l/y) 

4s 

2 

x 
1, 
2 log(1 + l/y) 4. 

Write now 

r(x, T)= j;= jiT+ j3;=r+r, 

say. In I” we use 

cos( Tlog( 1 + l/y)) - cos(2Tlog( 1 + l/y)) 

= 2 sin glog(l + l/y) sin 
( > ( 

ilog(l + l/y) 
> 

and the second mean-value theorem for integrals. We have, for some 
c>3T, 

rF3T2 sin(3T/2log(l + 1/3T)) sin(T/2log(l + 1/3T)) 
’ 2 3T/2 log( 1 + l/37-) T/2 log( 1 + 1/3T) 

X ‘+ 
2 

2 log( 1 + l/y) 
dy < TX ~ ’ (4.14) 

since the first expression in curly brackets is 0( 1 ), and the integral in (4.14) 
is seen to be O(( TX) ~ ’ ) on applying [ 18, Lemma 2.11. Hence by ( 1.8) and 
the Cauchy-Schwarz inequality we obtain 

(4.15) 

In Z’ we use [ 18, Lemma 15.11 (treating the main term as an error term) to 
get the analogue of (4.15) for Z’. The integral Z(x, 2T)-Z(x, T) is also 
evaluated by [ 18, Lemma 15.11 with c( 4 4 + 0, p = 4, y = 2. The error terms 
will be 4 T(Tp1/4~p5’4+ Tp’x-‘/*), and their total contribution will be 
< T114 as in (4.15). The main terms will be 
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where 

V=2 ar sinh 

Thus (4.13) becomes 

14(f) dt 

YE- 

x{fizv~2U-1~2(U+~)-‘sin(zl/+2nx(inx+~)~2T}dx 
T  

+ O( T “4). (4.16) 

The last integral bears close resemblance to the integral for I4 itself at 
the top of [18, p. 4581. The difference is that instead of V-’ we have VP2 
and sine (at T and 2T) instead of cosine in (4.16). This difference 
is not essential, and after using the Voronoi series expansion for 
d(x) and changing the variable x to x2 the above integral may be 
estimated by [ 18, Lemma 15.21. The modification is that as on p. 454 

we have V = 2 ar sinh(x, m) = log( T/27cn); hence if we replace 
ar sinh(x @) by its square in [ 18, (15.37)], we obtain in the main 
term an additional factor 2 (log( T/2nn))-‘, and the error terms remain 
unchanged. With this remark one can proceed exactly as was done in the 
evaluation of I, in the proof of Atkinson’s formula. For this reason we shall 
omit the details of the evaluation of the integral on the right-hand side of 
(4.16). We obtain 

4 2TZ4(t) dt = -2 C 3 (log z/27~n)-~ sin(g(z, n)) 
2T 

+ O( T”14) 
T  n<.Z 7 

=K(2T)-K(T) 

-2 c $$(log2T/27mP2sin(g(2T, n))+ O(T”4), 
N;<n<N; 

(4.17) 
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where (as in 118, Eq. (15.43)]) in the notation of (1.7) 

z=N’(v X)=:+--x- -3 
2rL 2 ) 

K(x) is given by (4.4), g( T, n) by (1.6), and NJ = N’(2T,jT) by (1.7). 
Thus except for the extra sums in (4.9) and (4.17) we are near the 

completion of the proof of Theorem 3. But the sums in question may be 
transformed into one another (plus a small error) by the method 
of M. Jutila [21]. Indeed, using [21] we obtain (analogously to 
[ 18, Eq. (15.45)-J) 

-2 C , $j(log 2T/2~n) ’ sin(g(2T, n)) 
N2 s n < N, 

=2- 312 c 

T<nS?T 

x (ar sinh &,)--’ sin(S(ZT, n)) + O(log’T), 

the difference from (15.45) being in (log ... )-’ and (ar sinh ... ) 2, and in 
2T instead of T. 

