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We show that any scalar differential operator with a family of polynomials as its common
eigenfunctions leads canonically to a matrix differential operator with the same property.
The construction of the corresponding family of matrix valued polynomials has been
studied in [A. Durán, A generalization of Favard’s theorem for polynomials satisfying
a recurrence relation, J. Approx. Theory 74 (1993) 83–109; A. Durán, On orthogonal
polynomials with respect to a positive definite matrix of measures, Canad. J. Math. 47
(1995) 88–112; A. Durán, W. van Assche, Orthogonal matrix polynomials and higher
order recurrence relations, Linear Algebra Appl. 219 (1995) 261–280] but the existence of
a differential operator having them as common eigenfunctions had not been considered.
This correspondence goes only one way and most matrix valued situations do not arise
in this fashion. We illustrate this general construction with a few examples. In the case
of some families of scalar valued polynomials introduced in [F.A. Grünbaum, L. Haine,
Bispectral Darboux transformations: An extension of the Krall polynomials, Int. Math.
Res. Not. 8 (1997) 359–392] we take a first look at the algebra of all matrix differential
operators that share these common eigenfunctions and uncover a number of phenomena
that are new to the matrix valued case.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The last few years have witnessed some progress in the problem of finding explicit families of matrix valued orthogonal
polynomials that are joint eigenfunctions of some fixed differential operator with matrix coefficients, and a (possibly matrix
valued) eigenvalue that depends on the degree of the polynomial. Most of these examples involve differential operators of
order two, an issue raised in the case of symmetric operators in [7]. The subject of matrix valued orthogonal polynomials,
without any reference to differential operators, was initiated in two papers by M.G. Krein [24,25]. The search of situations
where these polynomials satisfy extra properties, such as the one above, makes it more likely that they will be useful in
applications.

There are by now four main ways to search for cases with this particular extra property: appealing to some group
representation structure, as in [16–19,26], solving (in the case of symmetric differential operators) an appropriate set of
differential equations as in [8,10,11,13,18] or a set of moment equations as in [7], and finally and so far much less success-
fully, solving the so-called ad-conditions as in [3]. One can see that these ad-conditions are necessary and sufficient for the
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existence of a differential operator, but finding all solutions remains a huge task. Most of the examples obtained by this
route correspond most likely to an “orthogonality functional” that is not given by a positive definite matrix as envisaged by
M.G. Krein. It appears reasonable at this point to consider in some detail any method that gives explicit examples.

One such path is taken in [1] where one finds instances where there is a differential operator of order one, and in [2]
where one explores the algebra of all differential operators going along with a fixed family of differential operators.

In this paper we take the initial steps in yet another path. This comes about by putting together two previously unrelated
lines of work.

The first one comes from studying the relation between scalar valued polynomials satisfying higher order recursion
relations and matrix valued polynomials. This has been considered in [5,6,9], and is reviewed here in Section 2. These
papers do not look into the issue of possible differential equations satisfied by these polynomials.

The second one comes from an extension of the well-known Krall–Laguerre and Krall–Jacobi orthogonal polynomials.
This has been considered in [12] to produce, via Darboux factorization, families of (scalar) polynomials that (in general)
satisfy five term recursion relations and fourth order differential operators with polynomial coefficients. The relevant parts
of this construction are recalled in Section 4.

These two tools are combined in this paper as follows: we first establish a very general result that produces one matrix
valued differential operator every time that we start with a scalar one (but not necessarily the other way around, as spelled
out later). This general result is first illustrated in the case of the Laguerre polynomials where the orders of all operators is
equal to two. This completes the material in Section 3. We then illustrate, in Section 4, the case of higher order operators
by looking at the extended scalar valued Krall–Laguerre and Krall–Jacobi polynomials.

A slightly more detailed description of the contents of Sections 3 and 4 follows. Given specific families of scalar valued
polynomials we consider the corresponding family of matrix valued polynomials as in [5,6,9]. We find that in the Krall–
Laguerre case there is (up to scalars) only one differential operator with matrix valued coefficients (and of order four) going
along with each one of these examples. In particular, there is no lower order operator with this property. By going up
to order six we see that the corresponding algebra cannot be generated by the fourth order operator constructed in the
canonical fashion considered in the first part of the paper. The case of the extended Krall–Jacobi polynomials leads to a
richer variety of examples. In particular we get a third order differential operator in the matrix case which cannot yield a
third order scalar differential operator. All of this is discussed in several subsections of Section 4.

