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We show that the equation is locally well posed in Hs , s > 3/2 for
all integer values of p � 2. For p � 4, we show that the equation
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it scatters small data. The latter results are corroborated by
numerical computations which confirm the heuristically expected
decay of ‖u‖Lr ∼ t−(r−2)/(2r) .
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1. Introduction

In this work, we consider the initial value problem for the generalized Ostrovsky (gO for short)
equation ∣∣∣∣∣utx = u + (

up)
xx, (t, x) ∈ R1+ × R1,

u(0, x) = f (x),
(1)

where p � 2 is an integer and the initial data f is considered in some Sobolev class Hs(R1) with
sufficiently high s. Let us assume here and henceforth that the data f that we consider (and hence
the solution u) are real-valued.

The motivation for this generalized equation stems from a variety of different areas. The case
of p = 2 arises as a reduced version of the so-called Ostrovsky equation [1], often referred to
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as reduced Ostrovsky equation [2,3], short-wave equation [4], Ostrovsky–Hunter equation [5], or
Vakhnenko equation [6,7]. This model arises in different settings such as, for instance, the case of
small-amplitude long waves in rotating fluids of finite depth, under the assumption of no-high-
frequency dispersion. On the other hand, the case of p = 3 has gained a considerable momentum
in the nonlinear optical community recently, due to its derivation from Maxwell’s equations (un-
der appropriate assumptions) as a model for very short pulse propagation in nonlinear media [8].
For this type of pulses, its favorable comparison to Maxwell [compared to the “standard” nonlinear
Schrödinger model] [9] rendered it an interesting topic for study from a physical point of view. On the
other hand, the short-pulse equation (SPE) proved to be extremely interesting from a mathematical
point of view due to the existence of an infinite hierarchy of conserved quantities [10], an ingenious
transformation that related it to the integrable sine-Gordon equation and illustrated its complete in-
tegrability [11] and which, in turn, allowed the calculation of explicit analytical solutions of loop- and
of breather-form for this model [12]. More recently, on the analysis side, the global well-posedness
question [13] and wave-breaking phenomena in this equation were studied [16], while interesting
generalizations such as the regularized version of the SPE [17] and applications including the emer-
gence of SPE in descriptions of nonlinear metamaterials [18] have also emerged. Notice that while we
are not aware of applications presently of this equation for p � 4, we will consider the equation in its
generalized form presented above, keeping our results as general as possible in what follows.

Our first result is a local well-posedness result in the Sobolev space1 H3/2+ , which improves upon
earlier work of Schäfer and Wayne [8]. Before we get to the specifics of it, let us first clarify in what
one can expect in our situation. Note that (1) is a quasilinear wave equation, in the sense that the
highest order spatial derivative comes linearly, but it has a solution dependent coefficient. Thus, one
does not expect to produce a solution via a fixed point argument. In fact, it is well known that such
equations will in general not have Lipschitz dependence on the initial data (which would be one of
the consequences of a fixed point iteration procedure). We will work with the following

Definition 1. We say that Eq. (1) is locally well posed in Hs0 , s0 � 0, if:

1. There exists a sufficiently large s1, so that for any initial data f ∈ Hs1 , there exist a time T0 =
T (‖ f ‖Hs0 ) and a classical solution u ∈ C[(0, T0), Hs1 ) ∩ C1[(0, T0), Hs1−1).

2. There exists s2: 0 � s2 � s0, so that for any f , g ∈ Hs1 , there exists C = C(‖ f ‖Hs0 ,‖g‖Hs0 ), so that
the corresponding solutions u, v satisfy the estimate

sup
0�t�T0

∥∥u(t) − v(t)
∥∥

Hs2 � C
(‖ f ‖Hs0 ,‖g‖Hs0

)‖ f − g‖Hs2 ,

where T0 is the smaller lifespan of the two solutions u, v .

Note that the local well-posedness in the sense of Definition 1 guarantees uniqueness of solutions,
constructed as a limit of classical solutions. Indeed, for fixed initial data f ∈ Hs0 , take a sequence
f n ∈ Hs1 approximating f in the Hs0 norm, in particular we may arrange so that supn ‖ f n‖Hs0 �
2‖ f ‖Hs0 . The corresponding classical solutions will then all exist for some time T0 = T0(‖ f ‖Hs0 ) by
the first requirement of Definition 1. Moreover, by the second requirement of Definition 1, we will
have that {un(t, ·)} will be a Cauchy sequence in Hs2 for 0 � t � T0 and hence its limit (i.e. the
solution emanating from f ) will be well defined and unique in this class.