Hence from (4.1), (4.9), (4.10), (4.12), and (4.17) we obtain (4.2). This 
proves Theorem 3. We remark that, using the above procedure (i.e., 
[18, Eq. (15.45)1), we can reformulate Theorem 3 where the first sum in 
(2.4) will be En<,,,, and the second sum C,, i N’, for T < N < T, and N’ 
given by (1.7). Written in this way, Theorem 3 becomes more similar to 
Atkinson’s formula itself. Namely, for any two constants 0 <A <A’, 
AT< N < A’T and N’ given by ( 1.7), Atkinson’s formula is 

E( T) = 2 112 1 (&&J 
n<N 

nI,2 (,, sinh &) ’ (&+i) “4 cos(f(T, n)) 

cos( g( T, n)) + O(log= T 1. (4.18) 

Under the same hypotheses the above discussion shows that we have 
actually proved 
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sin(g( T, n)) + O( P4). (4.19) 

If we note that 

af(T n) 
-=2arsinh 

ar 

then (disregarding the error terms), one may formally obtain (4.18) from 
(4.19) by differentiating the sine terms. The same phenomenon is present in 
the Voronoi formulas for d(T) and j: d(t) dt. Moreover, the condition 
AT<N<A’Tcould be relaxed to T6<N4T2in both (4.18)and (4.19)at 
the cost of some extra error terms. This follows from the methods of 
M. Jutila [21] (see also [ 18, Theorem 15.21) who treated E(T), and 
similar analysis may be made for (4.19). 

5. PROOF OF THE Q-RESULT 

We are now going to prove Theorem 2, using (2.5), which is a 
consequence of the mean value formula given by Theorem 3. First we are 
going to prove a weak Q-result, namely, 

lim infy = -co. 
T  - -L 

(5.1) 

This will then be used in deriving the strong Q result of Theorem 2. 
To prove (5.1) it suffices to show that lim inf,, ~ E*(T)= --cx, where 

E*(T) is defined in (3.2). Now Lemma 1 implies that for 1 d M 6 T’j’ we 
have 

E*(T)= c (-l)“$j cos(4nT&~/4)+0(1). 
n<M 

In this formula, write each n < M in the form n = v’q, where q is the 
largest square-free divisor of n. By Kronecker’s approximation theorem 
(see, e.g., [ 18, Lemma 9.33 or Hardy and Wright [ 13, Chap. XXIII]; for 
the linear independence of the numbers & over the integers see 
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K. Chandrasekharan [4, Chap. VIII]), there exists arbitrarily large T such 
that 

T& m+b 
i 

if q is odd, 

++m,+d,, if q is even, 

with some integers my and 16,) < 6 for any fixed 6. With these T we 
conclude that 

(-1)ncos(47[T&77j4)= --E,COS ; +0(&h), 
0 

where 

-1, if n = 0 (mod 4), 
E, = 

1, if n & 0 (mod 4). 

We deduce that 

ll;mI_nfE*(T)<-cos f 1 - 
0 

+ 0(6M3’4 log M). 

n<M 

Now we let 6 go to zero. Finally, we need to show that the sum can be 
made arbitrarily large. This is achieved by using an elementary technique 
similar to the one following (3.6), or by appealing directly to Theorem D3 
of A. E. Ingham [ 161. This concludes the proof of (5.1). 

We pass now to our main result, namely the 52 _ result of Theorem 2. Let 
P, be the set of odd primes less than or equal to x, and Q, all square-free 
numbers composed only of primes from P, (that is, Q, is the set of odd 
square-free numbers all of whose prime factors are less than x). We let 1 P, ) 
be the cardinality of P, and M = 2 IPr’ be the cardinalty of Q;. We then 
have 

X 
I p, I x - log x 

and M << exp { cx/log x } 

for some positive constant c. We also have that the largest integer in Q., is 
bounded by eZ1. 