To better compare the results of this paper with previously known material notice that the situations uncovered so far
feature an algebra that includes differential operators of low order, typically one or two. There are even situations where
one finds a nontrivial (i.e. not a scalar multiple of the identity) differential operator of order zero. One could wonder as
to the existence of situations where the lowest order operators in the algebra needs to be of order higher than two. The
group theoretical line of attack mentioned above, is not likely to produce examples of this kind, since in this case there is
a Laplace–Beltrami operator around. Solving the appropriate differential equations for the higher order case appears to be a
difficult task, while solving the corresponding ad-conditions appears entirely hopeless at this point.

As a by-product of the results in this paper we produce examples of the type envisaged above, which as far as we know
have not been seen before.

Another new result is the observation that we have here a one way street; while the results in [5,6,9] establish a
reversible link between scalar valued and matrix valued polynomials we see here that if the scalar family is made up
of common eigenfunctions of some differential operators this property extends to the matrix valued polynomials but not
(necessarily) the other way round.

We close this introduction with some remarks, aimed at a broad audience, about some of the possible uses of matrix
valued orthogonal polynomials.

One of the many applications of the theory of scalar orthogonal polynomials is to a detailed study of a special kind of
Markov chains with state space given by the non-negative integers and with a one step transition probability matrix that
allows only moves to the nearest neighbours. The basic paper here is [20]. These authors derive an expression (based on
the spectral analysis of the corresponding difference operator) for the n-step transition probability between states i and
j in terms of the orthogonal polynomials going along with the one step transition probability matrix. There are several
advantages to such a formula. For instance if one knows the orthogonality measure one can compute the probability of
going from states i, j with i � j in any number of steps from the knowledge of the first j rows of the one step transition
matrix. Other uses of this connection with orthogonal polynomials lie a bit deeper: by using the Stieltjes transform of the
orthogonality measure one can see that (in principle) the knowledge of the probability of going from state 0 to state 0 in
an arbitrary number of steps determines the full n-step transition probability matrix for any n.

In the last section of the paper by Karlin and McGregor mentioned above, these authors consider the problem of using
their methods, based on a three term recursion relation that is semi-infinite, to the case of a doubly infinite three term
recursion. Although they stop short of introducing explicitly the notion of matrix valued orthogonal polynomials they com-
pute in detail the orthogonality matrix measure that is relevant to this problem. The full blown analysis of the problem of a
random walk (with nearest neighbour transitions) on the set of all integers that was the concern of the last section in [20]
has been done in detail later in [4,14]. This extension from the study by means of scalar valued orthogonal polynomials of
birth-and-death processes to the study of so-called quasi-birth-and-death processes by means of matrix valued orthogonal
polynomials is already a concrete example of a good motivation for this study.
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For a situation where the matrix valued orthogonal polynomials happen to satisfy matrix valued differential equations
which along with the orthogonality measure are an outgrowth of the work started in [16], see [15].

The best known families of scalar valued orthogonal polynomials, connected with the names of Hermite, Laguerre, and
Jacobi owe their importance to the differential equations they satisfy and thus they appear in connection with simple
situations involving the Schrödinger equation. In the scalar case the only possible examples of orthogonal polynomials with
a differential operator floating around are the ones mentioned above. On the other hand the situation in the matrix valued
case is much more complicated and it opens the door to an embarrassment of riches in terms of examples. The study
carried out here is an effort to produce more examples of this novel situation as a step towards other applications.

2. Scalar and matrix valued polynomials

The relation between scalar polynomials satisfying higher order recursions and matrix valued ones satisfying three term
recursions was found by one of us (see [5] and [6]) and it is well described in [9].

The procedure shows a way to produce a vector polynomial from an scalar one p(x) by considering the decomposition
of p(x) congruent with the residues of the exponent of x in p(x) modulo N .

This is done by using the operators RN,m , m = 0, . . . , N − 1, defined by

RN,m(p)(x) =
∑

n

p(nN+m)(0)

(nN + m)! xn, (2.1)

i.e., the operator RN,m takes from p those powers congruent with m modulo N , then removes the common factor xm and
changes xN to x.

From a sequence of scalar polynomials (pn)n we can then define a sequence of matrix valued polynomials Pn(x),
n = 0,1, . . . , by the recipe

Pn(x) =

⎛
⎜⎜⎝

RN,0(pnN )(x) . . . RN,N−1(pnN )(x)
RN,0(pnN+1)(x) . . . RN,N−1(pnN+1)(x)

.

.

