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SUMMARY

Immune control of infections with viruses or intracel-
lular bacteria relies on cytotoxic CD8+ T cells that use
granzyme B (GzmB) for elimination of infected cells.
During inflammation, mature antigen-presenting
dendritic cells instruct naive T cells within lymphoid
organs to develop into effector T cells. Here, we
report a mechanistically distinct and more rapid pro-
cess of effector T cell development occurring within
18 hr. Such rapid acquisition of effector T cell function
occurred through cross-presenting liver sinusoidal
endothelial cells (LSECs) in the absence of innate im-
mune stimulation andknowncostimulatory signaling.
Rather, interleukin-6 (IL-6) trans-signaling was
required and sufficient for rapid induction of GzmB
expression in CD8+ T cells. Such LSEC-stimulated
GzmB-expressing CD8+ T cells further responded
to inflammatory cytokines, eliciting increased and
protracted effector functions. Our findings identify a
role for IL-6 trans-signaling in rapid generation of
effector function inCD8+Tcells thatmaybebeneficial
for vaccination strategies.

INTRODUCTION

The induction of T cell immunity requires innate immune activa-

tion that generates inflammation and leads to maturation of pro-

fessional antigen-presenting cells (APCs), such as dendritic cells

(DCs). Such mature APCs cross-prime naive CD8+ T cells and

elicit differentiation into cytotoxic T lymphocytes (CTLs) (Kurts

et al., 2010). Ideally, naive T cells receive membrane-associated

and soluble costimulatory signals through CD28 together with

receptors for interleukin-12 (IL-12) and type I interferon (IFN) in

addition to T cell receptor (TCR) stimulation (Curtsinger and

Mescher, 2010). Such combination of signals is necessary to

achieve optimal stimulation to induce sustained T cell prolifera-
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tion and acquisition of T cell effector function. This differentiation

process takes several days and is governed by a complex

network of transcriptional regulators that control cell prolifera-

tion, effector function, and survival (Kaech and Cui, 2012).

Effector function of CTLs is accomplished by secretion of anti-in-

fectious cytokines such as tumor necrosis factor (TNF) and IFNg

together with expression of death-inducing molecules such as

granzyme B (GzmB) or perforin that are crucial for elimination

of infected cells (Trapani and Smyth, 2002; Zhang and Bevan,

2011). Key to CTL differentiation and effector cell function

are the T-box transcription factors T-bet and eomesodermin

(Eomes) (Intlekofer et al., 2005; Pearce et al., 2003). In the

absence of T-box transcription factors, T cells fail to correctly

differentiate into functional CTLs.

IL-6 is a cytokine with pleiotropic functions that contributes to

anti-infectious immunity. IL-6 signals through the IL-6 receptor

(IL-6R) and b subunit glycoprotein 130 (gp130). IL-6R exists as

a membrane-anchored protein (classic signaling) as well as in

a soluble form (trans-signaling) that can be detected at sites of

inflammation. Because of the restricted expression of IL-6R,

many of the biological activities of IL-6 are attributed not to the

cytokine alone but to the action of a soluble complex of IL-6

and IL6R, which initiates IL-6 trans-signaling by binding to ubiq-

uitously expressed gp130 (Jones et al., 2011). IL-6 has been

shown to induce expression of acute-phase proteins, regulate

development of DCs, contribute to T helper 17 cell differentia-

tion, and foster B cell development and antibody responses

(Jones, 2005; Jones et al., 2011). A contribution of IL-6 signaling

to development of CD8+ T cell immunity beyond the induction of

inflammation has been suggested (MacLeod et al., 2011) but has

not been characterized in detail.

In vivo, priming of naive T cells by mature APCs occurs in

lymphoid tissues such as lymph nodes and spleen, which facili-

tates the encounter of antigen-loaded APCs and naive T cells in

highly specialized compartments, i.e., the T cell zones (Junt

et al., 2008). Alternatively, naive CD8+ T cells are also stimulated

outside of lymphoid tissues in peripheral organs such as the liver

(Thomson and Knolle, 2010). Here, a highly abundant population

of liver-resident cells, i.e., liver sinusoidal endothelial cells
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(LSECs), function as scavenger cells to clear antigens from the

circulation and as APCs to cross-present those antigens to

circulating CD8+ T cells (von Oppen et al., 2009). Naive T cell

stimulation in the liver occurs without the requirement for innate

immune stimulation and in the absence of conventional costimu-

latory signals. Such T cell stimulation by antigen-presenting

LSECs results over a period of several days in the generation

of memory T cells, thus complementing conventional memory

T cell generation induced during inflammation (Böttcher et al.,

2013). These memory T cells generated by antigen-presenting

LSECs over a period of several days did not show any direct

cytotoxic effector function and, similar to conventional memory

T cells, required combinatorial stimulation through costimulatory

receptors for reactivation (Böttcher et al., 2013).

Here, we report on the discovery of a mechanism that facili-

tates rapid induction of GzmB expression and effector function

within 18 hr in naive CD8+ T cells. This rapid gain of effector func-

tion was triggered by antigen-presenting LSECs, but not by

mature DCs. Such rapid LSEC-mediated expression of GzmB

in T cells was independent of conventional costimulatory signals

but required IL-6 trans-signaling. Mechanistically, IL-6 trans-

signaling together with TCR signaling was sufficient for direct

and rapid GzmB expression in T cells, thus identifying a unique

role for IL-6 trans-signaling in the development of effector

T cell function.