Next let S, be the set of numbers defined by 

s,= 
1 

p= 1 r,&,E{*l,O);~Y:>2 
4eQt 

Finally let 

~(x)=inf{Ifi+~~:m=1,2,...;~~S,}. 
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The following lemma can be found in Gangadharan [7]. 

LEMMA 4. Let q(x) = -log q(x). Then 

x < q(x) 6 exp( cx/log x) 

for some positive constant c. 

Let now 

E(t)=J’Z;;{E(t2/S7c)-?T} and E,(T)=@t)tdt. (5.3) 

For our purpose, we need a representation for E,(T) which is ideally an 
infinite series of the Voronoi type. A result of this type, with a not-too-large 
error term, may be obtained from the asymptotic formula (2.5). With a 
change of variable, for T 2 10, we get 

E,(T)= T312 f, (-I)“$$sin(T&-n/4)+O(T4i310g T). (5.4) 
n=l 

If we could differentiate this series (and the O-term) we could deal with 
E(T) directly. This is not possible, but when we refer to the “series” for 
E(T) we mean what one would get formally by differentiating this series. 

We require more notation. First we let 

be such that 

P(x) = exp (~x/log x> 

P(x) b max (q(x), M2}. (5.5) 

Next we let for each fixed x 

Y.=suP 
- Js;; E( u2/8n) 

ul/2 + l/Iv) . 
uzo 

Now for T+O+, E(T) - - T log T so that the expression in brackets in 
the definition of y: is bounded for small U. If this expression is not bounded 
for all u then more than Theorem 2 would be true. Also, by our earlier Sz 
result there exists a u > 0 for which this expression is positive. Hence we 
can conclude that 0 < y, < co, or, in other words, 

for all u > 0, where A = 3 n312. 

641!32;2-4 
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Our next step is to describe the part of the kernel function we use to 
isolate certain terms of the “series” for E(u), and to point them in an 
appropriate direction. Let 

v(z)=2cos’;= 
e”+e i; 

2 
+l 

and set 

Note that T,(u) > 0 for all U. Finally, put ox = exp { -2P(x)} and 

J,= a/’ 
s 
0m {y~~“~+~‘~‘~‘~ + A + g(u)} ue-uy”T.y(u) du. 

From the remarks above we see immediately that J, 20. In the next two 
lemmas we provide the tools for an asymptotic expansion for J,. In the 
first we cover the first two terms of J,. 

LEMMA 5. For &<B<2, as x-+ CcI we have 

r % 
uHe putUTr(u) du = a.; ’ ~ ‘f ( 1 + 0) + o(a, 5/2). 

ProoJ: Expand the trigonometric polynomial 
polynomials as 

T,(u) into exponential 

L(u)= To+ T, +T+ T,, 

where 

T; is the complex conjugate of T,, and h, are constants bounded by $ in 
absolute value. 

Now TO contributes to the integral exactly the first term. So we concen- 
trate on the other parts of T.,. The part T, contributes exactly 



THE RIEMANN ZETA-FUNCTION 179 

since 0 + 1 > 0 and (5.5) holds. The contribution of T is obviously no 
more than this. Finally, T2 provides the term 

r(1 +e)Ch,(o.+~/$-O 
P 

43”(Pi;sf l~l))-8G3MPj(~)-‘-e 

<exp{c,‘lpo+P(x)(l +0)}=0(a,~/~), 

again by (5.5) and the fact that 1 + 0 < 3. 

In the next lemma we cover the contribution to J, from E(u). It is here 
that we appeal to the identity (5.4) for E,(T). 

LEMMA 6. For x tending to infinity, 

s 
m B(u) uep”+T,(u) du= -ir 

0 

ProoJ Our first step is to integrate by parts to introduce E,(u) in the 
integral so that we can appeal to (5.4). Thus our integral can be written as 

E,(u) eC"~UT,(u) E,(u) f {e-~“‘“T,(u)} du. 