.
.
.
.

RN,0(pnN+N−1)(x) . . . RN,N−1(pnN+N−1)(x)

⎞
⎟⎟⎠ . (2.2)

This process can be reversed since for any polynomial p(x) we have

p(x) = RN,0(p)
(
xN) + xRN,1(p)

(
xN) + · · · + xN−1 RN,N−1(p)

(
xN)

.

It turns out that if pn(x), n = 0,1,2, . . . , satisfy the (2N + 1)-term recurrence relation

xN pn(x) = cn,0 pn(x) +
N∑

k=1

[
cn,−k pn−k(x) + cn,k pn+k(x)

]
(2.3)

(pn(x) vanishes if n is negative), then the matrix valued ones Pn , n = 0,1,2, . . . , satisfy the following three term matrix
recurrence relation

xPn(x) = An Pn+1(x) + Bn Pn(x) + Cn Pn−1(x), (2.4)

where the matrix coefficients are nothing but the N × N blocks of the (2N +1) banded matrix associated to the scalar family
(pn)n featuring in the higher order recursion that defines the pn(x). This semi-infinite banded matrix has rows that look as
follows:

first row

c0,0, c0,1, . . . , c0,N ,0,0,0, . . . ,

second row

c1,−1, c1,0, c1,1, c1,2, . . . , c1,N ,0,0,0, . . . ,

third row

c2,−2, c2,−1, c2,0, c2,1, c2,2, c2,3, . . . , c2,N

and for i large enough, the (i + 1)th row looks like

0,0, . . . ,0, ci,−N , ci,−N+1, . . . , ci,−1, ci,0, ci,1, . . . , ci,N ,0,0, . . . .

Given a block-tridiagonal matrix (that defines, by using (2.4), a sequence of matrix valued polynomials) one can always
assume, by using an n dependent unitary matrix, that the off-diagonal blocks are triangular, and thus the matrix becomes a
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banded matrix with scalar entries. This shows that using the operators R N,m , m = 0, . . . , N − 1, one can also go from matrix
valued polynomials satisfying a three term recurrence relation like (2.4) to scalar valued polynomials satisfying a higher
recurrence relation as in (2.3).

The polynomial xN in the formula (2.3) does not play any special role. One can replace it by (x − a)N for an appropriate
choice of the constant a; in this case, one has to use the operators

RN,m,a(p)(x) =
∑

n

p(nN+m)(a)

(nN + m)! xn,

instead of the RN,m defined in (2.1) (see [9, p. 269], for the general case when in (2.3), the polynomial xN is substituted by
a generic polynomial h(x)).

We say that a higher order recursion (2.3) for (pn)n is symmetric if cn,−k = c̄n−k,k , and, analogously, that the matrix three
term recurrence relation (2.4) is symmetric if An = C∗

n+1. As it was shown in [9], a symmetric higher order recursion gives
a symmetric matrix three term recurrence relation.

The symmetric case corresponds to a Hermitian (2N + 1)-banded matrix and the associated matrix polynomials defined
by (2.2) are then orthonormal with respect to a weight matrix (i.e. a positive definite matrix of measures having finite
moments of any order).

Given a higher order scalar recursion that is not symmetric there are two ways to try to symmetrize it. Starting from
the polynomials pn(x) defined by the recursion one can define new polynomials rn(x) = γn pn(x), and look for a convenient
choice of the sequence of numbers (γn)n so that the corresponding higher order recursion for (rn)n is symmetric.

A different, and more general approach consists of producing from the scalar polynomials pn(x) the matrix polynomials
Pn(x) as above. Now one considers a new sequence of matrix polynomials Rn(x) = Γn Pn(x), and looks for a convenient
choice of the sequence of matrices (Γn)n so that the matrix three term recurrence relation for (Rn)n is symmetric. It is easy
to see that the first attempt is a special case of the second one, which consists of insisting that the matrices Γn be diagonal.

3. Producing matrix differential equations out of scalar ones

Our starting point is a sequence (pn)n of polynomials, with deg pn = n, satisfying the differential equation

m∑
l=1

al(x)p(l)
n (x) = γn pn(x), (3.1)

where al , l = 1, . . . ,m, are polynomials of degree not bigger than l and γn are real numbers.
We split up the polynomials pn as explained in the previous section to get a sequence of matrix polynomials Pn of size

N × N . We now show that these matrix polynomials inherit a matrix differential equation from the differential equation (3.1)
for the scalar polynomials pn . The proof is constructive, so that it produces an explicit expression for the differential coeffi-
cients Ak , k = 0, . . . ,m, in the new differential operator.