RESULTS

Naive CD8+ T Cells Rapidly Express Granzyme B after
Antigen Presentation by LSECs, but Not DCs
LSECs are potent antigen (cross)-presenting cells resident in the

liver. Whereas cross-priming by DCs requires several days for

cytotoxic effector T cell differentiation, cross-presentation by

LSECs to naive CD8+ T cells leads to an accelerated generation

of memory T cells (Böttcher et al., 2013). Here, we investigate the

early phase (i.e., the first 18 hr) of the interaction between cross-

presenting LSEC and naive CD8+ T cells compared to DCs.

Coculture of naive H-2Kb-restricted ovalbumin (OVA)-specific

TCR-transgenic CD8+ T cells (OT-I) with LSECs cross-present-

ing OVA resulted in rapid T cell activation. After 18 hr of

T cell contact with cross-presenting LSECs (LSEC-stimulated

T cells), increased expression levels of CD25, CD44, and CD69

were observed compared to T cells cultured with LSECs without

antigen (Figures 1A and 1B). Such increased expression of acti-

vation markers was indistinguishable from that following activa-

tion by cross-presenting mature DCs for 18 hr (DC-stimulated

T cells) (Figures 1A and 1B). Similarly, activation-induced reduc-

tion of CD62L expression was similar between LSEC- and

DC-stimulated T cells (Figures 1A and 1B). Although LSECs

and DCs were equally efficient in cross-presentation and initial

stimulation of naive OT-I T cells leading to expression of cyto-

kines such as IL-2, TNF, and IFNg during the first 12 hr (Fig-

ure 1C), we found one fundamental difference when analyzing

proteins important for T cell cytotoxic effector function. Stimula-

tion by cross-presenting LSECs within 18 hr led to strong upre-

gulation of the serine protease GzmB (Figure 1D), which is key

for cytolytic function of effector T cells (Heusel et al., 1994;

Trapani and Smyth, 2002). In contrast, cross-priming by mature
Cell Re
DCs did not induce such rapid GzmB expression within 18 hr

(Figure 1D). This finding was corroborated by the prominent

upregulation of gzmb mRNA expression in LSEC-stimulated,

but not DC-stimulated, T cells within 18 hr (Figure 1E). Acquisi-

tion of GzmB expression and development of effector function

upon classical T cell priming by DCs was only observed after

T cells had proliferated (Figure 1F) (Curtsinger et al., 2005b;

van Stipdonk et al., 2001). The rapid GzmB expression in

LSEC-stimulated T cells, however, occurred before proliferation

started, since no carboxyfluorescein succinimidyl ester (CFSE)

dilution was observed in GzmB-expressing T cells (Figure 1F),

which suggests a distinct developmental process. Time kinetic

analysis of gzmb gene expression between T cells stimulated

by LSECs or DCs confirmed the rapid GzmB induction by

LSECs, but not DCs (Figure 1G). These experiments further

demonstrated that DC-stimulated T cells had sustained GzmB

expression after 48 hr, whereas gzmb levels in LSEC-stimulated

T cells declined to baseline at this point (Figure 1G). Taken

together, these results indicate a fundamental difference be-

tween LSECs and mature DCs in the dynamics of GzmB induc-

tion, namely a rapid but transient expression induced by LSECs

and a later but sustained expression induced by DCs. These two

time points (i.e., 18 hr and 48 hr) are referred to here as early and

late GzmB induction, respectively.

We next investigated whether antigen presentation in vivo

also led to rapid GzmB expression in T cells. We adoptively

transferred fluorescence-activated cell-sorted CD45.1+ naive

CD44lowCD62L+ OT-I T cells into CD45.2+ recipients and chal-

lenged these mice with soluble endotoxin-free OVA. After 18 hr,

GzmB-positive OT-I T cells were observed in liver, but not

lymphoid, tissues (Figure 1H). Consistent with their antigen-

specific activation, GzmB-positive T cells also expressed acti-

vation markers such as CD44 and CD69 (not shown). Not all

transferred T cells isolated from the liver showed increased

GzmB expression, which may relate to the fact that in vivo,

only some naive T cells engage in closer interaction with

cross-presenting LSECs in hepatic sinusoids (von Oppen

et al., 2009). Since we transferred only naive CFSE-labeled

CD44low T cells, we can exclude that rapid GzmB induction

in vivo resulted from reactivation of CD44+ memory T cells.

GzmB-positive T cells isolated from liver had not entered the

cell cycle, as demonstrated by the absence of CFSE dilution

(Figure 1I), similar to LSEC-stimulated GzmB-positive T cells

in vitro. These results suggested that LSECs cross-presenting

OVA in vivo could be responsible for the rapid GzmB induction

in naive OT-I T cells. To address this question, we used a

chimeric mouse model where H-2Kb expression is restricted

to nonmyeloid cells (bm1/C57BL/6), which together with the

injection of endotoxin-free OVA restricts cross-presentation to

liver-resident LSECs in vivo (Böttcher et al., 2013; von Oppen

et al., 2009). Transfer of fluorescence-activated cell-sorted

naive OT-I T cells into (bm1/C57BL/6) chimeric mice followed

by injection of endotoxin-free OVA resulted in GzmB induction in

T cells isolated 18 hr later from liver that was indistinguishable

from T cells stimulated in wild-type mice with ubiquitous H-2Kb

expression (Figure 1J). No GzmB expression was observed

18 hr after T cell transfer into OVA-challenged (C57BL/6/

bm1) chimeric mice, where only bone marrow-derived APCs,
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Figure 1. CD8+ T Cell Stimulation by Cross-

Presenting LSECs, but Not DCs, Leads to

Rapid GzmB Induction

(A–E) Analysis of naive OT-I T cell activation 18 hr

after in vitro coculture with OVA-cross-presenting

LSECs or mature DCs. T cells cultured on LSECs

without OVA served as control. (A) Flow cytometric

analysis and (B) quantification of surface marker

expression. (C) OT-I T cells were cocultured with

OVA-loaded splenic DCs or OVA-loaded LSECs for

3–12 hr in vitro. Production of T cell effector cyto-

kines IFNg, IL-2, and TNF was analyzed by ELISA.