Now since 

E,(u) = 
O(u2), if O<u<lO, 

O(u3”), if u> 10, 

the integrated terms vanish. For the remaining integral, we wish to replace 
E,(u) by (5.4). However, we must be very careful how we deal with the 
error term. Write the integral in question as 

s ,E - 
0 

= I, + O(Z,) + I, + O(Z,), 

say, where h(u) is defined by 

h(u)= f (-l)“%$sin(u&-z/4). 
,r== I 

(5.61 
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The integral I, is bounded by 

and this dominates the last integral 1,. Hence, there are three things we 
need to do: estimate I3 and I2 and calculate I,. 

For the two integral estimates, we need a bound on the expression in 
absolute values, For this we note that from the definition and from the 
decomposition used in the proof of Lemma 5, we have 

L(u) + z”, 

T:(u) G 3”e’“M 

so that 

In r3 this contributes at most 

In I, the estimate becomes 

For I, we expand the expression d/du { ... ) as 

d u- 312 _ 

du 

The last term contributes to I, at most (because h(u) is bounded) 

Finally, we are left to deal with the following: 

4 
CL 

0 
h(u); (u3’2em”y”T,(u)} du. 

We replace h(u) by its series definition and integrate term by term. This is 
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legitimate because everything converges absolutely and uniformly. We get 
the expression 

- f (-1)“~3m{e~“‘-jl(n)}, 
n=l 

(5.7) 

where 

In this integral we can reintegrate by parts and expand T,(u) as we did in 
the proof of Lemma 5 to get 

= Z,(n) + Z,(n) + z:(n) + Zz(n), 

say. Only Z,(n) will contribute to our cause, as we will now see. First, 

z,(n)~~lcr.-i,/;;l--5’2~n~3’4. 

Second, 

Z:(n)<& 1 (o.-i(~+J;I)(~5'2Qn~3/4M. 
4EQY 

Third, 

r,(n)4$ c IcT-i(&-p)I-5’2 
tics, 

i 

3 Mn ~ 314, 

@ 39(X) --5/2 &, 
if n>2max(/p[::EES,}, 

if nG2max{I~I:~~E.,). 

This max{(p() is bounded by Me”‘. Hence all of these contribute to our 
series (5.7) no more than 

as required. There remains only the contribution of Z,(n). We need to dis- 
tinguish two cases. If n # q for all q E Qi-, then we get a bound exactly as 
above for Z,(n) but with M replacing the factor 3M which comes from the 
number of terms in the sum. Now suppose n = q for some q in Q,. The 
term in the sum defining T,(u) corresponding to this q alone contributes 
exactly 
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The other terms contribute as in the case n fq. Combining all these 
contributions to (5.7) we see that the lemma is proved. It should be noted 
that each q in QY is odd so that the factor ( - l)y in (5.7) is always negative 
for the significant terms. 

We can now complete the proof of Theorem 2. We first have that J, 3 0. 
We also have by Lemmas 5 and 6 that as x + cy) 

Hence if x is sufficiently large we deduce that 

y.,+ c 3% n (1+2p-3’4) 

YEQ, 2<p<r 

= exp 
i 

C log( 1 + 2pP3j4) > exp 
2ip<r 

}> {Z}. 

In other words, for each sufficiently large x there exists a U, such that for 
some absolute constant A > 0 

- E(u2) 
A>Aexp 

ul/2 
x 

This implies first that U, tends to infinity with X. If the second term in the 
exponential dominates, then it is easy to see on taking logarithms and 
recalling the definition of P(x) that 

log log U, <x 
log x’ 

from which the theorem follows. If the opposite occurs then, without loss of 
generality, we may assume 

(log log z.4Y)‘!4 1% ur 
(log log log u,)3’4 %- P(x) 

since otherwise the theorem holds again. But under this condition we again 
deduce that 

log log z4, <A-- 
log x’ 

so that the theorem holds in this last case as well. 
This completes the proof of Theorem 2. 
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6. THE MEAN SQUARE OF G(T) 

