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Abstract

Flood assessment using unsupervised techniques for multi-temporal MODIS satellite images is presented. Classical methods like
mean shift algorithm is compared with artificial neural network method like self organizing maps for automatic water pixel
identification and extraction. The extracted results help in identification of flooded and non-flooded places. Different methods are
applied and comparative study of unsupervised methods involving mean shift and self organizing maps are carried-out. In order
to evaluate the algorithmic performance, root mean square error and receiver operating characteristics is used as performance
evaluation indices. The results reported will provide useful information for multi-temporal time series satellite image analysis which
can be used for current and future research in disasters management.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the Twelfth International Multi-Conference on Information
Processing-2016 (IMCIP-2016).
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1. Introduction

Multi-temporal time series analyses of satellite images play a vital role in differentiating or discriminating the
changes in the areas of land cover between dates of imaging. Researchers continue to develop different tools which
can assist in time series analysis for the changes for the same region. Representing a tool1 is a technique that consists
of a set of iterative and interactive steps that aid an analyst in delineating true land cover changes from incidental
scene to scene changes. Some of the multi-temporal analysis applications are flood assessment2, agriculture3, fuel
type assessment4, and spatial soil moisture mapping5. This paper investigates multi-temporal time series analysis of
the flood prone area using MODIS satellite images.

In the present study, Multi-temporal images of the flooded scene were used for mapping flooded places and
data analysis. Analysis of image segmentation methods yield detailed map of flooded places differentiating from
non-flooded places. We have integrated spectral, spatial and contextual information for extraction of flood-prone
regions. we have made use of MODIS band 2 satellite image because it clearly discriminates between vegetation
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and water image pixels; the sensor design team recommends MODIS band 26 for studying change detection in
topography, like flood assessment6–9 and vegetation. The basic idea of using remote sensing data in studying change
detection10 lies in the fact that the surface reflectance change captured helps to discriminate water image pixels from
others in the satellite image which in turn helps in image interpretation. The study of image interpretation helps
to distinguish flooded and non-flooded regions11 from the satellite images. Further for better image interpretation,
we have made used pre and post satellite images of the same region. The MODIS data is highly suitable for flood
assessment because it is real-time (or nearly real-time) disseminated and inexpensive, which are advantageous when
we are studying flooded regions for long durations, the data has accurate geo-coding. MODIS data is well distributed
via Earth observation Station (EOS) gateway12.

The MODIS satellite image of level-2 product is used which is atmospherically, radio-metrically and geometrically
corrected. From this satellite image product, we have extracted band-2 of the satellite image using the geo-locations
which covers the flooded scene for our study. In classical water detection techniques like (NDVI) Normalized
Difference Vegetation Index9–11 is used distinguish between vegetation, water and bare soil. The problem with NDVI
is not proper separation of vegetation pixels with water pixels. NDVI test is not always enough to identify water
pixels, as one has to apply more tests or advance methodology to detect clear water and differentiating remote clouds
and cloud shadows9. Classical detection methods are error prone, time consuming and needs supervision for training
dataset. The proposed automatic unsupervised methods are devised in creating water masks on the satellite images
and which is much faster, easier and accurate in creating water mask on satellite images. Automatic water extraction
techniques are used for multi-temporal satellite images at three different stages like before, during and after flooding.

2. Background Study

Several research works have been carried-out in European countries9, America13, Asian countries like India11

china2 and Thailand14 using satellite images on flood assessment. In India, floods6, 7 are common in some regions
like- Brahmaputra basin in Assam, Godavari basin and Krishna basin in Andhra Pradesh, Kosi basin in Bihar and
Yamuna basin around Delhi etc. The flood factors like location, inundated areas of long periods and durations can
be studied by using remote sensed data. Freely available optical satellite images8 like MODIS (Moderate Resolution
Imaging Spectro radiometer) are regularly made used by researchers in flood assessment. MODIS images are widely
used in hydrological applications9 like flood detection, characterization and warning flood disaster response and
damage assessment and wide coverage areas.

