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ABSTRACT 

Convex cones of matrices which are closed under matrix inversion are defined, 
and their structure is studied. Various connections with the algebraic Lyapunov 
equation of general inertia are explored. 0 Elsevier Science Inc., 1997 

I. INTRODUCTION 

Convex cones play a central role in matrix theory: the sets of Hermitian 
matrices or real matrices with a prescribed sign pattern (e.g. entrywise 
positive or Z matrices) are all convex cones. Here, we shall focus on a special 
family of convex cones, namely those which are closed under matrix inver- 
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sion, e.g. the sets of stable upper triangular matrices or dissipative matrices. 
Such a set will be referred to as a conuex invertible cone, or tic for short. 

Matrix tics have any interesting properties. In particular, typically they are 
divided into “basins of influence,” each basin governed by a single involution 
(i.e. a matrix S with S2 = I). The number of basins may be finite, countable, 
or a continuum. 

A second property is generating sets. The set of extreme rays generates a 
cone by convex combinations; but if also inversion is allowed, one can choose 
small proper subsets of extreme rays as generators. For example, the tic 
generated by u, a complex scalar with a nonzero real part, is identical to the 
convex cone generated by a and its complex conjugate a*. 

There are also important connections with the algebraic Lyapunov equa- 
tion, 

HA + A*H = Q, H EZ, QE~‘, 

where XC c”“’ denotes the set of nonsingular Hermitian matrices, and 
9 ~27 is the subset of positive definite matrices. More generally, we study 
sets of matrices X c cnx” satisfying the algebraic Lyapunov inclusion: 

(HA +A*H) ~9 VA E X, 

for some H EZ The matrix H is then called a cotnmon Lyapunou solution 
for X. 

As a first basic observation, it is shown that the set of all matrices sharing 
the same Lyapunov solution is a maximal open nonsingular cit. Hence, if a 
set X has a common Lyapunov solution, then the tic generated by X contains 
only nonsingular matrices. The converse however is not necessarily true. 
Nevertheless, two special cases where the nonsingularity of a tic does imply 
the existence of a common Lyapunov solution are presented: a finitely 
generated tic of upper triangular matrices and a tic generated by a pair of 
Hermitian matrices. 

For a given matrix A one can define the set &” of all possible Lyapunov 
solutions for this A, sometimes referred to as the image of the inverse 
Lyapunov transformation. For a set X, this is generalized to be xx := 

n A E x%A. It is shown that if X and Y are two sets of generators for the same 
nonsingular tic, then xx = 2Cr. The converse is not true for complex matrices 
in general; it does hold over the reals when both sets are singletons. This 
nontrivial result goes back to 1151. 

In [8, 91 we looked at various applications of the tic structure to the study 
of systems and control theory. In particular, we interpret a well-known 
iterative procedure for solving the Lyapunov equation (the matrix sign 
function algorithm) in terms of the basin of attraction of the involution in a 
cit. 
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Convex invertible cones can be defined abstractly over any algebra with a 
unit element. Indeed, the discussion of the tic structure in [9] is extended to 
algebras beyond that of constant matrices. In particular, it is shown there that 
the set of positive real odd functions is a tic over the algebra of scalar real 
rational functions. Moreover, if a matrix B belongs to a tic generated by A, 
then there is always a scalar positive real odd function f such that B = f< A). 

The outline of this paper is as follows. In Section II basic properties of 
tics are investigated, including relations with involutions within a cit. Con- 
nections with the Lyapunov equation are explored in Section III. Nonsingular 
tics of Hermitian and upper triangular matrices are examined in Sections IV 
and V, respectively. 

II. CONVEX INVERTIBLE CONES AND INVOLUTIONS 

Our main goal in this paper is to study the Lyapunov equation in 
association with matrix tics. In this section we define these mathematical 
objects in general, and study their relevant properties: generating sets, 
nonsingularity, inertia, and involutions. We start with definitions, followed by 
several remarks. 

DEFINITION. 

(1) A set X C cnxn is said to be invertible if along with any nonsingular 
matrix A in it, it contains also its inverse A-‘. 

(2) A tic is a convex invertible cone of matrices, i.e., a set of matrices 
closed under addition, matrix inversion, and positive scaling. 

(3) For X c tZnXn we denote by %9(X) the tic generated by X, namely, 
the smallest tic containing X. 

(4) Given a tic %?‘, every set X c %? such that E’ = E(X) is called a 
generating set for E’. A generating set X is minimal if it does not strictly 
contain any other generating set. 

(5) A tic (and in general, any set of matrices) will be called stable 
(nonsingular) if it contains exclusively stable (respectively, nonsingular) matri- 
ces. 

Note that under this terminology invertibility and nonsingularity are 
unrelated properties. For example, the set X c Rzx ’ of matrices whose sign 
pattern is 
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is a (nonsingular) convex cone, but not invertible [in fact (X)-i = (X)r]. On 
the other hand, the set 9 of all Hermitian positive semidefinite matrices is a 
tic, although it contains singular matrices as well. Stability of the convex cone 
generated by X was characterized in [6] by means of a local Lyapunov 
condition. 

Both nonsingularity and stability are preserved under positive scaling and 
matrix inversion, but in general not by taking convex combinations. It is 
therefore not enough to check a generating set X in order to establish these 
properties for G?(X). 

To get &F(X) from a generating set X, we may proceed by induction. We 
setX, =X, andXk+i is obtained from X, by taking positive combinations of 
members in X, and their inverses. F(X) is the union of the increasing 
sequence Xk. 

Every tic has generating sets, but not necessarily minimal generating sets. 
The elements of a minimal generating set, if it does indeed exist, must belong 
to extreme rays of the cone. A minimal generating set is generically nonunique. 
We illustrate the concept of generation with a tic of sign pattern matrices, of 
the type studied in [9]. 

EXAMPLE 2.1. The set 3Y c lR2’ 2 of matrices whose sign pattern is 

is a nonsingular cit. It can be considered as an orthant in Iw2x 2. If we allow 
also zero entries, we get the closure 2, which is a singular cit. 

Recall that Ejk denotes the matrix with 1 at the j, k entry and zeros 
otherwise. The set X = {E,,, E,,, E,,, -E,,} is a minimal generating set for 

Z In fact, since _F is a convex cone with only four extreme rays, this 
generating set is essentially unique. However, the nonsingular tic 3? (the 
interior of 2) has no minimal generating sets. In Observation 5.5 we show 
that the set of stable upper triangular matrices forms a tic with a countable 
generating set. 