In this section we shall prove the mean square formula (2.8) for G(T) 
(defined in 2.7)) and the R, result (2.9). The method of proof of (2.8) is 
similar to the one used in proving (1.8) or (1.9). This is because (1.9) is 
based on Cramer’s trick for dealing with (1.8). We use (2.4) to write, for 
Tdt<2T, 

qt)=2-312 c (-lyd(n) L+I 

n<, 

nl,2 (2nn 4)-“4(arsinh~)-2sin(/(z,n)) 

+ -2 1 F (log t/2m-* sin(g(t, n)) + O(T1j4) 
i n < qr 

= Z,(t) + c,(f), (6.1) 

say. If follows that 

j2TG2(~)d~= j2TZ:(t)dt+ jZTZ;(t)dr+2 j2rZ2(1)Z:(f)dt. 
T  T  T  T  

The last integral is estimated by the Cauchy-Schwarz inequality as <T2, 
since we have 

2T 

C;(t) At < T3/’ 
T 

and (as we will see) 

s 2T C;(t) dt = B(2T)5” - BT5j2 + O( T*), 
T  

where B is defined by (2.8). Namely we have 

(6.2) 

s 

LT 

+ T’/’ dt 4 T t  +J. + p/2 + T’i2 

T  

since the sum C,, G c,,, is essentially a Dirichlet polynomial which is Q T” in 
mean square. Now to prove (6.2) note that the left-hand side is 
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x sin(f( f, m)) sin(f( t, n)) df 

= C’ + C”, 

say, and the main terms in (6.2) will come from C’. We have 

(6.31 

x(arsinh &)P4 sin2(f(t, n)) dt + 0( T*) 

=16 l ,,E$y;‘(&)-“‘(~)’ 
x(1-cos2f(t,n)}dr+O(T2) 

= B(2T)5’2 - BTsJ2 + 0( T’). 

Here we used the fact that the contribution of the cosine terms is O(T2) 
after an application of [ 18, Lemma 2.11 on exponential integrals, and 

c d*(n) 14(5/2) + o log3 -=- 

ncfi nS12 C(5) ( 7 
T3/4. 

It remains to consider C”. We have by symmetry 

x sinf(r, m) sinf( t, n) dt , 
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and the sine terms will give exponentials of the form exp{if(t, m) +_ 
if(t, n)}. The contribution of the terms with the plus sign is easily seen to be 
<T2 by [18, Lemma 2.11. For the remaining terms with the minus sign 
put F(t) =f(t, m) -f( t, n) for any fixed n < m < 2T, so that 

by the mean-value theorem. We have, again by [ 18, Lemma 2.11, 

=‘I@ T2 c (mn)E-5/4 (ml’2-nn’/2)-1 

n<rn<2T 

= T2 
( 

c+c 
> 

= T’(S, + S,), 
“<In/2 n>m12 

say. Trivially, S, < 1, and 

E- 514 
S, < 1 m~-5~4mu2 c L < 1. 

m<ZT rn/Z<tl<rn m-n 

Hence C” 6 T*, and putting together the preceding estimates it follows that 

s 

2T 

G2(t) df = B(2T)5’2 - BT”’ + 0( T’). 
T  

Replacing T by T2’ and summing over j = 1,2, . . . . we obtain (2.8). 
To prove the second part of Theorem 4, namely (2.9), we proceed 

similarly as in the proof of (5.1). If h(u) denotes the series defined in (5.6), 
it suffices to show that 

lim sup h(u) > 0 and lim inf h(u) < 0. (6.4) 
u + %8 u + ICC 

To prove the first part of (6.4) let A4 be a large positive integer and 6 > 0 
be given, For each n d M, write n = v2q where q is square-free. Then by 
Kronecker’s approximation theorem there exist arbitrarily large u satisfying 