Another property of solutions of (1) constructed as a limit of classical ones (that is via the proce-
dure outlined above) is that they are weak solutions, provided s2 > 1/2. A reasonable definition of a
weak solution is a function u(t) ∈ Hs2 , 0 � t � T satisfying2

1 For precise definition of Sobolev spaces, we refer the reader to Section 2.1 below.
2 Which is a subset of all Lp , p � 2 by Sobolev embedding.
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T∫
0

∞∫
−∞

u(t, x)ψtx(t, x)dx dt +
∞∫

−∞
f (x)ψx(0, x)dx =

T∫
0

∞∫
−∞

[
uψ + upψxx

]
dx dt, (2)

for any Schwartz function ψ : R1 × R1 → R1, so that supp ψ ⊂ [0, T ) × R1. If we have a sequence of
smooth initial data f n → f in Hs0 , then by Definition 1, the corresponding classical solutions {un(t)}
will form a Cauchy sequence in C[(0, T ]; Hs2 (R1)) with limit u(t). In particular

∣∣∣∣ ∫ u(t, x)ψtx(t, x)dx dt −
∫

un(t, x)ψtx(t, x)dx dt

∣∣∣∣ � Cψ

∥∥un − u
∥∥

L∞
T L2 → 0,∣∣∣∣ ∫ (

un)p
ψxx dx dt −

∫
upψxx dx dt

∣∣∣∣ � Cψ

∥∥un − u
∥∥

L p

(∥∥un
∥∥p−1

Lp + ‖u‖p−1
Lp

) → 0,

since ‖un − u‖Lp � ‖un − u‖Hs2 etc. As a result, we obtain (2) for u. That is, u is a weak solution, if it
is a limit of smooth solutions in the sense of Definition 1.

Theorem 1 (Local well-posedness for the gO equation). Let p � 2 be an integer and s > 3/2 be a fixed real
number. Then the initial value problem (1) is locally well posed in Hs(R1) in the sense of Definition 1. In
particular, for any f ∈ Hs(R1), there exists a time 0 < T0 = T0(‖ f ‖Hs ) � ∞, so that the problem (1) has a
unique strong solution in the space C([0, T0), Hs(R1)).

Our next result concerns the existence of global solutions to (1), provided the initial data is small.
We refer to the work of Pelinovsky and Sakovich [13] for related results in the case p = 3. In addition
to the well-posedness, we are able to establish in this paper scattering for small solutions, provided
p � 4.

Theorem 2 (Global well-posedness and scattering for the gO equation). Let p � 4 be an integer. Then, there
exists ε = ε(p) > 0, so that whenever ‖ f ‖H5 +‖ f ‖W 3,1 < ε, the gO equation (1) has a unique global solution
in C([0,∞), H5(R1)). In addition, the solution is small,

sup
0<t<∞

∥∥u(t)
∥∥

H5 � 4ε,

and it scatters in the sense that for δ = 0.001 and for all

q, r ∈ (2,∞): 1/q + 1/r � 1/2 − δ; 1/q < 1/2 − 3δ; r < (p − 1)/δ,

there is the estimate

‖u‖Lq
t W 3/2,r � C pε.

Heuristically speaking, we expect ‖u(t)‖Lr , r > 2 to decay like t−(r−2)/(2r) .

In what follows, we present the proof of the two theorems stated above (Sections 2 and 4, re-
spectively), with an intermediate section detailing some dispersive estimates for the free Ostrovsky
equation (Section 3). Finally in Section 5, we present some numerical computations that support our
heuristic expectation for the scattering of small initial data and the decay of the Lr norms, for the
cases of p � 4.
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2. Proof of Theorem 1

In this section, we show Theorem 1. It is standard that such local well-posedness results may be
essentially reduced to a priori estimates for certain Hs norms. In order to explain the procedure in
some detail, let us write Eq. (1) in the form

utx = u + (
pup−1ux

)
x.

At this point, we consider the following iterative procedure. Set u0 = f (x), whereas uN , N � 1, is
defined to be the solution to the linear equation,

∂txuN = uN + (
pup−1

N−1∂xuN
)

x. (3)

It is clear right away, that if uN is a smooth and decaying solution (which will be shown a posteriori),
then

∫ ∞
−∞ uN (t, x)dx = 0. In order to get estimates on ‖uN‖L2 , introduce v = ∫ x

−∞ uN (t, y)dy, which
vanishes at both infinities and moreover

vtxx = vx + (
pup−1

N−1 vxx
)

x.