Complicated tics can be constructed from simpler ones using simple rules 
such as the following three. The proof is simple and has been omitted: 

PROPOSITION 2.2. 

(i) The intersection of tics is a cit. 
(ii) Let X C cnXn, Y C Cmxm be two matrix tics. Then the set of all 
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(n + m) X (n + m) matrices of the form 

where A E X, B E Y, and C E @nXn’ are arbitrary, is a tic as well. 
(iii) Each of the operatio ns similarity, transposition, and complex conju- 

gation defines a bijection between two tics, and in particular transforms a 
generating set to a generating set. 

These rules also preserve nonsingularity and stability of a cit. 

Matrix inertia plays a major role in characterizing nonsingular tics. Recall 
that an n X n matrix has inertia (v, 6, r) if among its eigenvalues v have 
negative real part, rr have positive real part, and S are imaginary. In this 
context, the case 6 = 0 turns to be of a particular significance and will be 
referred to as regular inertia. We call a matrix unstable whenever v < n - 1 
and antistable when r = n. 

The three operations mentioned in Proposition 2.2(iii), especially similar- 
ity, will be needed in the sequel. Note that these operations are inertia 
preserving. The implication of this observation for the tic structure will be 
reinforced in Proposition 2.6(a) and in the beginning of Section IV. 

A matrix S is called an involution if S2 = I, or equivalently if S- ’ = S. 
The following are alternative definitions: 

(1) II := d<S + I) is an idempotent, i.e. II2 = II; 
(2) S is similar to diag{ - I,, I, _ J for some 0 < v < n; 

(3) S is unitarily similar to 
( JJzu I::.) 

for some M E CvxCn-“). 

The scalar involutions are k 1. For every a E c with Re a # 0, the function 
Sign(a) := (Re a)/lR e a assigns an involution in a continuous way. For ( 
matrices, a rigorous definition of the analogous matrix sign function (see [l]) 
is given by 

Sign(A) = 2II, - I, nA := &(tZ - A)-’ dt, (2.1) 
Y 

where y is an arbitrary closed contour encircling all the right half plane 
eigenvalues of A. The idempotent matrix UA is the spectral projection 
associated with A and the right half plane. The continuity of IIA as a 
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function of A guarantees the continuity of Sign(A). Note that Sign is 
continuous even when the Jordan form is not. For example, consider 

A = I, and B = i y . 
( 1 

We get Sign(A) = Sign(B) = I,. 
Alternatively, Sign(A) can be defined in terms of the Jordan representa- 

tion. Namely, if Vjv-’ and J is in Jordan form, then Sign(A) = 
V diag(Sign(],, 1> *-- Sign(jn, .>I V-l, irrespective of the number of Jordan 

blocks in J (see e.g. [S]). Th e e uivalence of the two definitions is an q 
immediate consequence of the following properties of the sign function: (1) 
Sign(A) = -Z if and only if A is stable; (2) Sign(diag{ A, B}) = 
diag( Sign( A), Sign( B )}; (3) Sign(VAV- ’ ) = V Sign( A) V-l. These properties 
follow easily from (2.1). Th e uniqueness of the spectral projection l’lA shows 
that Sign(A) is independent of the Jordan representation, which is not 
unique. The matrix Sign function is studied in [Chapter 221. 

The set of involutions is an unbounded algebraic variety in the space of 
72 X n matrices. It has n + 1 connected components, determined by their 
(regular) inertia. The following elementary exercise provides us with a simple 
test for convexity of a set of involutions. 

LEMMA 2.3. For any two distinct involutions S,, S,, the following are 
equivalent: 

(i) Any afine combination aS, + (1 - a)S, is an involution. 
(ii) ‘One afine combination other than S,, S, is an involution. 

(iii) S,S, + S,S, = 21. 

A tic L?? contains involutions whenever it contains matrices with regular 
inertia; see Propositions 2.5, 2.6 below. The set {Sign(g:)] of involutions in % 
is a relatively closed variety in ‘%?. It is not necessarily bounded, convex, or 
even connected; see Proposition 2.6. 

The tic of upper triangular n X n matrices has a rich variety of involu- 
tions (see Section V). The following is an additional example. 

EXAMPLE 2.4. Consider 2, the closure of the sign pattern tic introduced 
in Example 2.1. A matrix 

where a,b,c,d > 0 
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is an involution in 2 if and only if a = d and a2 + bc = 1. These equations 
describe a nonconvex, @bounded variety (Sign(5)) in l/X2’ 2. The relative 
interior of the set {Sign(X)] consists of the involutions of the open tic LX 

The set X contains upper and lower triangular involutions of the form 

S” = l “‘1 , ( 1 0 
s,=l O ( 1 c’ -1’ 

Each of these two sets is a&e (see Example 5.1). In fact, every involution s 
in 3 splits as a positive combination of two such lower and upper triangular 
involutions, 

I 

S = @a 1 ii2 \ ( 1 0 ’ 

+ (1 - e>a 0<8<1. 

\o -11 \ (1 Jqa -I, 

This splitting is not unique. 

We now state the property of a constant inertia of an arbitrary nonsingular 
cit. First we cover tics with a single generator: 

PROPOSITION 2.5. Zf A E CnXn has regular inertia, then %F( A) is non- 
singular, and Sign( A) is the only involution it contains. Zf A has irregular 
inertia, then F?(A) is singular and contains no involutions. 

Proof. Let A be given in its Jordan canonical form, namely A = V’-‘; 
then ‘L%(A) = V%?(j)V-‘. Note that the upper triangular matrix J may 
always be chosen so that it can be partitioned according to the inertia of A, 
namely, J = diag{j,, Js, Jn}: The submatrix ly comprises all Jordan blocks 
corresponding to eigenvalues within the open left half plane. Similarly, all 
blocks corresponding to eigenvalues on the imaginary axis, and those within 
the open right half pl ane, are grouped in the submatrices Js and lm 
respectively. Clearly, for a nonsingular matrix A one has that A-’ = 
Vdiag~f~‘,J~‘,J~‘}V-‘, where each of the diagonal blocks is by itself upper 
triangular, so in particular []-llkk = l/[Jlkk. 