J= { 
my + 6,, if q is odd, 

u q 2x 
++m,+d,, if q is even, 

for integers my and I6,I < 6. We deduce that for n < M, 

( - 1)” sin( u Jtr - 7c/4) = E, sin + oc$ d), 

with E, = - 1 if n E 0 (mod 4) and E, = 1 otherwise. 
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Now, since the series for h(u) converges absolutely, we obtain 

limsuph(u)>sin i 
u-cc 0. 

~~~E.~+0(6MI-410gM)+O(M’“logMi. 

First let 6 tend to zero and then A4 to infinity. To finish, we need only 
show that the resulting infinite series is positive. But for s > 1 

which is positive at s = 2. 
The second part of (6.4) is a bit easier. We proceed as above but apply 

Kronecker’s theorem to find u such that 

J= { f+m,+6,, if qis odd, 
’ ’ 2n m-l-6 Y Y’ if q is even. 

In this case 

(-l)‘sin(u&rrjq)= -sin(f)+O(&d), 

so that we conclude 

lim inf h(u) < -sin f c2 i CO, 
u-m 0 0 

as claimed. This completes the proof of Theorem 4. 

7. THE UPPER BOUND FOR E(T) 

We are finally going to sketch the proof of the upper bound for E(T) 
given by Theorem 5. This will be based on Theorem 3, and G. Kolesnik’s 
estimates [23,24] for exponential sums. His techniques were already used 
by W. G. Nowak [26] in the similar situation of the circle problem, namely 
the estimation of 

P(T)= 1 r(n)-7rT= 1 1-nT. 
n<T uz + b= < T  

We start with an elementary estimate. From the definition of E(T) we 
find that, for Odxd T, 

E(T+~)-E(T)>-2cxlog T 
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with some absolute positive constant C. Hence 

s T+.‘E(f)df=XE(T)+I-I(E(T+U)-E(T))dU T 0 

>xE(T)-2q u log T du = xE( T) - Cx2 log T. 
0 

Therefore we obtain 

TC .Y 

E(T)<xc’ E(t)df+Cxlog T (0 < x d T), (7.1) T 

and analogously 

E(T)3xp’ E(t) dr - Cx log T (0 -=c x d T). (7.2) 

One easily sees that (7.1) and (7.2) remain valid if E(T) is replaced by 
d(T) and one obtains analogously also 

s 
r+ .Y 

P(T)<x-’ P(t) dt + Cx, P(T)bx ml I’ P(t) dt - Cx 
T  T-i 

for some C > 0 and 0 < x 6 T. Note that in the bounds for P(T) there is no 
log-factor present as in (7.1) and (7.2). Hence it is not a surprise that 
Nowak [26] obtained 

(now superseded by T7/22cc of [ 19]), which has a better log-factor than 
(2.11). 

We now evaluate .Y-’ IF+* E(t) dt by Theorem 3, supposing that 
T51L6 d x d Tli3 and truncating the first sum in (2.4) at R = T3xp8. We have 
trivially 

1 (-l)~~(&+~)~1’4(arsinh&)P2sin(l(r.n)) 
R<n<T 

< T314 .FR $j + T314R ‘I4 log R 4 x2 log T. 
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Simplifying the terms for 1 <n <R by Taylor’s formula we obtain 

s 

7-+ * 
X 

-1 E(t) dt 
T  

= 2 ~ 1l471 - 3Px ~ 1 .T, (-l)“$ {t314 sin(f(t, n))}lT+-‘+O(xlog T). 

But for T6 t < T+ X, n d TX--‘, Tsil’ < x d T113, we have 

t314 ar sinh 

T +  .Y 
= t314 - 

T  
it (sin(f(h n))) 

and 

= {t314 sin(f(t, n))}l%+-‘+ O(XT-“~), 

arsinh&=&+o(llr). 

Hence we obtain 

I 
T +  r 

X 
-1 E(t) dt 

T  

+2-l!4n-3/4X--I~314 
c 

d(n) (- l)“-----sin(f(t, n))(F+’ 
Trm2<.<Ti. ’ 

n514 

+ 0(x log T ), (7.3) 

and a similar formula holding also for x I SF- ‘I E(t) dt. Therefore 
(7.1)-(7.3) yield, after some simplifying, 