Rajiv Kumar Nath et al.10 for water body extraction from satellite images several methods like support vector
machine, Bayesian and fuzzy Gustafson-Kessel (FGK) are used. J. Senthilnath et al.11 have used supervised methods
like artificial neural network and support vector machine for extracting flooded regions from the satellite image. They
have used MODIS satellite image to differentiate flooded regions with non-flooded regions. Chenghu Zhou et al.2

have used supervised methods like radial basis function for extracting water image pixels from Radar sat image and
AVHRR image. Supervised methods are mostly being used by researchers for flood application but there is an existence
of performance limitation due to availability or collected ground truth data. Hence researchers are working towards
unsupervised techniques in this context. A clustering method will automatically assigns pixels to respective spectral
clusters. The property of clustering algorithm is to group individuals in a population of data such that the outcome is
a partitioning of data set .Some of the researcher who have used unsupervised methods in their work are Gheogrhe
Stancalie et al.15 has carried out research on different remote sense data for flood disaster assessment and flood risk
reduction application. Xiangyun Hu et al.16 have used region based unsupervised techniques for segmenting water
bodies from land surface features. Only a few unsupervised methods like ISO-DATA, K-means clustering technique
have been carried out in flood assessment application and also the results obtained depend on number of clusters which
are initialized and some are semi-automatic.

In this paper, we have used image clustering methods like-mean shift and self organization maps. These methods
are used for the identification of water pixels from the multi-temporal satellite images. Multi-temporal analyses are
carried out using different dated imaging and results are validated using performance evaluation methods. Our research
is on exploring unsupervised methods using MODIS satellite images in extracting water pixels and also distinguishing
flood region with non-flood regions from satellite images.
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Fig. 1. Shows Flooded (represented with black dot) and Non-flooded Regions (represented with white dot) which are used in Current Study.

Table 1. The Table shows 12 Numbers of Flooded and Non-flooded Places.

Flooded Non-Flooded

1) Kosigi 2) Sindhanur 3) Mantralayam 1) Atmakur 2) Peddamandadi 3) Wanaparthy

4) Nandavaram 5) Halaharvi 6) Yemmiganur 4) Pebbair 5) Beechupalli 6) Gummadam

7) Kurnool 8) Alampur 9) Nandhikotkur 7) Gonegandla 8) Adoni 9) Raichur

10) Gabbur 11) Sirvar 12) Manvi 10) Arsegiri 11) Dharur 12) Gadwal

3. Study Area

The study area details are discussed in this section. We have chosen Krishna and Tungabhadra rivers regions.
During September-2009 rivers region received heavy rainfall causing floods. In our research we use MODIS
(MOD09Q1) Terra Surface Reflectance 8-Day L3 Global 250 mtrs2 satellite images12. Three different dated images
like before (Mar-2009), during (Sept-2009), after (Nov-2009) are considered from MOD09Q1-MODIS satellite
product. MOD09Q1 has two bands namely upper band which is centered between 620–670 nm and lower band which
is centered between 841–876 nm. The classifications of water pixels are due to the spectral characteristics of the
band 2 data (841–876 nm). The satellite image area coverage is 3, 13,568 sq mtrs. In the Fig. 1, we have shown the
study area of flooded and non-flooded places identified on a satellite image. The lists of places which were indented
and non- indented with floods are given in Table 1.

For our study, we have chosen MODIS march, Sept and Nov month image which is shown in the Fig. 2. Here we
have taken same area coverage of the flooded places.

4. Methodology

A block diagram of automatic water detection using multi-temporal satellite image analysis is shown in the Fig. 3.

4.1 Preprocessing

Pre-processing is essential step for automatic water extraction processing. During pre processing noise removal/
reduction is done. Noise removal helps in enhancing the image quality. The satellite images during flood times are
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Fig. 2. (a) Original Modis Satellite Image of Krishna River Region before Flood (March 2009); (b) Original Modis Satellite Image of Krishna
River Region during Flood (September 2009) and (c) Original Modis Satellite Image of Krishna River Region after Flood (November 2009).

Fig. 3. Block Diagram of Flood Assessment.

susceptible to noise in the form of clouds. To overcome these effects, filtering is done. Progressive median filter17 are
used to remove spectral reflectance of vegetation and water, which are almost equal (which appears similar) and also
helps to remove outliers and maintain image sharpness. This helps in preserving elongated edges for the image for
segmentation.

4.2 Segmentation technique

The image segmentation techniques16 are used for extracting the desired features like texture and shape from an
object. In this paper, mean shift (MS) and Self organizing Maps are used as segmentation techniques.