Assume first that inertia(A) is regular, i.e., 6 = 0. Then Sign(A) = 
Sign(A-‘) = Vdiag{-Z,, Z,}V- ‘. Obviously, Sign( a A) = Sign(A) for an 
arbitrary scalar a > 0. Hence Sign(A) = Sign(B) whenever B E @A). So 
nonsingularity of the tic and uniqueness of its involution are established. 
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Consider now the case where inertia(A) is irregular. If A is singular, we 
are done. So assume that the tic contains a nonsingular matrix B with an 
imaginary eigenvalue ia, a E R; then (23 + a2B- ‘) is singular. Moreover, in 
this case Sign(B) is not properly defined. So the claim is established. W 

As an illustration of the last result take A to be an arbitrary matrix with 
regular inertia which is not an involution. Let us denote A(8) := 8A + (1 - 
0) Sign(A), where 0 < 8 < 1. Then 0, > e2 implies that E’(A(8,)) is a 
strict subcic of E7( A(6),)). In particular @A(8)) is a nonsingular tic with a 
single involution. For general tics we obtain the following: 

PROPOSITION 2.6. 

(a> For a tic g of complex matrices, the following properties are equivalent: 

(i) $? is nonsingular. 
(ii) No matrices in G? has imaginary eigenvalues. 

(iii) All the matrices in g have the same regular inertia. 

(b) A nonsingular tic has a nonempty connected set of involutions. 

Proof. 

(a): Obviously, (iii) implies (i). Next, in order to show that (i) implies (ii), 
note that if @? is regular and A belongs to it, then g(A) G Z? is regular; 
hence A has regular inertia by Proposition 2.5. Finally, we show that (ii) 
implies (iii). If there exist two matrices A, B E S? with different inertias, 
consider the matrix 8A + (1 - 8)B. At some point 8 E [O, 11 the matrix 
changes inertia, so it must have an imaginary eigenvalue. 

(b): If %? is regular, we know that the Sign function is a continuous 
mapping from G? into itself, whose image is the set of involutions in g. By 
convexity, g is connected. Hence, by continuity, its set of involutions is also 
connected. By Proposition 2.5, this set is not empty. n 

In Proposition 2.3(iii) it was indicated that similarity, transposition, and 
complex conjugation preserve the tic structure. Recall that the inertia is 
invariant under these operations; hence nonsingularity of a tic is presented as 
well. 

The converse of Proposition 2.6(b) falls short of being true. As a simple 
counterexample, the set [O, m) is a singular tic in R, and it contains a single 
involution, (1). Therefore, the nonsingularity of a tic cannot quite be deter- 
mined by the connectedness of its set of involutions. In fact, a tic B with a 
connected set of involutions 9 can be decomposed into the union of two 
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disjoint sets @ and Y, where the nonsingular tic &’ is such that 9 = {Sign(@‘)} 
and the set Y either is empty or consists only of matrices with irregular 
inertia. 

The following useful observation is an immediate consequence of the last 
two propositions. 

COROLLARY 2.7. A tic containing a stable matrix is nonsingular if and 
only if it is stable. Moreover, a stable tic contains the matrix -I as its 
unique involution. 

We conclude this section by pointing out a simple fact concerning 
commutativity and the Sign matrix. It puts into perspective the conditions in 
Lemmas 3.4 and 3.6 below. 

LEMMA 2.8. Let A, B be two matrices with regular inertia. Consider the 
following statements : 

(i) The matrices A and B commute. 
(ii) The matrices Sign(A) and B commute. 

(iii) The matrix Sign(A) Sign(B) is an involution. 

Then (i) implies (ii), and (ii) implies (iii). The converse implications do not 
hold in general. 

Proof. (i) * (ii): Using results in functional calculus, it follows that 
every matrix B which commutes with A commutes with the spectral 
projection HA, (2.11, and thus with Sign(A) as well. 

(ii) * (iii): From the previous part we have that Sign(A) Sign(B) = 
Sign(B) Sign(A). Multiplying the relation on the right by Sign(A) Sign(B) 
reveals that [sign(A) Sign( B>12 = I, so this direction is established. 

(iii) * (ii): Let A = diag{ - 1, 11, and let B be an arbitrary nondiagonal 
antistable 2 X 2 matrix. Then Sign(A) Sign(B) = A = Sign(A), but A and B 
do not commute. 

(ii) * (i): In the p revious example interchange the roles of A and B. 
The proof is complete. n 

III. SETS SHARING A COMMON LYAPUNOV SOLUTION 

In this section we start exploring the connection between the notion of a 
matrix tic and the Lyapunov equation for not necessarily stable matrices 
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(known as the inertia theorem); see Theorem 3.1 below. A major role is 
played by &4 the set of nonsingular Hermitian matrices. Note that %(+ZY? 
comprises all Hermitian matrices of any rank (including zero). However, in 
the next section, we study nonsingular tics of Hermitian matrices. 

Consider the equation 

HA +A*H =Q, HE&q QEY”. (3.1) 

The well-known inertia theorem states the following: 

THEOREM 3.1. Let A E C”“’ be given. Then: 

(i) [13, Theorem 2.4.101 There exists a pair of matrices H ES?’ and 
Q E 9 such that Equation (3.1) is satisfied ay and only if A has regular 
inertia. In this case inertia(A) = inertia( H ). 

(ii) [13, Corollary 4.4.71 F or each Q ~9 Equation (3.1) has a unique 
solution H E &” if and only if 

hi( A) + A;( A) # 0, 1 <j <k <n. (3.2) 

The original statement in [13, Corollary 4.4.71 is stronger than our 
Theorem 3.1(u). 

The existence condition in Theorem 3.1(i) coincides with the nonsingular- 
ity condition for singly generated tics (Proposition 2.5). This condition is 
weaker than the uniqueness condition (3.2). 

We can define now ti”, the set of matrices sharing a common solution 
H E Z, to the Lyapunov equation, 

dH := {AI(HA +A*H) ~9). 

For an arbitrary H l 2 this set is not empty, since it always contains the 
matrix A = H. 

Note that the set x& is closed under inversion. Namely, if (HA + A* H) 
~9, then due to Theorem 3.1(i) (the inertia theorem), the matrix A is 
nonsingular, and (A* )-r( HA + A* H > A-’ E 9. Testing for summation and 
positive scaling is trivial; hence the set _w’~ is a nonsingular cit. One can now 
use this fact in order to provide an alternative proof for the inertia part of 
Theorem 3.1(i). 