For the sake of simplicity, we show the result in full only for the case N = 2 (the general case can be proved in the same
way).

Theorem 3.1. Assume that (pn)n is a sequence of scalar polynomials satisfying a differential equation of the form (3.1) where al ,
l = 1, . . . ,m, are polynomials of degree not bigger than l and γn are numbers. Then the matrix polynomials Pn defined from pn

by (2.2) satisfy the differential equation

m∑
k=0

P (k)
n (x)Ak(x) = Γn Pn(x),

where the coefficients Ak, k = 0, . . . ,m, are given by

Ak =
(

m∑
l=k

Ck,l

)
,

Ck,l(x) =
(

bk,l,0(x) bk,l,1(x)
xbk,l,1(x) + lbk,l−1,0(x) bk,l,0(x) + lbk,l−1,1(x)

)(
al,0(x) al,1(x)
xal,1(x) al,0(x)

)
,

bk,l =
(

(−1)k

k!
k∑

j=[(l+1)/2]
(−1) j

(
k

j

)
2 j(2 j − 1) · · · (2 j − l + 1)

)
x2k−l

(as usual [x] denotes the integer part of x) and we write p0 = R2,0(p) and p1 = R2,1(p), where R2,0 and R2,1 are the operators
defined in (2.1) for N = 2.

The eigenvalues Γn, n � 0, are given by
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Γn =

⎛
⎜⎜⎝

γnN 0 · · · 0
0 γnN+1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · γnN+N−1

⎞
⎟⎟⎠ .

Proof. To simplify the expressions, we again write p0 = R2,0(p) and p1 = R2,1(p), so that p(x) = p0(x2) + xp1(x2).
A simple computation shows that

(
f
(
x2))(l) =

l∑
k=[(l+1)/2]

bk,l(x) f (k)
(
x2),

where

bk,l(x) =
(

(−1)k

k!
k∑

j=[(l+1)/2]
(−1) j

(
k

j

)
2 j(2 j − 1) · · · (2 j − l + 1)

)
x2k−l, k > l/2.

Applying this formula to pn(x) = pn,0(x2) + xpn,1(x2), we get after some simplifications that

(
pn,0

(
x2) + xpn,1

(
x2))(l) =

l∑
k=0

(
bk,l,0

(
x2)p(k)

n,0

(
x2) + (

x2bk,l,1
(
x2) + lbk,l−1,0

(
x2))p(k)

n,1

(
x2))

+ x

(
l∑

k=0

(
bk,l,1

(
x2)p(k)

n,0

(
x2) + (

bk,l,0
(
x2) + lbk,l−1,1

(
x2))p(k)

n,1

(
x2))),

where we take bk,k′ = 0, when k > k′ . This can be written in the form:

(
pn,0

(
x2) + xpn,1

(
x2))(l) =

l∑
k=0

(
p(k)

n,0(x2) p(k)
n,1(x2)

)(
bk,l,0(x2)

(x2bk,l,1(x2) + lbk,l−1,0(x2))

)

+ x
l∑

k=0

(
p(k)

n,0(x2) p(k)
n,1(x2)

)(
bk,l,1(x2)

(bk,l,0(x2) + lbk,l−1,1(x2))

)
. (3.2)

If we write

Ck,l(x) =
(

bk,l,0(x) bk,l,1(x)
xbk,l,1(x) + lbk,l−1,0(x) bk,l,0(x) + lbk,l−1,1(x)

)(
al,0(x) al,1(x)
xal,1(x) al,0(x)

)
,

and take into account that for any polynomials p,q one has (pq)0 = p0q0 +xp1q1 and (pq)1 = p0q1 + p1q0, we get from (3.2)
that

( (
al(x)p(l)

n (x)
)

0

(
al(x)p(l)

n (x)
)

1

) =
l∑

k=0

(
p(k)

n,0(x) p(k)
n,1(x)

)
Ck,l. (3.3)

From here, it follows that the differential equation (3.1) gives the following matrix equation for the vector ( p(k)
n,0(x) p(k)

n,1(x) ):

m∑
k=0

(
p(k)

n,0(x) p(k)
n,1(x)

)(
m∑

l=k

Ck,l

)
= γn

(
pn,0(x) pn,1(x)

)
.