4.2.1 Meanshift

MS is a popular unsupervised method which is based on kernel density estimation18. Mean shift Segmentation
which is applied on satellite image will helps in identifying non-linear river water network feature in the image. Mean
Shift picks random point in the feature space and converge towards local maximal density. Based on weighted average,
the mean is shifted and iteratively identify the similar density pixels. Local point of convergence is calculated using
Gaussian kernel

∧
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The data points Xi , where i = 1, 2, 3 . . . n are in d-dimensional space Rd , bandwidth parameter hi where hi > 0
is used for calculation of kernel density estimation at location x . The kernel k is a Gaussian kernel which satisfies the
condition

K (x) = ck,d k(‖x‖2) > 0

where: ‖x‖ ≤ 1 (2)

The Gaussian kernel G(x) is defined as G(x) = ck,d k(‖x‖2).
The property of kernel profile has been verified using gradient of an equation;

mG(X) = c

∧∇ fk(x)
∧

f (x)

(3)

where: mG(X) is the mean shift vector, ‘C’ a positive constant and gives the location x . The mean shift vector is
defined as:
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Mean shift vector computed with Gaussian kernel G is proportional to the normalized density gradient estimate
obtained with the Gaussian kernel.

Mean shift vector will indicate the direction of maximum increase in density. The mean shift is obtained by
successive computation of the mean shift vector and translation of Gaussian kernel G(x) by the mean shift vector.
Finally, it converges at a nearby point where the estimate has zero gradients and iterative equation is given by:

yi+1 =
∑n

i=1 xi g
(‖ x−xi

h ‖2
)

∑n
i=1 g

(‖ x−xi
h ‖2

)

j = 1, 2, 3 . . . n (5)

Initial position of the kernel is chosen as one of the data point’s xi . Usually, the local maxima/modes the density is
the convergence points of the iterative procedure. The mean shift technique is based on unsupervised clustering.

4.2.2 Self Organizing Maps (SOM)

A SOM is characterized by the input patterns19–21 for topographic map wherein the spatial location (i.e. coordinates)
of the neurons is essential for statistical features present in the input patterns, hence the name “Self organizing map”.
SOM feature map consists of a 2D array units and each unit is fully connected via ‘n’ weights to the n-dimensional
input pattern. SOM are characterized by the topographic map formation19 with the input patterns in which the random
samples of the image are drawn as training samples for similarity matching and iteratively it is carried out in forming
groups and resultant groups are delineated to get the clusters.

Steps of Self organizing Maps are summarized as follows:
Step 1) Initialization: In this, we initially choose 50 random values for given image and term it as initial weight vectors
– w j (0). The initial weight vector is w j (0) and it should be different for j = 1, 2 . . . 1 where: l –number of neurons
for finding the magnitude of the weights. The initial points are used for training samples for segmenting water pixels.
Step 2) Sampling: A sample x is drawn from the input space with a probability density function. Here vector x
represents the activation pattern which is applied to lattice. The dimension of the vector x is equal to m (dimension of
the input data space).
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Step 3) Similarity matching: The best matching neuron i(X) is found out through the iterations, at each step of ‘n’ i.e.
using function called minimum distance Euclidean

i(X) = arg minj ‖X (n) − W j‖ where j = 1, 2, 3 . . . 1 (6)

Step 4) Updating: The synaptic weight vector is updated using

W j (n + 1) = W j (n) + ή(n)h j, i(X)(n)(X (n) − W j (n)) (7)

where: ή(n) is the learning rate parameter and h j, i(X)(n) is the neighboring function centered around the
neuron i(x). Here ή(n) and h j, i(X) (n) vary dynamically.
Step 5) Continuation: The sampling is continued until feature map is observed.

4.3 Thresholding

We have used thresholding technique22, 23 for extracting water image pixels from other pixels. After applying mean
shift we have used Otsu thresholding method to extract water pixels and similarly for SOM we have used ISO-Data
binarization thresholding method to extract water image pixels.

5. Performance Evaluation

In this section, the performances of automatic water extraction techniques on multi-temporal satellite images are
measured. The extracted results using mean shift and SOM are compared with the ground truth images in order to
verify their precision we have used two indices for evaluating the methods performances for segmentation24. They are;

1) Root means square (RMSE)
2) Receiving of characteristics (ROC)

5.1 Root means square error

RMSE11 is the statistical measure of varying quantity of magnitude

RMSE =
√√√√ 1

N

N∑
k=1

E2
k (8)

where: EK - the error between the ground truth data and actual output of the algorithm implemented and ‘N’ is the
pixel count.