OBSERVATION 3.2. lit H E &” be arbitrary. Every matrix A in the set 
L$, satisfies inertia(A) = inertia(H ). 
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Proof. For a given H ~2, the set .w’~ is a nonsingular cit. Hence, by 
Proposition 2.6(a) the tic s/,~ has a fxed inertia. Since H ELT(~ as well, this 
inertia must be the same as that of H. n 

In Proposition 3.7 below we show that in fact ~‘r, is a maximal open 
nonsingular cit. The proof there does not rely on the inertia theorem. 

From the original Lyapunov theorem (or its generalization in Theorem 
3.1) it follows that the set J;S, consists of stable matrices if and only if the 
matrix H is negative definite. 

As an important special case the subset til of antistable matrices coin- 
cides with the family of dissipative matrices, namely the matrices with 
positive definite Hermitian part: 

9fI = {AI(A +A*) EP}. (3.3) 

See e.g. [lo, 171 f or relevant material. Note that the antistable normal 
matrices form a (highly nonminimal) generating set for Ml. 

Explicit description of _u’~ is in general quite involved. First, let us 
assume that an n X n matrix H has a special structure H = diag{ -I,,, I, _ .) 
for some 0 < v < n: 

OBSERVATION 3.3. Given n and v, where 0 < v < n, euey A E 

-P, + z, F+X 
A= 

F* P,-, + Z,_, 

where the matrix P, is positive definite and Z,, Z, _ y are skew Hermitian, all 
of the appropriate dimensions; X, F E @(n-“)xy are arbitrary; and the 
(n - v) X (n - v) matrix (P,_ y - *X*PVVIX) is positive definite. 

The proof is left to the reader. The special case v = 0 leads to Equation 
(3.3). 

Now in order to extend the above characterization of the set .w’~ to the 
case where the matrix H has more general structure, recall that this matrix 
can always be written as H = M * diag{ - Z,, , I, _ .) M for some nonsingular 
matrix M. Then use the following: 
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LEMMA 3.4. Let H ~&“and M be arbitrary nonsingular matrices. Then: 

(i) M-‘J$M =JJ?&*~~. 
(ii) Zf H and M commute, then M *J&‘~ M = _$, . 

Proof. Consider the equation HA + A* H = Q for an arbitrary H E 2 
Multiplying by a nonsingular M from the right and M* from the left yields 

( M*HM)( M-‘AM) + ( M-~AM)*( M*HM) = M*QM (3.4) 

(i): Now, by definition A ES’~ is equivalent to requiring that Q be 
positive definite. The claim follows from Sylvester’s law of inertia; see e.g. 
[12, Theorem 4.5.81. 

(ii): The matrices H and M commute if and only if H and M* do. 
Therefore, the claim follows from (3.4). W 

We need now to resort to the following decomposition of an arbitrary 
Hermitian matrix H with inertia (v, 0, n - v), where 0 < Y < n, 

H = Ldiag{ -I,, I,_,,} L*, L = (H2)1’4diag{Uv,U,_v}, (3.5) 

and the unitary matrices U,,, U,, _ y are arbitrary of the appropriate dimen- 
sions. Recall that an arbitrary H E 2’can be written as H = VAV * , where V 
is unitary and A is a real, nonsingular diagonal matrix. Hence, in (3.5) we in 
fact have (H 2)1/4 = V 1 R1”2 V * . This observation implies that due to Lemma 
3.4(i), if the matrix H is of a given inertia (v, 0, n - v), the tic z& is similar 

to the set sy&i,p{- I,. In- v) described in Observation 3.3. Moreover, without 

loss of generality, the similarity matrix M in Lemma 3.46) can be taken to be 
positive definite. 

The special case where in Lemma 3.4(i) we have H = P ~9 is of a 
particular significance; it was already used in the proof of [18, Theorem 31. 
Then, one can take the similarity matrix to be M = P-1/2U, where U is an 
arbitrary unitary matrix, and thus obtain the tic of dissipative matrices (3.3). 

As another special case of Lemma 3.4(i), following the decomposition in 
(3.51, we have that M-k+, M = S& whenever H = P diag{ -I,, I, _ .] P, 
P ES@‘, and M = P-’ diag{U,, U,_ .} P, where the unitary matrices U,, U,_, 
are arbitrary. 

If one takes H in 3&i) to be a scalar matrix, i.e. H = rZ where r E Iw, 
r z 0, then it trivially commutes with an arbitrary matrix M, which results in 
the simple observation that the sets dlt I [see (3.3)] are invariant under a 
nonsingular congruence. 
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We can now state in the stable case the first fundamental connection 
between Lyapunov the equation and the novel notion of cit. 

LEMMA 3.5. The set .Kp, where P E 9, is a maximal open stable tic in 
“X” C . 

Proof. Using the remark after Lemma 3.4, it suffices to show that &_, 
is a maximal open stable cit. It is straightforward to show that M-r is a stable 
tic and an open set. If it is not a maximal stable open tic, there must be a 

matrix B E2_1 (where 2_ I is the closure of &_r) for which the tic 
(d-r, B) is stable. We shall show that this is not possible. 

By Proposition 2.6(a)(m) the above B must be stable. If the eigenvalues 
of B + B* are A, > *** > A,, then we must have A, > 0, since otherwise 
B l 2_r. Now, for an arbitrary 0 < 8 < 1 the matrix A = $( - @A, Z + B* 
- B) is in Kl, but A + B is unstable. n 

Consider the set s-r, the closure of the tic Kp in the usual matrix 
topology. This is not stable, as there are singulr matrices on its boundary. By 
similarity [see Lemma 3.4(i)] it is enough to verily this statement for P = I, 
and indeed %K, contains the set of singular negative semidefinite matrices. 

The following simple lemma, closely related to Lemma 2.8, will turn out 
to be very useful in the sequel. Recall (e.g. [12, Theorem 2.5.51) that two 
normal matrices (and Hermitian matrices in particular) commute if and only 
if they are simultaneously codiagonizable by the same unitary similarity 
transformation. 

LEMMA 3.6. Let H, S E&J be commuting matrices, where S is an 
involution. Then 

S.dH =&f-s ‘_d$.” =5x?Hs. 