E(T)exlog T 

+ T314x ’ max 
T-.r<t<T+.r 

c 
7-.y-2 <n < i-3-@ 

(-l)“$L.xp(iF(t,n)) 

(7.4) 
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in the range T s/16 < x < T’j3. Here we have replacedf( t, U) with the simpler 
function 

F(r, u) = b, t1’2~“2 + b,t- 1f2u3’2, 

where b, and b, are real constants and the total error is absorbed in the 
term x log T. This idea was already used by the second author in [lS, 
pp. 192-1931. Moreover, as also shown in [18], the (-1)” in (7.4) is 
harmless and may be disregarded. The same bound holds also for d(T), 
without ( - 1)” and with 47c& in place of F(t, n). 

Having at our disposal (7.4), we proceed analogously as was done by 
Nowak [26] in the case of the circle problem, where detailed calculations 
are given. We estimate the term TLi4 max 1 xfi G T.Y-~ 1 in (7.4) by using the 
estimate of Kolesnik [24, p, 1181. This produces a bound which is a sum of 
five terms, the largest of which is readily found to be 

T 195/692( TX - 2)83/692 log4 T =  x log T  (7.5) 

for x = ~139/429(1~~ ~)‘038/429, so that in fact x is determined by (7.5). The 
remaining sum in (7.4) is estimated by splitting it as 

say, where V= T”.353’. With x given above, one has 

T3j4 max 16, ( 4 x2 log T (7.6) 

by the method used in estimating the previous sum. To estimate C, we use 
a subsidiary argument, furnished by Kolesnik [23, p. 1163, where the 
relatively large size of V becomes prominent, and we find that (7.6) holds 
with C, replaced by Z,. Thus finally (7.4) gives 

E(T) $x log T= T’39’429(log T)1467’429, 

and Theorem 5 is proved. 
Our method gives essentially the best possible log-factor obtainable from 

Kolesnik’s method, since the first sum in (7.4) (which is the crucial one) is 
of length TX-~. Note that the above estimate for E(T) may be used for 
bounding [(f -t iT) itself. Namely, using [ 18, Lemma 7.11 we obtain 

li(t+iT)(2410g T 1 +jf+,rgyf li(j+iu)12du) 

410g4T+log T(E(T+log* T)-E(T-log* T)) 

.+ T139/4*9(log T)1896/429, 
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hence 

[(+ + iT) < T’39’ss8(log ~)Y48/429. 

This result is superseded by [(i+ iT) < T9/56tE, proved recently by 
E. Bombieri and H. Iwaniec [3], and M. Huxley and N. Watt [lS] 
improved their estimate by replacing T” with log’ T. 

As was pointed out in [ 18, Chaps. 13 and 151, there are great similarities 
in the problem of the estimation of d(T), P(T), [(S + iT), and E(T). At the 
time of writing [18], one had for the exponents in these problems 
(disregarding the log-factors) the sequence (A, A, A/2, A) with A = $& (due 
to G. Kolesnik [22, 231) and then A = 3 (also due to G. Kolesnik [24]). 
However, the new methods of Bombieri and Iwaniec [3] and Iwaniec and 
Mozzochi [ 193 have considerably changed the situation, and now the best 
known sequence of exponents is (A, &, &, g) which is no longer of the 
form (A, A, A/2, A) for some A > 0. Whether this is a temporary 
phenomenon or a lasting one is too early to tell. 

REFERENCES 

1. F. V. ATKINSON, The mean value of the Riemann zeta-function, Acfa Math. 81 (1949). 