5.2 Receiver operating characteristics

Receiver Operating Characteristics24 has parameters like TPR, TNR, FPR and FNR which is calculated for the pre
flood and post flooded satellite images for performance evaluation of the algorithm11.

a) Sensitivity or True Positive Rate (TPR)

TPR = T P

(T P + F N)
(9)

b) Specificity or True Negative Rate (TNR)

TNR = T N

(T N + F P)
(10)
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c) False Positive Rate (FPR)

FPR = F P

(F P + T N)
(11)

d) Accuracy (ACC)

ACC = (T P + T N)

(T P + F P + T N + F N)
(12)

In the flooded satellite image, the ROC parameter is applied to locate the flooded places. A place which are positive
according to the ground truth data and also according algorithm computed result is a True Positive (TP). The place
which is positive according to the algorithm computed results but negative according to the ground truth data is a False
Positive (FP). Likewise, a place which is negative according to the ground truth data and also according to algorithm
computed result is a True Negative (TN).While the place which is negative according to the algorithm computed result
but positive according to the ground truth data is a False Negative (FN). For both pre and post flooded images ROC
parameters are applied in order to calculate the accuracy of the extraction by algorithms. ROC parameters are useful
in order to determine the algorithmic performance & comparison of algorithms.

6. Results and Discussions

In result and discussion section, the results obtained and comparative analysis is discussed. In this paper,
multi-temporal time series for the MODIS data for the Krishna and Tungabhadra rivers, south India are carried-out
using mean shift and SOM image processing algorithms and compared with each other to evaluate their performance.
The experiments were conducted on Intel i5 windows 7 system using Matlab 7.12.

From the Fig. 4, we have shown 12 flooded and non-flooded places. The ground truth information is taken with
respect to survey data25. We can observer that cities which are near and far to river banks have flooded. So challenge
in identifying flooded places using image processing plays important role. For this reason we have used unsupervised
methods in locating non-flooded places.

Fig. 4. Ground Truth Information of the Terrain Around River Krishna in the Month of September 2009. Towns which are Flooded are Shown
using Black Dots and Cities which are Non-flooded are Shown using White Dots.
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The ground truth information is prepared for March and November 2009 image because to compare with extracted
results and evaluate using RMSE parameter. From the Fig. 5 we see that river lane is extracted and compared with
Fig. 6(a) and 6(c).

We have applied ROC parameter for calculating mean shift and SOM extraction performance results. Tables 2 and 3
shows the values. For the March month, SOM extraction results are 98% with respect to ground truth data while mean
shift results are 97%.

Fig. 5. Ground Truth Information of the Terrain Around River Krishna River for the Month of (a) March 2009; (b) November 2009.

Fig. 6. (a) Segmented March Month Images of Krishna River using Mean Shift; (b) Extracted and Overlaid on the Original Image using Mean
Shift; (c) March Month Images of Krishna River using SOM and (d) Extracted and Overlaid on the Original Image using SOM.

Table 2. Shows the ROC Parameter Value of Calculating Accuracy of Extraction using Mean Shift and SOM
Algorithm for the March Month.

Sensitivity/ Specify/
Algorithm TN FN FP TP TPR TNR FPR Accuracy

Mean shift 300581 1904 5020 7019 0.7866 0.9835 0.0164 0.9777

SOM 303178 3064 2423 5859 0.6566 0.9920 0.0079 0.9825

Table 3. Shows ROC Parameter Value of Calculating Accuracy of Extraction using Mean Shift and SOM
Algorithm for the November Month.

Sensitivity/ Specify/
Algorithm TN FN FP TP TPR TNR FPR Accuracy

SOM 297940 3670 3706 8252 0.6921 0.9877 0.0122 0.9765

Mean shift 294634 1718 7012 10204 0.8558 0.9767 0.0232 0.9721

Fig. 7. (a) Segmented November Month Images of Krishna River using Mean Shift; (b) Extracted and Overlaid on the Original Image using Mean
Shift; (c) November Month Images of Krishna River using SOM and (d) Extracted and Overlaid on the Original Image using SOM.
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Table 4. Shows the RMSE Value between Extracted and Ground
Truth Data.

RMSE March month November Month

Self Organizing Maps 0.1200 0.1348

Mean shift 0.1376 0.1510

Fig. 8. Original Image of River Krishna during Flood (September 2009), (a) Segmented September Month Images of Krishna River using
Mean Shift; (b) Extracted and Overlaid on the Original Image using Mean Shift; (c) September Month Images of Krishna River using SOM and
(d) Extracted and Overlaid on the Original Image using SOM.

For the November month image results of SOM is nearly 97.65 % while mean shift result is about 97.21%. So from
Tables 2 and 3, we see that results of SOM are better than mean shift.

The RMSE values in the Table 4 are computed keeping ground truth data with extracted results as shown in the
Figs. 4, 5 (a and c) and 6 (a and c). From the Table 4 it is clear that SOM has works better than mean shift. The RMSE
value of SOM is very less in comparison with mean shift algorithm, so this proves SOM is better algorithm than Mean
shift.

During flooded image extraction results obtained by using mean shift and SOM are shown in the Fig. 8. From the
Fig. 8, we can see that water has spread out near to river banks and also other regions. So this becomes important
challenge in determining water image pixels by image processing techniques.