Proof. Under the given premises, 

HA + A* H = HSSA + A*SSH = HS( SA) + ( SA)* SH 

= sH(s~) + (SA)*SH. 

Thus A E&~ is equivalent to (SA) E &sH ( =~$~s>. Similarly, 

S*(HA +A*H)S = SH(AS) + (AS)*HS = SH(AS) + (AS)*SH; 

hence A E JalH is equivalent to (AS) E &sH as well, so the proof is complete. 
n 
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In particular this lemma shows that the set G$, is invariant under the 
similarity transformation by S. Note that for an arbitrary H E &” we have that 
H Sign(H) E 9 (this is obvious if H is already diagonalized). Hence, choos- 
ing in the above lemma S = -Sign(H) and using Lemma 3.5, one can 
obtain the main result of this section. 

PROFQSITION 3.7. For an arbitrary H E 2?’ the set J$, is isomorphic to 
the stable set d-H SignCHj. In particular, .dH is a maximal open nonsingular 
tic in Cnxn. 

This result in particular implies that if A E&~ for a given H EX, then 
the matrix -ASign is stable. 

Define now the sets 

&“A := {H=Zl(HA+A*H) E9’}, 

xx:= f-p?& 
AEX 

In the case that A is stable, it follows from Theorem 3.1(i) that 2?_* ~9. 
Sets of the form &“A were previously studied e.g. in [19], where they were 
referred to as the image of the inverse Lyapunov transformation. 

The Lyapunov equation puts into a duality relation sets of type &“A and 
sets of type .$, . However, unlike .$, , the nonsingular convex cone Zx is not 
necessarily invertible. It obeys the modified inversion rule 

zx* = (&“x)-1. 

This follows from multiplying Equation (3.1) by H-’ on both sides. In a 
similar way, it is easy to verify that for arbitrary nonsingular A we have that 

&“A =x*-l. Note also that under the new notation Lemma 3.4(i) can be 
generalized to a set X: 

Explicit characterization of the geometry of sets of the form xx is known 
to be difficult even when X is a singleton (see e.g. [19]>. In this case, the 
following uniqueness result is known. 
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THEOREM 3.8 [15]. 

(i) Let A, B E cnx” have regular inertia. Then &“A =2$ if and only if 
B = (aZ + ibA)(cA + idI)-’ f or some scalars a, b, c, d E R satisfying ac + 
bd = 1. 

(ii) Let A, B E Rnx n have regular inertia. Then 2A fl [w “Xn =q (-) 

Rnx” if and only if B = cyA*’ for some scalar (Y > 0. 

Theorem 3.8(ii) can be reformulated as saying that over the reals xA =Za 
is equivalent to ‘Z(A) = g(B). From Theorem 3.86) we know that this is no 
longer true over the complex field. 

The rest of the section is devoted to further exploration of the relation 
between the existence of a common Lyapunov solution and the nonsingularity 
of the associated cit. 

PROPOSITION 3.9. Let X, Y c @* ” be sets of matrices. Then: 

(9 XFCx, = Xx. 
(ii) %9(X) c C(Y) implies SKY C zx. 

Proof. 

(i): By definition H E Sx for some H ~2’ is equivalent to X c&. 
Now the claim follows from the maximality of the set J;s, ; see Proposition 3.7. 

(ii): If H EX~ then due to (i) we have H ES%&,, and since g(X) C 
E’(Y), necessarily H EX~(~). Using (i) again, it follows that H EX~, so the 
proof is complete. H 

Proposition 39(i) implies that X and Y are two sets of generators to the 
same nonsingular tic then Zx = Zr. The converse of 3.9(n) does not hold in 
general. As was already remarked, over the complex field, one can use 
Theorem 3.8(i) to easily produce a counterexample even of a singly generated 
cit. Over the reals, we have the following example. 

EXAMPLE 3.10. Let X, Y be the sets of all matrices orthogonally similar 
to A and B, respectively, where 
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We are to show now that e(X) neither contains nor is contained in G?(Y), 
although Zx n Wx2 =Zy n lPx2. 

Clearly, the last equality is between two sets of matrices within 9 n [w2’ ‘. 
Let us now introduce a parametrization of the set of all 2 X 2 real symmetric 
positive definite matrices. 

Every 2 X 2 symmetric positive definite matrix with trace 2 can be 
parametrized as 

a, b E R, 2 + b2 < 1. 

Namely, the set of trace 2 matrices within .T? n R2x2 is homeomorphic to 
the open unit disc in the {a, b} plane. So up to a positive scaling, it covers the 
set of all 2 X 2 real positive definite matrices. 

For an arbitrary set Z we shall denote by gz, where kz =$z(u, b), the 
restriction of the set &“z n R”‘” to those matrices with trace 2. Hen:e, if A 
is a real antistable matrix, then under the above parametrization, Z~ is an 
ellipse within this disc. 

From (3.7) it now follows that Zx n R “’ n is the intersection of the sets 
u*(ZA n UP W over all orthogonal matrices U. Using the above ,T 
parametrization, this in turn amounts to rotating the set ZA about the origin 
in the {a, b) plane and then intersecting all the images. Namely, if 

is within &” and we use the usual parametrization for orthogonal matrices 

U= 
i 

cos e sin e 
sin e 1 -cos e 1 

o~e-c2~, 

then 2x contains the intersection over all 0, 0 < 8 < 27r, of all matrices of 
the form 

z + 4E-G f::j”,“, = ;; ( 
where cos +!I = b/ \/a2+b2 and sin (c, = a/ GGT. 

Note now that for all Ibl < 7/25, the matrix 
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,. n 
is within &“A. Using the above analysis, it follows that &“x contains all matrices 
of the form 

where 0 < 8 < 72 and Ibl < 7/25. 

Actually, this is exactly the required set 2x. 
In principle, a similar analysis can be carried out for 2s and G&, 

respectively. In fact, it can be simplified by exploiting the fact that &sB is an 
orthogonal matrix. First note that Y = {B, Br}. Then, using (3.6), it directly 
follows that 2s = &“y and in turn Zx = Zr. See also Figure 1. 

However, we shall show now that Z?(X) neither contains nor is contained 
in g(Y). 

g:(Y) c (‘Z’(X): It is easy to verify that g(Y) = { (YB + /3BT 1 (Y, /3 2 0, 
CY + p > 0). This in particular implies that the elements on the main diagonal 
of every matrix in g’(Y) are identical and hence A e g(Y). 