It is now easy to finish the proof. �
We illustrate the general construction above with an example.
Take the Laguerre polynomials (Lα

n )n , which satisfy the second order differential equation

x
(
Lα

n (x)
)′′ + (α + 1 − x)

(
Lα

n (x)
)′ = −nLα

n (x).

The proof of Theorem 3.1 gives for the matrix polynomials

Lα
n,2×2 =

⎛
⎝ Lα

2n(
√

x)+Lα
2n(−√

x)
2

Lα
2n(

√
x)−Lα

2n(−√
x)

2
√

x
Lα

2n+1(
√

x)+Lα
2n+1(−√

x)
2

Lα
2n+1(

√
x)−Lα

2n+1(−√
x)

2
√

x

⎞
⎠

the matrix differential equation
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(
Lα

n,2×2

)′′
(

0 4x
4x2 0

)
+ (

Lα
n,2×2

)′
( −2x 2α + 4

(8 + 2α)x −2x

)
+ Lα

n,2×2

(
0 0

α + 1 −1

)

=
(−2n 0

0 −2n − 1

)
Lα

n,2×2.

In this case, the sequence (Lα
n,2×2)n is orthogonal with respect to the weight matrix

e−√
x
( 1√

x
1

1
√

x

)
.

For any size N , the matrix polynomials (Lα
n,N×N )n defined from the Laguerre polynomials by (2.2) satisfy the matrix second

order differential equation

(
Lα

n,N×N

)′′
A2(x) + (

Lα
n,N×N

)′
A1(x) + Lα

n,2×2 A0 =

⎛
⎜⎜⎝

γnN 0 · · · 0
0 γnN+1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · γnN+N−1

⎞
⎟⎟⎠ Lα

n,2×2,

where

A2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 4
4x2 0 0 · · · 0 0

0 4x2 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · 0 0
0 0 0 · · · 4x2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A1(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−x 0 0 · · · 0 4 + α/2
(N + 2 + α)x −x 0 · · · 0 0

0 (N + 4 + α)x −x · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · −x
0 0 0 · · · (N + 2(N − 1) + α)x −x

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

A0(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

N − 1/N2 0 0 · · · 0 0
α + 1/N2 N − 2/N2 0 · · · 0 0

0 2α + 22/N2 N − 3/N2 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · 1/N2 0
0 0 0 · · · (N − 1)α + (N − 1)2/N2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

4. A look at some examples involving higher order operators

In Section 2 we have shown that a scalar valued sequence of polynomials that are common eigenfunctions of a given
differential operator gives rise, in a canonical fashion, to a sequence of matrix valued polynomials and to a differential
operator that has them as common eigenfunctions.

The purpose of this section is to illustrate a number of issues suggested by this general result in the case of some
examples. These examples deal with what are called extended Krall–Laguerre and extended Krall–Jacobi polynomials in [12].
In both cases the scalar polynomials we consider satisfy a unique fourth order differential equation which therefore gives
rise to a fourth order differential operator with matrix coefficients. The general theme of this section centers around the
existence of other matrix valued differential operators having these same polynomials as common eigenfunctions very much
in the spirit of [2].

4.1. The scalar extended Krall–Laguerre polynomials

The scalar valued (extended) Krall–Laguerre polynomials pn(x) first introduced in [12] are given, for n = 0,1,2, . . . , by

pn(x) = 1

x

(
qn+1(x) + xn+1qn(x) + ynqn−1(x)

)
,

where
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xn = α + 2n2 + 2(R − 1)n − R

(n − 1) + R
, (4.1)

yn = n(n + α)(n + 1 + R)

n + R
(4.2)

and qn(x) = Lα
n (x) stand for the familiar Laguerre polynomials given by

Lα
n (x) = (

x − (2n − 1 + α)
)
Lα

n−1(x) − (n − 1)(n − 1 + α)Lα
n−2(x)

and Lα
−1(x) = 0, Lα

0 (x) = 1.
Here R is a free parameter, and so is α, which is taken to be larger than −1.
The pn(x) are obtained in [12] by an application of the Darboux process starting from the Laguerre polynomials Lα

n (x)
which are orthogonal and satisfy the three term recursion relation given above. For generic values of α > −1 the pn(x) do
not satisfy such a three term recursion relation, but they still satisfy the five term recursion relation given by⎛

⎜⎜⎜⎜⎜⎝

x1 1
y1 x2 1

y2 x3 ·
· · ·

· · ·
· · ·

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x̄1 1
ȳ1 x̄2 1

ȳ2 x̄3 ·
· · ·

· · ·
· · ·

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

p0(x)
p1(x)
p2(x)