Data pooled from two or three independent

experiments are shown, and error bars depict

mean ± SD. (D) Intracellular GzmB protein. (E)

Quantification of gzmB mRNA levels.

(F) Analysis of GzmB expression and proliferation

in CFSE-labeled T cells.

(G) Time kinetic of gzmB mRNA expression in

LSEC- or DC-stimulated T cells.

(H and I) Adoptive transfer of fluorescence-

activated cell-sorted naive CD45.1+CD44low OT-I

T cells labeled with CFSE into C57BL/6 wild-type

mice receiving 1 mg endotoxin-free OVA. (H)

Frequency of GzmB+ CD45.1+ T cells and (I) anal-

ysis of GzmB expression versus CFSE dilution

in CD45.1+ T cells from the liver 18 hr after OVA

application.

(J) GzmB expression in transferred CD45.1+ OT-I

T cells 18 hr after antigen-specific priming

in C57BL/6 wild-type mice, [bm1- > C57BL/6]

chimeric mice, or [C57BL/6- > bm1] chimeric mice

in vivo. For (B), (E), (G), and (J), data pooled from

two to four separate experiments are shown and

error bars depict mean ± SEM. In (A), (D), (F), and

(I), flow cytometric graphs representative of at least

three independent experiments are shown.
but not LSECs, cross-present circulating OVA (Figure 1J).

Taken together, these results support the notion that LSEC

cross-presentation leads to a unique differentiation process

in naive CD8+ T cells characterized by rapid GzmB induction

within 18 hr.
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LSEC-Stimulated GmzB-Positive T
Cells Gain Effector Functions
Analysis of GzmB expression suggested

that naive T cells stimulated by cross-

presenting LSEC rapidly gained cytotoxic

effector function. Consistent with this

assumption, TCR restimulation of LSEC-

stimulated T cells in vitro resulted in

localization of LAMP1 molecules to the

cell surface (Figure 2A), indicating that

LSEC-stimulated T cells have the poten-

tial to secrete GzmB from intracellular

stores (Blott and Griffiths, 2002). LSEC-

stimulated GzmB-expressing T cells effi-

ciently killed peptide-loaded target cells,

whereas unloaded control cells were

not affected (Figure 2B). The rapid devel-

opment of antigen-specific cytotoxicity
within 18 hr required cross-presentation, because OT-I T cells

cocultured with LSECs in the absence of OVA did not kill target

cells (Figure 2B). In contrast, DC-stimulated T cells were

not cytotoxic at 18 hr after T cell priming (Figure 2B) but ac-

quired cytotoxic function later (Figure 2C). This suggests



Figure 2. Rapid Acquisition of Effector

Functions in LSEC-Stimulated T Cells

(A) Flow cytometric quantification of anti-

CD3 induced externalization of LAMP1 surface

expression on OT-I T cells cultured with cross-

presenting LSECs for 18 hr.

(B and C) Antigen-specific T cell cytotoxicity after

18 hr (B) or 72 hr (C) of coculture with cross-

presenting LSECs or DCs.

(D–J) Time kinetic analysis of cytokine release

by ELISA (D–F) and flow cytometric analysis of

expression of T-box transcription factors Eomes

and T-bet (G–J) in OT-I T cells cocultured with

cross-presenting splenic DCs or LSECs. In (B), (C),

(H), and (J), data from one out of three separate

experiments are shown as mean ± SD. In (A),

(D)–(G), and (I), data pooled from three to four

experiments are shown and error bars represent

mean ± SEM.
that development of effector T cell functions occurs via

different means through cross-presenting LSECs compared to

mature DCs.

Cytotoxic CD8+ T cells are known to also secrete effector

cytokines such as IFNg, IL-2, and TNF (Zhang and Bevan,

2011). LSEC-stimulated GzmB-positive T cells, despite their

potent cytotoxic function, did not produce significant amounts

of IFNg, IL-2, or TNF compared to DC-stimulated T cells (Figures

2D–2F), demonstrating that cytokine production does not corre-

late with rapid acquisition of cytotoxicity. The T-box transcription

factors T-bet and Eomes are involved in cytotoxic T cell differen-

tiation by mature DCs (Cruz-Guilloty et al., 2009; Intlekofer et al.,

2005; Pearce et al., 2003). During the first 18 hr of T cell stimula-

tion by LSECs or mature DCs, no difference in expression

of Eomes or T-bet was observed (Figures 2G and 2H). After

4 days, however, we found a reciprocal regulation of these

two transcription factors, i.e., increased Eomes expression in

LSEC-stimulated T cells and increased T-bet expression in

DC-stimulated T cells (Figures 2I and 2J). While these results

confirm previous reports on the regulation of T-bet and Eomes
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expression during canonical cytotoxic

T cell differentiation (Böttcher et al.,

2013; Intlekofer et al., 2005; Rao et al.,

2010), they suggest that rapid GzmB

expression and cytotoxic function in

LSEC-stimulated T cells may not depend

on T-bet or Eomes.