‘Z(Y) Q (e(X): Clearly, g(X) ~9, but since the matrix B has a nonreal 
spectrum, it cannot be in g(X). 

We conclude this section by essentially reformulating Proposition 3.9(i). 

COROLLARY 3.11. Iff or a set of matrices X we have that zx z 0, then 
g(X) is nonsingular. In particular, if there exists a negative definite common 
Lyapunov solution for X, then g:(X) is stable. 

This corollary provides us with a very simple, but rather strong, necessary 
condition for the existence of common Lyapunov solutions. This necessary 
condition is in general not sufficient. This gap will be examined in Theorem 
4.2 and Propositions 5.2, 5.3 below. 

IV. LYAPUNOV EQUATION AND HERMITIAN CICS 

It was shown in Proposition 2.3(iii) that the traditional linear preservers of 
inertia-similarity, transposition and complex conjugation-also preserve tic 
structure. As indicated, this agrees well with Proposition 2.6(a), which states 
that in a nonsingular tic all elements have the same regular inertia. 

In this section we examine the special case of nonsingular tics of 
Hermitian matrices. Here, congruence substitutes for similarity in the classi- 
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b 

a 

FIG. 1. The set of all Lyapunov solutions to X and Y in the {a, b} parameter 
plane. 

cal inertia preserver results; see [2O]. Concerning congruence, we shall need 
the following definitions based on [17]: 

DEFINITION. 

(1) A nonsingular n X n Hermitian matrix is said to be inertia expkit if 
it can be partitioned as 
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where the matrices P,,, P, _ y are respectively v X Y and (n - V) X (n - u) 
positive definite for some v where 0 < Y < n. 

(2) For a fKed V, 0 < Y < 12, we shall denote by &IV, n) the set of all 
n X 12 inertia explicit Hermitian matrices with the above pattern. 

(3) A set of nonsingular matrices X c%” is said to be simultaneously 
congruently inertia explicit if there exists a nonsingular matrix M E CnXn 
such that (M*XM) G~%v, n) for some V, where 0 =G u G n. 

Note for example that S$O, n) = 9. Using this notation, we can now present 
a special analog of Proposition 3.7. 

PROPOSITION 4.1. Given an integer v with 0 < v < n, then: 

(i) av, n) =Xnd. _ dag( 1”. 1” - “I’ 
(ii) Let U be a unitary matrix. Then U*&V, n>U is a maximal open 

nonsingular Hermitian cit. 
(iii) For an arbitrary matrix A with regular inertia, the set Z* is 

simultaneously congruently inertia explicit. 

Proof. (i) trivially f 11 o ows from Observation 3.3. Now, (ii) is obtained 
from (i) by first using Lemma 3.4(i) with a unitary M, and then applying 
Proposition 2.3(i) and 3.7. 

(iii): First, for some nonsingular M and an arbitrary 0 < v < n let 
Sign(A) = M diag{ -I,, I,_.} M-‘. Th en, from the proof of parts (i), (ii) 
together with Equation (3.7) we have that S?&sipn(Aj = M*av, n)M. Now 
from Proposition 3.9W we have in particular that xA cA?&~~(~), so the proof 
is complete. n 

From Corollary 3.11, it is obvious that the nonsingularity of g(X) is a 
necessary condition for-xx to be nonempty. Below we provide a special case 
of interest where it is also suffkient. 

THEOREM 4.2. For arbitrary A, B E 2’ the following are equivalent: 

(i) The matrix AB-’ does not have real negative eigenvalues. 
(ii) con4 A, B) is nonsingular. 

(iii) %‘(A, B) is non-singular. 
(iv) &“A nx, # 0. 
(v) The pair {A, B} is simultaneously congruently inertia explicit. 



124 NIR COHEN AND IZCHAK LEWKOWICZ 

Proof. First, (v) = (iv), since up to congruence diag{ - Z,, I, _ J E &“A 
n 3s. The implications (iv) * (iii) * (ii) are easy. The implication (ii) a (v) 

was proved in [14, Th eorem 51, so the equivalence of the last four statements 
is established. Finally, the equivalence of (i) and (ii) is well known (e.g. [14]) 
and holds for any pair of nonsingular matrices (not necessary Hermitian), so 
the proof is complete. n 

A critical part of the proof is to show that Theorem 4.2(n) implies (v>, and 
this was done in [17]. In Section 5 of that paper it was demonstrated by an 
example that this implication does not extend to a triple of real symmetric 
matrices. As a direct consequence we have the following, 

COROLLARY 4.3. Let A, H E 2? he such that A E dH. Then the matrices 
A and H are simultaneously congruently inertia explicit. 

Proof. Trivially, H E ZA I? XH. Now apply Theorem 4.2. n 

Corollary 4.3 goes beyond the inertia theorem (Theorem 3.0, which only 
guarantees that A and H have the same inertia. The converse of Corollary 
4.3 does not hold even in the case of definite inertia. A counterexample is 
provided by 

A=diag{l,6) and H= 4 i , 
( 1 

both positive definite. 

V. TRIANGULAR MATRICES 

In this section we study tics of upper triangular matrices and examine in 
this context the gap between the existence of a common Lyapunov solution 
and the nonsingularity of a cit. Obviously, any set X which can be brought to 
a triangular form by a common similarity can be subjected to the same 
analysis. For simplicity of exposition we state the results for upper triangular 
matrices. 
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We find it convenient to denote by s^ a diagonal involution, i.e. a 
signature matrix. Clearly, there are 2” diagonal 72 X rr involutions. First, we 
define the set of all upper triangular matrices sharing the same Sign along 
their diagonal, i.e.: 

q := {T 1 T upper triangular with regular inertia, s^ = Sign( diag( T ) ) } . 

The sets 9j are all nonsingular tics: see Proposition 5.3(u) below. However, 
these sets differ substantially, in particular with respect to their involutions, 

Sign@): the more complex the sign pattern along $, the richer the structure 
of the associated set of involutions. In the simplest case, the stable set 4, 
contains a single involution -1: see Propositions 2.5 and 2.6(a). In the 
following example, we consider the case of one and two sign changes along 
the diagonal. 