·
·
·

⎞
⎟⎟⎟⎟⎟⎠ = x2

⎛
⎜⎜⎜⎜⎜⎝

p0(x)
p1(x)
p2(x)

·
·
·

⎞
⎟⎟⎟⎟⎟⎠ , (4.3)

where xn and yn are given above and x̄n and ȳn are given as follows

x̄n = α + 2n2 + 2(R − 1)n − R

n + R
, (4.4)

ȳn = n(n + α)(n − 1 + R)

n + R
. (4.5)

The point of the construction in [12] is that the new family of polynomials pn(x) are common eigenfunctions of a fixed
fourth order differential operator in the spectral parameter x, as will be seen shortly.

The method discussed in [12] shows that a proper use of the Darboux process will take us from a trivial bispectral
situation, i.e. the Laguerre polynomials Lα

n (x) are eigenfunctions of a fixed second order differential operator and they are
the common eigenvectors of a tridiagonal difference operator, to a much less trivial one: the polynomials pn(x) feature in a
higher order bispectral situation that is not a trivial consequence of the original one.

In our case we have[
x2 D4 − 2x(x − α − 2)D3 + (

x
(
x − 2(R + α) − 6

) + α(α + 3)
)

D2 + 2
(
(R + 1)x − (α + 1)R − α

)
D + R(R + 1)

]
pn(x)

= (R + n)(R + n + 1)pn(x). (4.6)

We now produce out of these pn(x) a sequence of matrix valued polynomials of size 2 × 2 using the method explained in
Section 2.

For concreteness we display below P0(x) and P1(x). We have

P0(x) =
(

1 0
−α+(α+1)R

R+1 1

)
,

P1(x) =
(

x + (α+2)((α+1)R+2α)
R+2 − 2((α+2)R+2α+3)

R+2

−3x ((α+3)R+3α+8)
R+3 − (α+2)(α+3)((α+1)R+3α)

R+3 x + 3(α+3)((α+2)R+3α+4)
R+3

)
.

Here we display a fourth order differential operator B , arising by applying the method explained in the previous section,
that has the matrix valued polynomials (Pn(x))n as a set of common eigenfunctions

B = D4x3 I + D3
(

(α + 5)x2 −x2

−x3 (α + 7)x2

)
+ D2

(
x2+x(α2+9α+15)

4 − (R+α+6)x
2

− (R+α+9)x2

2
x2+(α2+15α+39)x

4

)

+ D

( (2R+3)x
8 + α(α+3)

8 − (α+2)R+2α+3
4

−x (α+4)R+4(α+3)
4 x 2R+5

8 + 3(α+1)(α+4)
8

)
+

( − R+1
8 0

− (α+1)R+α
8 0

)
.

The matrix valued eigenvalue is read-off from the expression

Pn(x)B =
[(− R+1

8 0
0 0

)
+

( 2R+1
8 0

0 2R+3
8

)
n + n2

4
I

]
Pn(x).

Notice that our differential operator acts on the right on its argument. This is also the reason why the eigenvalue matrix
appears before the eigenfunction Pn.
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Observe that the differential operator above depends both on R and α while the eigenvalue does not. If one were to
consider, for a fixed pair R,α the family of matrix valued polynomials, and then in the spirit of [2] the full algebra we
would end up getting isomorphic algebras of differential operators with matrix coefficients for different values of α. This
follows from the fact that these algebras of differential operators are isomorphic to the algebra of matrix valued eigenvalues.

4.2. Matrix extended Krall–Laguerre and orthogonality

The sequence of matrix polynomials (Pn)n is not always orthogonal with respect to a weight matrix of measures. This
only happens if each polynomial Pn can be normalized using a nonsingular matrix: Q n = Γn Pn so that (Q n)n is an orthonor-
mal sequence with respect to a weight matrix. In that case, the sequence (Q n)n satisfies a three term recurrence relation of
the form

xQ n = An+1 Q n+1 + Bn Q n + A∗
n Q n−1,

with An nonsingular and Bn Hermitian.
If we were dealing with a monic sequence of polynomials Pn satisfying a three term recursion, such as

xPn = Pn+1 + Bn Pn + An Pn−1,

this symmetrization can be done only when one can find positive definite matrices Sn such that Bn Sn is Hermitian and
An Sn+1 = Sn .