Mean shift is used for both filtering and segmentation. The filtering can be explained with each pixel represented
as vector that combines both image locations pixels values and assigns each pixel with value of the nearest maximal
density location to merge vectors. By using gradient ascent method, maximum density points clustered for identifying
local maximum of a kernel-density. With kernel function-k convergence is achieved then Otsu thresholding is applied.
The results of mean shift extraction are shown in the Fig. 8(a) and 8(b). In SOM, initially some random points are
chosen. These initial points are used for similarity matching from the original image. The local characteristic of the
original image like pixel value are taken into account, then iteratively the similar pixel values move towards mean and
a converged mean is obtained. The segmented/converged image is used with ISO thresholding method for extraction.
The results of SOM extraction are shown in the Fig. 8(c) and 8(d).
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Fig. 9. (a) Showing SOM Results Overlaid with the Original Image; (b) Showing Mean Shift Results Overlaid with the Original Image.

6.1 Comparative analysis of segmentation algorithms

The detailed comparison of algorithms is shown using before, during and after satellite images for the given flooded
scene.

6.1.1 March satellite image analysis

Mean shift and SOM algorithms are applied for before flooded march image and applied results are shown in the
Fig. 5. Here we can see the river lane is extracted using both algorithms and verified with the ground truth data. Here
water image pixels are extracted from satellite image using mean shift by setting parameter hr and hs to value 10.
Then we have used Otsu method for thresholding the image. In case of Self Organizing Method, initially 50 random
values used from the image are drawn as sample as a part of initialization. And thresholding of 0.05 values is set for
grey level of the image iteratively to separate image in order to two discriminate land and water classes as shown in
Fig. 5(c) and 5(d). Further segmented results are compared with ground truth data using RMSE value.

6.1.2 September month satellite image analysis

Mean shift and SOM methods are applied for during flood September month, which is shown in the Fig. 9. Here we
have extracted water image pixels to verify flooded and non-flooded places. After extraction, ROC parameter is used
to determine the accuracy. We found that SOM has identified flooded places better in comparison with Mean shift.
Figure 9 (a) and 9(b) shows the extracted and overlaid results by SOM and MS in order to determine flooded places.

In during flooded image, the water pixels are distributed over the entire region so in grouping them the threshold
value should be set to higher values. In case of during flooded image, we have identified total 24 places in which
12 places are flooded regions and 12 places are non flood regions, as in the Fig. 3. Here we cannot prepare the ground
truth data because water pixels are scattered in the image and it becomes hard to intervene from grouping water pixels.
The ROC parameter for during flooded image is calculated as shown in the Table 5, SOM has performed well in
marking both flooded and non-flooded regions with compared to mean shift.

Here we have overlaid the extracted image with original map in order to verify identified places. From the Table 5,
we can see that SOM has performed better than Mean shift algorithm.

6.1.3 November month satellite image analysis

Mean shift and SOM algorithms are applied for before flooded march image and applied results are shown in the
Fig. 5. Here we can see the river lane is extracted using both algorithms and verified with the ground truth data. Here
water image pixels are extracted from satellite image using mean shift by setting parameter hr and hs to value 10.
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Table 5. Shows ROC Parameter Applied for During Flooded Image. (a) ROC
Parameter Applied for During Flooded Image using SOM Method, (b) ROC
Parameter Applied for During Flooded Image using Mean Shift Method.

SOM ROC Parameters

TP 12

TN 11

FP 1

FN 0

Mean Shift ROC Parameters

TP 10

TN 9

FP 3

FN 2

Then we have used Otsu method for thresholding the image. In case of Self Organizing Method, initially 50 random
values used from the image are drawn as sample as a part of initialization. And thresholding of 0.05 values is set for
grey level of the image iteratively to separate image in order to two discriminate land and water classes as shown in
Fig. 5(c) and 5(d). Further segmented results are compared with ground truth data using RMSE value.

7. Conclusions

In this paper, we are analyzing flood assessment using MODIS satellite image by unsupervised techniques like
mean shift and SOM for water image pixel identification and extraction. The SOM algorithm has performed well for
in all these cases before, during and after flood images. We determine algorithm performance based on the parameters
like ROC. These parameters are applied for algorithm results and validated it against the ground truth image. In case of
during flood image, the ROC performance evaluation parameter is used for identifying non-flooded regions and flooded
regions to record the flood database. Finally we conclude that a SOM method has performed better in extraction of
flooded regions compared to conventional unsupervised method like mean shift.
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