EXAMPLE 5.1. Let v and 12, where 0 < v Q n, be given. Consider the 

set z&s{- I,, I,_ “)’ All involutions in this tic have the form 

where M E CuX("- ") is arbitrary. Hence, the set of involutions in 

%iag( - I,, I, _ .) is affine. 

If s^ has more than one sign change along its diagonal, then the set of 
involutions in q is not convex. For example, consider the set 

%iag(l,, _I I _ _ ) where rr, v > 1 and n - r - v > 1. All involutions in this “l ” 77 Y 
tic are of the form 

where A E Cpx “, B E Cvx(“- n- “) are arbitrary. From Lemma 2.3 we 
deduce that the convex hull of two such involutions, say $A,, B,) and 
S( A,, B,), contains other involutions if and only if ( A, - A, x B, - B,) = 0. 

In spite of the above, the different sets 3 are still isomorphic. The 
following observation, in the spirit of Lemma 3.6, is straightforward to verify. 
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LEMMA 5.2. Let S;, Ss be two diagonal involutions. Then 

In particular, the set Zj is isomorphic to 9 I, the tic of stable upper 
triangular matrices. 

Indeed, taking g1 = - $a = s^ establishes the second part of the claim. 
Note that the above isomorphism need not take an involution to an involu- 
tion. 

We are to compare now two families of tics: J$,, studied in Section III, 
and q. First, note that the set 9_, overlaps nontrivially with any of the 
stable tics &j,, where ( - H) E 9: by Propositions 2.5 and 2.6 the matrix - Z 
belongs to both. Unlike L&, the set G is not open in the usual matrix 
topology. In particular, these tics are not similar. 

PROPOSITION 5.3. Let the diagonal involution s^ and the nonsingular 
Hermitian matrix H be arbitrary. 

(i) The set 7-t is a maximal stable tic open with the set of upper 
triangular matrices. 

(ii) The set q- is a maximal nonsingular tic open with the set of upper 
triangular matrices. 

(iii) The set _$, is a maximal open (in the usual matrix topology) 
nonsingular cit. 

(iv) The set L& neither contains nor is contained in Zj. 

Proof. Clearly 7-r is a stable tic, so let A = [ajk I be an arbitrary matrix 
not in 9_,, and we are to show that %?( A, Y- r ) contains an unstable matrix. 
If A is unstable we are done, so let A be stable and ajok, Z 0 for some 

j, > $a. We shall construct a matrix T E ZI such that A + T is singular. 
Let T = [G,] be an upper triangular matrix defined by 

Re5j = -]Reajj], Imfjj = -Imajj, 1 <j <n, zkaiO = 
aj*,k,djdo40ko 

laj,k,12 ’ 

where djj := Re ajj - IRe ajjj - 1, and all other entries are zero. Let A, 

denote the strict upper triangular part of A. It is easy to see that T := T’ - 
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A, - 1 is in E I, but direct calculation shows that det( A + T) = 0, so the 
construction is complete. 

(ii): The claim follows from part (i) together with Lemma 5.2 
(iii) is a restatement of Proposition 3.7. 
(iv): J& e 9& namely, for a fixed H ~2’ one can find A E.M~ so that 

A P q. Note that the set z& is open in the sense that if A EMU, then so is 
an arbitrary perturbation of A, provided it is sufficiently small. Hence, in 
particular, the set J& contains matrices which are not-upper triangular. 

3 e&H ; namely, for a fmed H E xand for each S we construct A E 3 
so that A GZ&~. Clearly,jf s^ # Sign(diag( H)) then it does not belong to the 
set MH, so assume that S = Sign(dia$_H)). First, -assume that H is diagonal 
and partitioned as H = diag{h,, h,, H), where H is an (n - 2) X (n - 2) 
diagonal matrix. Then the matrix 

is within e, but belongs to J& only for Ia1 < 2. 
Assume now that H is not diagonal, say H = diag( H) + T’ + fT, where 

f is a nonzero strictly upper triangular matrix. For all (I! > 0 the matrix 
T( (Y) := diag( H) - CY~ is within the set 9$ Note now that i diag( HT( cu) + 
TT(a)H) = [diag(H)]’ - (Y diag(fTT’). Hence, for (Y sufficiently large 
T(a) E .MM, so the proof is complete. W 

Note that Proposition 5.3(k) in particular states that for an arbitrary s^ 
there is no common Lyapunov solution for the set 3. In the rest of this 
section we show that is “almost” the case. 

In the context of upper triangular matrices e, it is natural to consider 
diagonal Lyapunov solutions of the following form: 

H = diag{ h,, . . . , h,), Sign(H) = s^, lhj+,l > Ihjl, 1 <j < 12 - 1. 

This definition is justified by the following result: 

PROPOSITION 5.4. A nonsingular upper triangular matrix, and more 
generally a finitely generated sub& within <-, has a common Lyapunov 
solution of the form (5.1). 
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Proof. First we consider a single matrix A E q, and a candidate for 
Lyapunov solution of theeform (5.1). We shall prove the claim by jnduction 
on 12, the dimension of S. If n = 1 we may simply choose H = S. Assume 
now that n > 1. We may conformably partition A, H, Q as 

so that t, , h,, qb , and & are scalars. The Lyapunov equation Q = HA + A* H 
now splits as 

Q, = H,T, + T,*H,, y = H,x + Ta*f + tbf, 

qb = 2Re(f*x + hbtb). 

By the induction hypothesis, we may choose H, diagonal and modulus 
nondecreasing, so that Q= ~9. Since f = 0, y is determined. Next choose 
h, = sb (Y for some (Y positive and large. Then qb = Itbla can be made 
positive and arbitrarily large, making the entire matrix Q positive definite. 
Also, if (Y is sufficiently large, H will be modulus nondecreasing. 

The same technique enables us to find a common Lyapunov solution for a 
finite set X ~3. Simply choose at each step (Y big enough to satisfy the 
positive definiteness requirement uniformly in X. By Proposition 3.9(i), the 
same H will in fact be valid for all of ‘8(X). n 

This proposition implies that if X is a finite set of matrices and there exists 
a nonsingular matrix M such that { MXM-‘1 c q, then xx # 0. In this 
case, the common Lyapunov solution is not necessarily diagonal; see (3.7). 
For a general treatment of diagonal Lyapunov solutions see [2]. Proposition 
5.4 is applied to the study of exponential stability of triangular differential 
inclusions. 