As we noticed at the end of Section 2, given a scalar family of polynomials pn(x) we could attempt a scalar symmetriza-
tion of the (higher order) recursion relation. Given the Krall–Laguerre polynomials (pn)n we can look for a normalization
rn(x) = τn pn(x) satisfying a symmetric five term recurrence relation of the form

x2rn = an+2rn+2 + bn+1rn+1 + cnrn + bnrn−1 + anrn−2, (4.7)

where an �= 0, n � 0.
If we use the parameters (xn)n , (yn)n , (x̄n)n and ( ȳn)n (see (4.1), (4.2), (4.4) and (4.5)) it turns out that we would need

yn+1 ȳn = (ynx̄n + xn+1 ȳn)(yn+1 x̄n+1 + xn+2 ȳn+1)

(xn + x̄n+1)(xn+1 + x̄n+2)
.

This only happens when α = 0 and then:

an+2,R,0 = (n + 1)(n + 2)

√
(n + R)(n + R + 3)

(n + R + 1)(n + R + 2)
,

bn+1,R,0 = 2(n + 1)
2(n + 1)R2 + (2n + 1)(2n + 3)R + 2n(n + 1)(n + 2)

(n + R + 1)
√

(n + R)(n + R + 2)
,

cn,R,0 = n2(n + R + 1)2 + (n + 1)2(n + R)2 + (2n(n + 1) + (2n + 1)R)2

(n + R)(n + R + 1)
.

For α = 0, the five terms recurrence relation (4.7) is just an iteration of the three term recurrence relation for the Laguerre
type orthogonal polynomials (LR

n )n introduced by Koornwinder (see [22] and also [21]). They are orthogonal in [0,+∞)

with respect to the measure e−x + 1
R δ0. The four order differential equation (4.6) reduces to the well-known four order

differential equation for this family (see, for instance, [23, p. 112]).
The corresponding matrix polynomials (Pn,R,0)n are then orthogonal in [0,+∞) with respect to the weight matrix

e−√
x
( 1√

x
+ 2

R δ0 1

1
√

x

)
.

In this case one can see that the more general attempt to symmetrize the matrix valued recursion relation fails too,
except in the case α = 0.

4.3. The scalar extended Krall–Jacobi case

The scalar valued (extended) Krall–Jacobi polynomials pn(x), first introduced in [12] are given by

qn(x) = 1

x + 1

(
yn pn−1(x) + xn+1 pn(x) + pn+1(x)

)
,

where, as in (4.11) and (4.12) in [12], we have



A.J. Durán, F.A. Grünbaum / J. Math. Anal. Appl. 354 (2009) 1–11 9
xn = 2(α + β + n)(αβ + β2 + 2nα + 2(n − 1)β + 2n(n − 1))

(α + β + n − 1)(α + β + 2n − 2)(α + β + 2n)
− 2(α + n − 1)R

(α + β + n − 1)(α + β + 2n − 2)θn−1
,

yn = an
θn+1

θn

and

θn = n2 + (α + β)n + R.

Here pn(x) stands for the usual (monic) Jacobi polynomials satisfying

xpn(x) = an pn−1(x) + bn+1 pn(x) + pn+1(x)

with

an = 4n(n + α + β)(n + α)(n + β)

(2n + α + β − 1)(2n + α + β)2(2n + α + β + 1)
,

bn = β2 − α2

(2n + α + β − 2)(2n + α + β)
.

As can be seen in [12], the crux of the construction of these polynomials is that the polynomials pn(x) and qn(x) are
also related by means of

pn(x) = 1

x + 1

(
ȳnqn−1(x) + x̄n+1qn(x) + qn+1(x)

)
.

As explained in [12] the expressions for x̄n and ȳn can be obtained by replacing bn by bn + 1 in (3.17) of that paper.
The resulting expression for x̄n is correctly given by the first part of (4.13), but there is an error in the expression for ȳn

reported in [12], and we give the correct expression below, namely

ȳn = xn+1(xn+2 − bn+1 − bn+2 − 2) − yn+1 + an + an+1 + (bn+1 + 1)2.

For completeness we reproduce the expression for x̄n from [12], namely

x̄n = 2(α + β + n − 1)(αβ + β2 + 2(n − 1)α + 2nβ + 2n(n − 1))

(α + β + n)(α + β + 2n − 2)(α + β + 2n)
+ 2(α + n)R

(α + β + n)(α + β + 2n)θn
.

Finally R is a free parameter.
These polynomials qn(x) satisfy, for generic values of α, β , a five term recursion relation and they are the common

eigenfunctions of a fourth order differential operator P Q with

P = (
x2 − 1

)
D2 + (

(α + β + 1)x − β + α + 1
)

D + R

and

Q = (
x2 − 1

)
D2 + (

(α + β + 3)x − β + α − 1
)

D + (R + α + β + 1).