IL-6 trans-Signaling Elicits Early
GzmB Expression in T Cells
Wewondered which signals were respon-

sible for LSEC-induced rapid expression

of GzmB in T cells. We first investi-

gated the contribution of TCR signaling

strength. LSECs and DCs were equally

efficient in cross-presentation over a

wideOVAconcentration range (Figure3A),

i.e., delivery of signals through the TCR.
However, augmenting antigen concentrations did not result

in rapid GzmB induction in DC-stimulated T cells (Figure 3B).

Notwithstanding the direct correlation of TCR activation and

GzmB induction in LSEC-stimulated T cells, the results therefore

indicate that the extent of TCR signaling alone does not deter-

mine rapid GzmB upregulation in T cells. It rather suggested

that LSECs provided a distinct signal to T cells for rapid GzmB

induction within 18 hr that is not provided by mature DCs.

We therefore analyzed the contribution of cosignaling mole-

cules to rapid GzmB induction in LSEC-stimulated T cells.

Even in the absence of CD28 signals, in T cells stimulated by

cross-presenting CD80/86dko LSECs, we observed a robust

induction of rapid GzmB expression (Figure 3C). Similarly,

neutralizing antibodies blocking the interaction between recep-

tor-ligand pairs relevant for T cell costimulation, such as

4-1BB–4-1BBL, CD40-CD40L, CD70-CD27 or OX40–OX40L,

or ICAM-1 did not influence LSEC-induced rapid GzmB expres-

sion (Figure 3D). Interestingly, blockade of the coinhibitory re-

ceptor PD-1, which controls TCR signaling (Francisco et al.,

2010), also did not increase GzmB expression levels (Figure 3D),
tember 11, 2014 ª2014 The Authors 1321



Figure 3. Rapid GzmB Induction in T Cells Is Mediated by IL-6 trans-signaling

(A) Cross-presentation determined by IL-2 release from T cells measured by ELISA.

(B) Antigen dose kinetic of GzmB expression in LSEC- or DC-stimulated T cells.

(C) GzmB expression in T cells stimulated by wild-type or CD80/86dko cross-presenting LSECs.

(D–H) Flow cytometric determination of GzmB expression in T cells stimulated by LSECs in the presence of neutralizing antibodies for 18 hr (D–G) or by mature

DCs for 72 hr (H).

(legend continued on next page)
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strengthening again the notion that GzmB expression in LSEC-

stimulated T cells was not regulated by the strength of TCR

signaling.

Next, we analyzed the contribution of soluble mediators that

serve as cosignaling molecules for T cell activation (Curtsinger

and Mescher, 2010). Blockade of IL-12 did not affect GzmB

expression (Figure 3E), consistent with lack of IL-12 expression

by LSECs (Kern et al., 2010). Similarly, neutralization of type I

IFN using anti-IFN alpha receptor antibodies did not modify

GzmB expression levels in LSEC-stimulated T cells (Figure 3E).

To exclude redundant functions of these cosignaling molecules,

we simultaneously blocked CD28, IL-12, and type I IFN signals.

This concurrent blockade did not influence rapid LSEC-medi-

ated GzmB induction in T cells (Figure 3F). Also, blockade of

other soluble mediators known to enhance T cell effector func-

tions (Freeman et al., 2012), i.e., IFNg or IL-15, had no effect,

but blocking IL-2 strongly reduced rapid GzmB induction in

LSEC-stimulated T cells (Figure 3G). Whereas CD28 signaling

was dispensable for rapid GzmB induction in LSEC-stimulated

T cells (see Figure 3C), it was crucial for late GzmB induction in

DC-stimulated T cells (Figure 3H). Neutralization of IL-2 also

impaired late GzmB induction in DC-stimulated T cells (Fig-

ure 3H). Supplementation of cocultures of mature antigen-pre-

senting DCs and T cells with exogenous IL-2 did not enable rapid

GzmB induction in T cells within 18 hr (Figure 3I), which suggests

that IL-2 is not sufficient for early GzmB induction but rather acts

as a cofactor. Since we observed that LSECs and DCs released

large concentrations of IL-6 during cross-presentation to naive

T cells (not shown), we tested whether IL-6 signaling was

involved in rapid GzmB induction. IL-6 classic signaling requires

the presence of IL-6R and the ubiquitously expressed signaling

transducing unit gp130. Cells that do not express membrane-

bound IL-6R can be activated through IL-6 trans-signaling, a

processwhereby the complex of IL-6/sIL-6R triggers gp130 acti-

vation (Jones et al., 2011). Neutralization of IL-6 or blockade of

the IL-6R both abrogated rapid GzmB-induction in LSEC-stimu-

lated T cells (Figure 3J), raising the question whether classical or

IL-6 trans-signaling was involved. The addition of soluble gp130

(sgp130Fc) to cocultures of cross-presenting LSECs and naive

T cells did not abrogate rapid GzmB induction (Figure 3J),

although trans-signaling by soluble IL-6/IL-6R complexes is

completely blocked by sgp130Fc (Jones et al., 2011). We there-

fore determined whether IL-6R expression on cells in trans could

also lead to IL-6 signaling on an IL-6R-deficient cell population,

such as CD8+ T cells (Jones et al., 2011). To address this issue,

we used Ba/F3 cells stably transduced with either gp130 (Ba/F3-
(I) Influence of exogenous IL-2 (10 ng/ml) or stimulatory anti-CD28 antibody (10

(J) Impact of neutralizing antibodies blocking IL-6 or IL-6R-signaling on rapid Gz

(K) Proliferation of Ba/F3-IL-6R or Ba/F3-gp130-eGFP cells after 2 days of in vitro

and 1 mg/ml Sgp130Fc. Murine IL-3 served as a positive control.