353-376. 

2. R. BALASUBRAMANIAN, An improvement of a theorem of Titchmarsh on the mean square 
of I[(:+ it)l, Proc. London Malh. Sot. 36 (1978). 540-576. 

3. E. BOMBIERI AND H. IWANIEC, On the order of ((4 + it), Ann. Scuola Norm. Sup. Pisa 13 
(1986), 449-472. 

4. K. CHANDRASEKHARAN, “Arithmetical Functions,” Springer-Verlag, Berlin/Heidelberg/ 
New York, 1970. 

5. K. CORR~DI AND I. KATAI, Egy megjegyzes K. S. Gangadharan, “Two classical lattice 
point problems” cimii dolgozatahoz, MTA III Os16ly KklemPnyei 17 (1967). 89-97. 

6. H. CRAMER, Uber zwei Sltze von Herrn G. H. Hardy, Math. Z. 15 (1922). 2W210. 

7. K. S. GANGADHARAN. Two classical lattice point problems, Proc. Cambridge Philos. Sot. 
57 (1961), 699-721. 

8. A. GOOD, Ein Q-Rest&at fur das quadratische Mittel der Riemannschen Zetafunktion auf 
der kritischen Linie, Invent. Marh. 41 (1977), 233-251. 

9. S. W. GRAHAM, An algorithm for computing optimal exponent pairs, J. London Mafh. 
Soc.(2)33 (1986), 203-218. 

10. J. L. HAFNER, New omega theorems for two classical lattice point problems, Invent. Math. 
63 (1981) 181-186. 

11. J. L. HAFNER, New omega results in a weighted divisor problem, J. Number Theory 28 
(1988), 240-257. 

12. G. H. HARUY, On Dirichlet’s divisor problem, Proc. London Math. Sot. (2) 15 (1916). 
l-25. 

13. G. H. HARDY AND E. M. WRIGHT, “An Introduction to the Theory of Numbers,” 4th ed.. 
Oxford, London, 1960. 

14. D. R. HEATH-BROWN, The mean value theorem for the Riemann zeta-function, 
Mufhematika 25 (1978) 177-184. 



THE RIEMANN ZETA-FUNCTION 191 

15. M. N. HUXLEY AND N. WATT, Exponential sums and the Riemann zeta-function, 
Proc. London Math. Sot. Ill 57 (1988), l-24. 

16. A. E. INGHAM, On two classical lattice point problems, Proc. Cambridge Phdos. Sot. 36 
(1940), 131-138. 

17. A. Iv&, Large values of the error term in the divisor problem, Invent. Mafh. 71 (1983), 
5 13-520. 

18. A. 1~16. “The Riemann Zeta-Function,” Wiley. New York, 1985. 
19. H. IWANIEC AND C. J. MOZZOCHI, On the divisor and circle problems, J. Number Theory 

29 (1988). 6&93. 
20. M. JUTILA, Riemann’s zeta-function and the divisor problem, A&u. Mat. 21 (1983). 

75-96. 
21. M. JUTILA, Transformation formulae for Dirichlet polynomials, J. Number Theory 18 

(1984), 135-156. 
22. G. KOLESNIK, An improvement of the method of exponent pairs, in “Colloquia 

Mathematics‘ Societatis Janos Bolyai (Budapest 1981),” No. 34, Vol. II, pp. 907-926. 
North-Holland, Amsterdam/New York, 1984. 

23. G. KOLESNIK, On the order of [(f+ it) and d(R), Pacific J. Math. 98 (1982), 107-122. 
24. G. KOLESNIK, On the method of exponent pairs, Acta Arith 45 (1985) 115-143. 
25. T. MEURMAN, On the mean square of the Riemann zeta-function, Quart. J. Math. 

(OxJord) (2) 38 (1987), 337-343. 
26. W. G. NOWAK, Zum Kreisproblem, osterreich. Akad. Win. Math. Natur. KI. 194 (1985). 

265-271. 
27. K.-C. TONG, On divisor problems, III, Acta Math. Sinica 6 (1956), 515-541. 
28. G. F. VORONOI, Sur une fonction transcendante et ses applications a la sommation de 

quelques shies, Ann. l&o/e Normale 21 (3) (1904) 207-268. 