Proposition 5.3(m) states that the set % has no common Lyapunov 
solution. On the other hand, Proposition 5.4 guarantees that any finitely 
generated subcic of q does have a common Lyapunov solution (in fact a 
diagonal one). The gap between these two results is quite narrow, since q 
itself has countable generating sets, as illustrated below. For simplicity of 
exposition we present the stable case only. 
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OBSERVATION 5.5. The tic of stable matrices 9_, can be generated by 
the set 

A(j,Z,m) := -Z+(l-Z+im)Ejj 

B(j, k, 1, m) := -Z + (1 + im)Ejk 
1 

’ 

l<j<k<n,l,m=1,2 ,.... 

The verification of this fact is straightforward and thus is left for the reader; it 
is based on the facts that 

A-'(j,Z,m) =A j,&,e and 

B-‘(j, k, I, m) = B(j, k, -I, -m). 

The construction for general inertia is similar, but slightly more involved. 
Our analysis leaves open the problem of characterization of countable 

sequences in 8 which admit a common Lyapunov solution. The following 
result is a practical sufficient condition for the existence of a common 
Lyapunov solution. 

COROLLARY 5.6. A set X of n X n matrices within qa has a comr)zon 
Lyapunov solution if the value 

t := sup 
AEX 

is finite. 

Indeed, if f is bounded, one can easilyAfind in Observation 5.5 an integer 
m,, large enough so that the stable sets (SX) and {XS] are contained within 
the finitely generated tic g(Y), where 

Y:={A(k,Z,m),B(j,k,Z,m)ll<k<j<n, Z,m<m,}. 

Now use Proposition 5.4. Finally, by Lemma 5.2 the claim is established to 
any regular inertia. 
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We conclude by remarking that some of the above derivations can be 
extended to block upper triangular matrices; see Proposition 2.2($, [3], and 
[4] for relevant material. In particular, Proposition 5.4 is then extended so 
that the matrix H has a block diagonal structure of compatible dimensions. 

VI. CONCLUDING REMARKS 

In this paper the structure of a general matrix tic has been studied, and in 
particular in conjuction with the Lyapunov equation. To simplify the exposi- 
tion, we associated the tic structure only with a strict form of the Lyapunov 
equation where the right hand side matrix Q was assumed to be positive 
definite. Alternatively, for a give H G Zone could define sets of the form S& 
under a well-known extended version of the Lyapunov equation (see e.g. 
[Theorem 21): 

(A I HA + A*H := Q, Q ~9, (A, Q) controllable}. 

(Similarly, the set Xx can be generalized as well.) Under this generalization 
one obtains a nonsingular tic, which strictly contains the open tic s’~ and in 
turn is strictly contained within &, , the closure of J;s,. Most of the previous 
results still apply to this new set. 

Many of the properties of tics are yet to be explored. Moreover, applica- 
tions of this structure to other fields such as systems and control theory (see 
[2, 31) were merely touched upon. 

REFERENCES 

L. A. Baltzer, Accelerated convergence of the matrix sign function method of 
solving Lyapunov, Riccati and other matrix equations, Intern&. J. Control 
32(6):1057-1078 (1980). 
G. P. Barker, A. Berman, and R. J. Plemmons, Positive diagonal solutions to the 
Lyapunov equations, Linear and Multilinear Algebra 5:249-256 (1978). 
S. Boyd and Q. Yang, Structured and simultaneous Lyapunov functions for 
system stability problems, Intern&. J. Control 49(6):2215-2240 (1989). 
D. Carlson, D. Hershkowitz, and D. Shasha, Block diagonal semistability factors 
and Lyapunov semistability of block triangular matrices, Linear Algebra Appl. 
172:1-25 (1992). 
C.-T. Chen, A generalization of the inertia theorem, SIAM J. Appl. Math. 
25(2):158-161 (Sept. 1973). 



LYAPUNOV EQUATION 131 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
17 

18 

19 

20 
21 

22 
23 

N. Cohen and I. Lewkowicz, A necessary and sufficient criterion for the stability 
of a convex set of matrices, IEEE Trans. Automut. Control AC-38(4):611-615 
(Apr. 1993). 
N. Cohen and I. Lewkowicz, Convex invertible cones of matrices in systems and 
control theory, submitted for publication. 
N. Cohen and I. Lewkowicz, Convex Invertible Cones of State Space Systems, 
submitted for publication. 
N. Cohen and I. Lewkowicz, Convex Invertible Cones, Positive Real and the Sign 
Algorithm, submitted for publication. 
N. Cohen, I. Lewkowicz and L. Rodman, Exponential Stability of Triangular 
Differential Inclusions, submitted for publication. 
E. D. Denman and A. N. Beavers, Jr., The matrix sign function and computations 
in systems, Appl. Math. Comput. 2:63-94 (1976). 
C. A. Eschenbach, F. J. Hall, and C. R. Johnson, Self-Inverse Sign Pattern, Inst. 
for Math. Appl., Preprint Ser., No. 1005, Aug. 1992. 
K. Fan, On real matrices with positive definite symmetric component, Linear 
and M&linear Algebra 1: l-4 (1973). 
M. Fu and B. R. Barmish, Stability of convex and linear combinations of 
polynomials and matrices arising in robustness problems, in Proceedings of the 
Conference on Information Sciences and Systems, Johns Hopkins University, 
Baltimore, MD, pp. 16-21, 1987. 
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 
1985. 
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge U.P., 1991. 
C. R. Johnson and L. Rodman, Convex sets of Hermitian matrices and constant 
inertia, SIAM J. AZgebruic Discrete Methods 6:351-359 (July 1985). 
P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford University 
Press, 1995. 
R. Loewy, On ranges of real Lyapunov transformation, Linear AZgebru Appl. 
13:79-89 (1976). 
R. Loewy, Inertia preservers, Linear and M&linear Algebra 33:23-30 (1992). 
R. Mathias, Matrices with positive definite Hermitian part: Inequalities and linear 
systems, SIAM J. Matrir Anal. 13(2):640-654 (Apr. 1992). 
0. Taussky, Matrices C with C” + 0, J. Algebra 1:5-10 (1964). 
H. K. Wimmer, Inertia Theorems for Matrices, Controllability and Linear 
Vibrations, Lin. Alg. and its Appl., Vol. 8, pp. 337-343, 1974. 

Received 5 May 1994; final manuscript accepted 8 May 1995 