(M–O) GzmB expression in T cells 18 hr after stimulation by (K and L) cross-presen

IL-6 or hyper-IL-6. For (K) and (M), IL-6 and hyper-IL-6were used at 5 ng/ml and Sg

are shown as mean ± SD.

(P) Analysis of GzmB expression in OT-I T cells 18 hr after stimulation by CD3/2

leukemia inhibitory factor (LIF), each at 1–100 ng/ml. Stimulation with CD3/CD2

sentative of two independent experiments is shown as mean ± SD.

(Q) Intracellular expression of phospho-STAT3 18 hr after stimulation of naive O

supplemented with 5 ng/ml hyper-IL-6. Data are representative of two independ

Cell Re
gp130) or IL-6R (Ba/F3-IL-6R). Whereas Ba/F3-gp130 cells only

proliferated in response to hyper-IL-6, but not IL-6 alone (Fig-

ure 3K), the addition of IL-6 to Ba/F3-gp130 cells cocultured

together with Ba/F3-IL-6R cells was sufficient to induce prolifer-

ation in Ba/F3-gp130 cells (Figure 3L). Furthermore, such prolif-

eration even occurred in the presence of sgp130Fc (Figure 3L).

These data indicate that not only soluble IL-6/IL-6R complex

but also surface-bound IL-6/IL-6R was sufficient to induce IL-6

trans-signaling in IL-6R-deficient cells. If IL-6 trans-signaling

was relevant for rapid GzmB-induction, then IL-6 coupled to its

receptor (hyper-IL-6) should lead to GzmB induction in T cells

stimulated by antigen-presenting DCs. Indeed, addition of hy-

per-IL-6, but not IL-6 alone, triggered GzmB expression within

18 hr in DC-stimulated T cells (Figures 3M and 3N). The addition

of hyper-IL-6 to anti-CD3/CD28-coated microbeads as artificial

APCs also induced GzmB expression within 18 hr (Figure 3O),

which demonstrates that IL-6 trans-signaling acting on T cells

was required and sufficient to drive rapid development of

effector functions. Interestingly, other ligands for gp130 such

as oncostatin M (OSM) or leukemia inhibitory factor (LIF) failed

to induce GzmB expression (Figure 3P). Furthermore, hyper-

IL-6 treatment induced STAT3 phosphorylation in T cells in com-

bination with anti-CD3/CD28-coated microbeads within 18 hr,

whereas LSEC-stimulated T cells only showed a nonsignificant

increase in STAT3 phosphorylation (Figure 3Q). These results

indicate that hyper-IL-6 initiates an as-yet-undefined signaling

cascade relevant for rapid effector T cell differentiation that

needs to be further identified in the future.

Rapid Acquisition of Effector Cell Function Attributes
Superior Activation Potential to T Cells
Next, we asked whether the rapid but transient induction of

effector T cell function by LSECs (see Figure 1) changed the

responsiveness toward further stimulation. Whereas GzmB

expression declined in LSEC-stimulated T cells over time (see

Figure 1), reactivation of these T cells 18 hr after their initial

stimulation through LSECs by mature DCs or anti-CD3/CD28

microbeads led to a sustained and further increase in GzmB

expression over several days (Figures 4A and 4B). During such

treatment, naive T cells required more than 48 hr to reach similar

levels of GzmB expression compared to LSEC-stimulated T cells

(Figures 4A and 4B). Also, IFNg expression was increased upon

such reactivation of LSEC-stimulated T cells (Figures 4C and

4D). These findings were confirmed by challenge of T cells stim-

ulated by LSECs for 18 hr or naive T cells with phorbol myristate

acetate (PMA)/ionomycin followed by determination of cytokine
mg/ml) on GzmB expression in DC-stimulated T cells after 18 hr.

mB induction in LSEC-stimulated T cells.

culture in the presence of human IL-6, hyper-IL-6 (both 10 ng/ml), or hyper-IL-6

tingmature DCs or (M) anti-CD3/28microbeads supplementedwith exogenous

p130Fcwas used at 10 mg/ml. Data from one of three independent experiments

8 microbeads supplemented with the gp130-ligands oncostatin M (OSM) and

8 beads plus 5 ng/ml hyper-IL-6 served as positive control. Data are repre-

T-I T cells with OVA-loaded LSECs, OVA-loaded DCs, or OVA-loaded DCs

ent experiments and shown as mean ± SD.
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Figure 4. LSEC-Stimulated GzmB-Expressing T Cells Are Responsive to Further Stimulation

(A–D) Naive T cells or LSEC-stimulated GzmB-expressing T cells (after 18 hr) were restimulated with cross-presenting mature DCs (A and C) or anti-CD3/28

microbeads (B and D) for 3 days and analyzed for GzmB (A and B) or IFNg expression (C and D) after restimulation with PMA/ionomycin.