More explicitly we have

P Q qn(x) = λnqn(x)

with

λn = (
R + n(α + β + n)

)(
R + (n + 1)(α + β + n + 1)

)
.

The five term recursion relation expresses the product

(x + 1)2qn(x)

as a linear combination of the polynomials qn+2,qn+1,qn,qn−1,qn−2.
One could raise again the possibility that this five recursion could be made symmetric by premultiplying the scalar poly-

nomials by appropriate n dependent constants. This would require, as in the case of the modified Krall–Laguerre polynomials
that a certain identity should hold among the quantities xn, yn, x̄n, ȳn . An explicit computation using the expressions above
shows that this happens only for β = 0.

If one obtains the matrix valued polynomials out of these scalar ones and tries to symmetrize the resulting three term
recursion relation one finds, once again, that in this case nothing is gained by allowing this more general cure to our
problem: there is a positive definite orthogonality matrix only in the case of β = 0.
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We consider now (as an example) the special case given by α = 3/2, β = 7/8, R = 7. In this case the scalar fourth order
operator mentioned earlier becomes

(
x2 − 1

)2
D4 + (x2 − 1)(51x + 5)

4
D3 + 7

64

(
503x2 + 98x − 281

)
D2 + 35

32
(83x + 21)D.

The general method indicated earlier produces a fourth order differential operator with matrix coefficients satisfied by
the matrix valued polynomials obtained from the sequence pn(x). In the spirit of [2] one can study the algebra of all
differential operators associated with this family of matrix valued polynomials.

In this example we have checked that the algebra contains only one (up to scalars) differential operator of order four.
If we look for operators of order less than or equal to six, we find only one such operator (modulo operators of order 4),
whose highest order terms are

D6
(

(x − 1)3x3 0
0 (x − 1)3x3

)
+ 3

16
D5

(
(x − 1)2x2(107x − 40) 5(x − 1)2x2

5(x − 1)2x3 (x − 1)2x2(123x − 56)

)
+ · · · .

In particular the algebra cannot be generated by the fourth order operator constructed out of the scalar one. As mentioned
in the introduction, this also gives examples of situations where the lowest order of a (nontrivial) differential operator in
the algebra is higher than two.

Extensive computations suggest that these two observations hold for generic values of α,β, R . Just as in a previous
example, and all the examples below, all differential operators with matrix valued coefficients act on the right of their
matrix valued arguments.

4.4. Lower order operators connected to the extended Krall–Jacobi case

A remarkable phenomenon takes place when α and β differ by one. Consider the case β = α + 1. Here, very much as
in the generic case, we find that the scalar extended Krall–Jacobi polynomials are the common eigenfunctions of only one
fourth order differential operator, namely(

x2 − 1
)2

D4 + 2
(
1 − x2)((2α + 5)x − 1

)
D3 − 2

(
x
((

2α2 + 11α + 19
)
x − 2α − 2

) − 3α − 13
)

D2

− 2
(
(2α + 3)(2α + 9)x − 7

)
D.

A surprise comes about when we build the matrix valued polynomials going along with the scalar ones alluded to above.
We consider the differential operators with matrix coefficients and order not exceeding three. Notice that for generic

values of α,β this gives only the identity operator. The situation now is entirely different. We find four nontrivial operators,
which along with identity, give a basis for this five-dimensional space.

The matrix valued polynomials Pn(x) are common eigenfunctions of two linearly independent third order operators. But
there are other surprises in store. They also satisfy differential equations of orders one and two, namely, recalling that
β = α + 1,

P ′
n(x)

(
0 x − 1
0 0

)
+ Pn(x)

(
1 + R

2β
β − R

2β

0 0

)
=

[(
1 + R

2β
β − R

2β

0 0

)
+ n

(
0 1
0 0

)]
Pn

as well as

P ′′
n (x)

(
0 x(x − 1)

0 x(x − 1)

)
+ P ′

n(x)

(
0 x + α
0 (2α+5)x−3

2

)
+ Pn(x)A0 =

[
A0 + n

(
0 0
0 2α+3

2

)
+ n2

(
0 1
0 1

)]
Pn(x),

where

A0 =
(− 4α+5

2 −(α + 1)2

0 0

)
+ R(3α + 4)

4(α + 1)

(−1 1
0 0

)
.
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