(E and F) IL-2 (E) and IFNg (F) production 4 hr after PMA/ionomycin restimulation of LSEC-stimulated GzmB-positive T cells.

(G) Expansion (fold increase) of naive or LSEC-stimulated GzmB-expressing T cells after 3 days of stimulation with anti-CD3/28 microbeads or cross-presenting

mature DCs.

(H and I) Increase in GzmB (H) or IFNg production (I) in naive or LSEC-stimulated GzmB-expressing T cells after 8 hr incubation with inflammatory cytokines. The

increase in MFI compared to unstimulated T cells is shown. Data from one of three independent experiments are shown; error bars depict mean ± SD.
production within 4 hr. Under these conditions, LSEC-stimulated

T cells showed strong expression of IL-2 and IFNg, whereas

naive T cells did not produce any cytokines (Figures 4E and

4F), demonstrating that GzmB-expressing T cells are more

responsive to reactivation than naive T cells. Such increased

IL-2 expression together with expression of its receptor CD25

(see Figure 1) suggested a capacity for rapid proliferation.

Indeed, LSEC-stimulated T cells showed vigorous expansion

within 72 hr of restimulation with antigen-presenting DCs or

anti-CD3/CD28 microbeads that were more prominent than

proliferation of naive T cells (Figure 4G).

T cell effector function is triggered by antigen-specific stimula-

tion but can also be evoked by cytokines released during inflam-

mation in an antigen-independent fashion (Berg et al., 2003;
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Freeman et al., 2012; Raué et al., 2004).We therefore determined

whether LSEC-stimulated T cells were susceptible for such

‘‘innate activation’’ by inflammatory cytokines. Indeed, we

observed a further upregulation of GzmB expression if LSEC-

stimulated T cells were incubated with type I IFN or hyper-IL-6

in the absence of antigen (Figure 4H) and a moderate upregula-

tion of GzmB expression upon incubation with IFNg, IL-12, IL-18,

or IL-33 but no effect upon incubation with IL-2 or IL-15 (Fig-

ure 4H). Importantly, naive OT-I T cells did not show any GzmB

expression under these conditions (Figure 4H). Likewise, both

IL-12 and type I IFN evoked production of the T cell effector cyto-

kine IFNg in LSEC-stimulated T cells, but not in naive T cells (Fig-

ure 4I). These results indicate that rapid induction of effector

T cell functions by cross-presenting LSECs in the liver may
thors



provide an advantage to mount protective immunity against sys-

temically circulating pathogens.

DISCUSSION

Mature DCs are well known to provide costimulatory signals

that initiate development of naive CD8+ T cells into functional

cytotoxic effector T cells (Zhang and Bevan, 2011). In particular,

certain stimulatory cytokines like interferons and IL-12 are

crucial for the acquisition of T cell effector function like GzmB

expression and IFNg production (Curtsinger and Mescher,

2010). This developmental process takes at least 48 hr and

correlates with T cell proliferation (Curtsinger et al., 2005a;

van Stipdonk et al., 2001). Here, we report the existence of an

as-yet-unrecognized developmental process for generation of

effector T cells, which occurs much faster and independent of

those conventional stimulatory signals through signals delivered

by nonimmune antigen-presenting cells. Naive CD8+ T cells

stimulated by cross-presenting LSECs acquired within 18 hr

transient GzmB expression and killed target cells in an anti-

gen-specific fashion. Although we could not provide formal

evidence for expression of perforin, the combination of GzmB

induction and the ability to kill target cells strongly suggests

that LSEC-primed T cells have a cytotoxic effector function.

Such rapid induction of GzmB expression occurred together

with a rapidly induced production of cytokines, preceded

T cell proliferation, and was independent of signaling through

CD28, IL-12R, or IFN alpha receptor. Since T-box transcription

factors were not differentially regulated between LSEC-stimu-

lated and DC-stimulated T cells at this early time point, a critical

contribution of these factors to rapid GzmB induction appears

unlikely, although we have not provided formal evidence for

this here. Inhibition of other less prominent costimulatory sig-

nals such as 4-1BB or OX40 also did not contribute to this rapid

GzmB induction. However, we found that IL-2 was necessary,

but not sufficient, for rapid GzmB induction, indicating that

IL-2 may serve as an important cofactor. Taken together, these

results suggest the existence of another LSEC-derived mediator

triggering rapid GzmB induction.

We discovered that IL-6 trans-signaling was required for

LSEC-induced rapid GzmB induction in T cells and was also

sufficient to establish rapid GzmB expression in T cells when

coadministered together with cross-presenting DCs. LSECs

produced IL-6 during cross-presentation and stimulation of

naive CD8+ T cells. IL-6 signaling is only initiated upon associ-

ation with the IL-6R and binding to the ubiquitously expressed

gp130. Since CD8+ T cells do not express IL-6R, trans-

signaling through soluble hyper-IL-6 (i.e., IL-6 complexed to

the IL-6R) is the only means to establish proinflammatory IL-6

signaling in these cells (Rose-John, 2012). Since 50 to 100 IL-

6/IL-6R complexes suffice to initiate trans-signaling (Jones

et al., 2011), it is difficult to directly demonstrate expression

of these complexes on the surface of CD8+ T cells stimulated

by cross-presenting LSECs. However, hyper-IL-6, but not other

gp130 ligands such as OSM or LIF in combination with anti-

CD3/28-coated microbeads, sufficed to induce rapid GzmB

expression in naive CD8+ T cells, demonstrating that IL-6

trans-signaling directly acts on T cells. The complementation
Cell Re
of conventional vaccine protocols with hyper-IL-6 may there-

fore provide an additional benefit by rapid induction of effector

functions in combination with the conventional developmental

process for the acquisition of cytotoxic T cell effector function

by mature DCs.

After several days, LSEC-stimulated T cells resemble central

memory T cells with respect to their localization in lymphoid tis-

sue and their requirements for activation and generation of new

effector T cells during a recall response (Böttcher et al., 2013).

The rapid GzmB induction during the first 18 hr of contact with

LSECs may therefore represent an intermediate developmental

stage or may serve a particular function during immune re-

sponses initiated locally in the liver. It seems unlikely, however,

that transient acquisition of cytotoxicity may serve any direct

function given the low frequencies of particular antigen-specific

CD8+ T cells. Nevertheless, similar to cytokine-induced activa-

tion of certain memory T cell populations (Berg et al., 2003;

Kupz et al., 2012; Soudja et al., 2012), we found that contact

with inflammatory mediators such as interferons or antigen-spe-

cific restimulation of GzmB-positive LSEC-stimulated T cells

prolonged GzmB expression and led to strong T cell prolifera-

tion. Since LSEC-stimulated T cells rapidly relocate from the liver

to lymphoid tissues via CCR7 and CD62L (Böttcher et al., 2013),

it is possible that these cells predominantly exert their effector

functions in lymphoid tissues. As LSEC-stimulated T cells upre-

gulate CXCR3 (Böttcher et al., 2013) and CXCR3-expressing

T cells are critical for defense against microbial infections in

the subcapsular region of lymph nodes (Kastenmüller et al.,

2012), LSEC-stimulated T cells may contribute to antimicrobial

defense in the lymph node rather than in the liver.

Taken together, rapidgeneration ofGzmB-positive T cells in the

liver may constitute an as-yet-unrecognized arm of antigen-spe-

cific immunity against pathogens that are systemically distributed

and whose antigens are cross-presented by LSECs, like viruses

infecting the liver or lung. The rapid yet transient induction of

effector functions in LSEC-stimulated T cells is consistent with

our previous observation that these cells at later time points are

nonresponsive to restimulation via the TCR (Diehl et al., 2008)

but showmemory-like functions to support anti-infectious immu-

nity upon combinatorial restimulation through the TCR and costi-

mulatory molecules (Böttcher et al., 2013). The knowledge of the

importance of IL-6 trans-signaling for this rapid generation of

T cells with effector functionsmay help to implement novel vacci-

nation strategies to increase the efficiency of protective immunity.

EXPERIMENTAL PROCEDURES

Mice

B6.CH-2bm1, CD80/86dko, C57BL/6, CD90.1+ C57BL/6, TCR transgenic OT-I,

and CD45.1+ OT-I mice were bred under specific-pathogen-free (SPF) condi-

tions in the central animal facility of the University Hospital Bonn. Chimeric

animals were generated as described previously (von Oppen et al., 2009).

Mice were kept under SPF conditions, and in vivo experiments were approved

by the local animal care commission.

Analysis of T Cell Priming In Vivo

Splenic OT-I T cells were enriched by autoMACS using the untouched CD8

T cell isolation kit (Miltenyi), and CD8+CD45.1+CD44low OT-I T cells were

sorted by fluorescence-activated cell sorting (FACS). A total of 1 3 106 were

injected intravenously into C57BL/6 wild-typemice or chimeric animals, which
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received 1 mg endotoxin-free OVA (Hyglos). Then, 18 hr later, lymphocytes

from spleen, liver, or lymph nodes were purified as described previously

(Böttcher et al., 2013), and the expression of GzmB was analyzed within

CD3+CD8+CD45.1+ T cells. In some experiments, fluorescence-activated

cell-sorted naive T cells were labeled with CFSE prior to adoptive transfer.

Ba/F3 Cell Experiments

Ba/F3 cells were stably transduced with human IL-6R cDNA and Ba/F3-gp130

cells with enhanced GFP cDNA as described (Ketteler et al., 2002). Expression

and purification of IL-6, hyper-IL-6, and sgp130Fc has been described previ-

ously (Fischer et al., 1997; Mackiewicz et al., 1992). For the coculture experi-

ment, 5 3 104 cells were cultivated at the indicated ratios for 2 days. Cell

viability was determined with Cell Titer Blue Cell viability assay reagent (Prom-

ega) following the manufacturer’s protocol.

Cell Isolation and Coculture Experiments

Dendritic cells or naive OT-I T cells used in in vitro coculture experiments were

isolated from spleen and purified by autoMACS (Miltenyi Biotec). LSECs were

isolated by gradient centrifugation followed by immunomagnetic sorting

(CD146) (Diehl et al., 2008). Cocultures of naive OT-I cells with LSECs or

mature DCs were conducted as described previously (Böttcher et al., 2013).

LSECs or mature DCs were loaded with 100 mg/ml OVA, and OT-I T cells

were added to antigen-presenting cells in a ratio of 1:1. In some experiments,

OT-I T cells were labeled with 1 mMCFSE (Invitrogen) for 15min at 37�Cprior to

the coculture assay. Determination of cross-presentation was done by incuba-

tion of OVA-loaded APCs with H-2Kb-restricted OVA-specific B3Z cells and

analysis of IL-2 release by ELISA after 20 hr. In some experiments, neutralizing

antibodies for 41BBL (clone TKS-1), CD40L (MR1), CD70 (FR70), OX40L

(RM134L), ICAM (YN1/1.7.4), PD-1 (J43), CD80 (16-10A1), CD86 (GL1), IL-6

(MP5-20F3), IL-6R (polyclonal, AF1830, R&D Systems), IFNg (XMG1.2),

IL-15 (A10.3), IL-2 (JES6-1A12), IL-12 (clone C17.8), or type I IFN signaling

(anti-mouse IFN alpha receptor 1, clone MAR1-5A3) were added to cocultures

at 10 mg/ml. In some experiments, stimulation of naive T cells bymature DCs or

anti-CD3/28microbeads was done after the addition of recombinant cytokines

IL-2, IL-6, hyper-IL-6 (HIL-6), or stimulating anti-CD28 antibody (10 mg/ml,

eBioscience).

Quantification of gzmB Gene Expression by Real-Time PCR

Total mRNA was isolated using the RNeasy Micro Kit (QIAGEN; including

DNase digestion) and transcribed reversely into cDNA using the AffinityScript

multiple-temperature reverse transcriptase (Stratagene). Real-time PCR was

performed using the absolute QPCR SYBR green PCRmix (Abgene) in combi-

nation with specific primers (QuantiTect primer assay; QIAGEN) for murine

GzmB and GAPDH. GAPDH was used as reference gene. All real-time PCR

reactions were performed in a C1000 Thermal Cycler (Bio-Rad).

Flow Cytometry and Fluorescence-Activated Cell Sorting

Flow cytometric analyses and assessment of mean fluorescence intensity

(MFI) were conducted with a LSR Fortessa or Canto II (BD Biosciences).

Data were analyzed using FlowJo software (Tree Star). LIVE/DEAD fixable

violet or near-IR dead cell stain kit (Invitrogen) was used to exclude dead cells

in all experiments, and anti-CD16/32 antibody (2.4G2) was used to block un-

specific antibody binding via Fc receptors. Antibodies were purchased from

Biolegend or eBioscience. The following antibodies were used: CD3 (17A2),

CD8a (clone 53-6.7), CD25 (3C7), CD27 (LG.7F9), CD44 (IM7), CD45.1 (A20),

CD62L (MEL-14), CD69 (H1.2 F3), CD90.2 (HIS51), H-2Kb (5F1), and Lamp1

(1DB4). For intracellular staining of cytokines, cells were fixed in 4% PFA

and intracellular staining by anti-IFNg antibodies (XMG1.2) or anti-IL-2 anti-

bodies (JES6-5H4) was performed in permeabilization buffer (eBioscience)

for 30 min. Staining of T-bet (eBio4B10), Eomes (Dan11mag), or granzyme B

(anti-human, cross-reactive with mouse, clone GB11) was performed using

the Foxp3/transcription factor staining buffer set from eBioscience. Quantifi-

cation of total T cell numbers was donewith fluorochrome-labeledmicrobeads

(CountBright absolute counting beads; Life Technologies, Invitrogen). FACS

of naive T cells was performed with a DIVA cell sorter (BD). Expression

of phospho-STAT3 was determined by flow cytometry after intracellular

staining with anti-STAT3pY705 (clone4/P-STAT3) using the phosflow kit
1326 Cell Reports 8, 1318–1327, September 11, 2014 ª2014 The Au
from Becton Dickinson. Staining with the corresponding isotype antibody

served as control.

Analysis of T Cell Effector Functions

Analysis of GzmB expression was performed directly after isolation of T cells

ex vivo or from in vitro cocultures without further stimulation. T cell coculture

with anti-CD3/CD28 microbeads (Invitrogen) was done in the presence of re-

combinant mouse IL-2 and IL-12 (5 ng/ml). In order to determine the potential

of T cells to produce effector cytokines (see Figures 4E and F), T cells were

stimulated with PMA (5 ng/ml; Sigma Aldrich) and ionomycin (200 ng/ml,

Sigma Aldrich). To analyze T cell proliferation, naive CD8+ T cells were labeled

with 1 mMCFSE (Invitrogen) before coculture experiments or adoptive transfer,

and CFSE-dilution was measured by flow cytometry. Analysis of cytokine-

mediated T cell activation was done by incubating purified T cells for 8 hr at

37�C with cytokines IL-2, IL-15, IL-18, IL-33, IFN-g, TNF (all 10 ng/ml), IL-12

(5 ng/ml), hyper-IL-6 (5 ng/ml), or IFNa (type 4, 1,000 U/ml) on CD90.1+ sple-

nocytes as feeder cells. Brefeldin A and monensin were added during the

last 2 hr of stimulation. Expression of GzmB and IFNg was subsequently

analyzed within CD90.2+ OT-I T cells by flow cytometry. Determination of an-

tigen-specific specific cytotoxicity was determined in vitro (Diehl et al., 2008).

Lipopolysaccharide-free OVA (Hyglos) was used for in vivo experiments at a

concentration of 1 mg/mouse.

Statistical Analysis

Data were compared using a one-way ANOVA or the unpaired two-tailed Stu-

dent’s t test. Data are shown as mean ± SEM or mean ± SD with *p < 0.05,

**p < 0.01, or ***p < 0.001.
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