An integration in x yields the equation vtx = v + pup−1
N−1 vxx . Take dot product with vx

∂t
∥∥vx(t)

∥∥2
L2 = −2p(p − 1)

∫
v2

x up−2
N−1∂xuN−1 dx, (4)

which implies

∂t‖uN‖2
L2 = ∂t

∥∥vx(t)
∥∥2

L2 � 2p(p − 1)
∥∥uN(t)

∥∥2
L2

∥∥uN−1(t)
∥∥p−1

H3/2+ . (5)

This allows one to control ‖uN‖2
L2 in terms of the H3/2+ norm of uN−1.

The main technical lemma needed for the proof of Theorem 1 is the following a priori energy
estimate, which gives control of higher Sobolev norms.

Lemma 1. Let u be a smooth solution of the equation

utx = u + F (t, x)uxx + G(t, x), t > 0, (6)

where F , G are smooth functions. Then, for every s > 1, there exist a constant Cs (Cs ∼ 1/(s − 1)), and an
absolute constant C , so that

d

dt
Is(t) � Cs

∥∥Fx(t, ·)
∥∥

L∞ Is(t) + 2
√

Is(t)
(∥∥G(t, ·)∥∥Ḣ s−1 + C‖ux‖L∞

∥∥F (t, ·)∥∥Ḣ s

)
, (7)

where Is(t) = ‖u(t, ·)‖2
Ḣ s .

Assuming Lemma 1 for a moment, let us finish the proof of Theorem 1. In order to get estimates
on higher Sobolev norms, we apply Lemma 1 to (3), where F = pup−1

N−1, G = p(p −1)up−2
N−1∂xuN−1∂xuN .

Clearly,

‖F‖Ḣ s � C p‖uN−1‖Ḣ s‖uN−1‖p−2
L∞ , ‖Fx‖L∞ � ‖uN−1‖p−1

H3/2+ ,∥∥G(t, ·)∥∥ ˙ s−1 � C p
(‖uN‖Ḣ s‖uN−1‖p−1

3/2+ + ‖∂xuN‖L∞‖uN−1‖p−2
3/2+‖uN−1‖Ḣ s

)
.
H H H
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By (5) and (7), we obtain3 the a priori estimate for I N
s (t) = ‖uN (t, ·)‖2

Hs in the form

d

dt
I N

s (t) � Cs,p
(∥∥uN−1(t)

∥∥p−1
H3/2+ + ‖uN−1‖p−2

H3/2+‖uN−1‖Ḣ s

)
I N

s (t).

Integrating in time yields

∥∥uN(t, ·)∥∥2
Hs = I N

s (t) � ‖ f ‖2
Hs exp

(
C p,s

t∫
0

∥∥uN−1(τ )
∥∥p−1

Hs dτ

)
. (8)

Clearly (8) is what we need to show the existence of a weak solution of the quasilinear equa-
tion (1). Indeed, setting C1 := 2‖ f ‖2

Hs , we have ‖u0‖Hs � C1. We then proceed with an induc-
tive argument, which shows that for appropriate T0 (namely the solution of the equation 2 =
exp(C p,s T0(2C1)

p−1), where C p,s is the constant in (8)), the inequality sup0�t�T0
‖uN−1(t)‖Hs � C1

implies sup0�t�T0
‖uN(t)‖Hs � C1. This shows that we have constructed a bounded in the topology

of Hs sequence {uN}, which satisfies (3). We have thus verified the first part of Definition 1. Standard
arguments apply to extract a subsequence, whose (weak) limit4 will serve as a weak solution of (1).
The construction here is similar to the argument presented in [8, Theorem 4.4].

Regarding uniqueness, take two solutions v, w of (1) and set z = v − w . It follows that z satisfies

ztx = z + pv p−1zxx + p
(

v p−1 − w p−1)wxx + p(p − 1)v p−2 v2
x − p(p − 1)w p−2 w2

x . (9)

Setting F = pv p−1 and G = p(v p−1 − w p−1)wxx + p(p − 1)v p−2 v2
x − p(p − 1)w p−2 w2

x , we apply
Lemma 1 to (9). We obtain for s > 3/2,

d

dt

∥∥v(t) − w(t)
∥∥

Ḣ s � Cs,p
∥∥v(t) − w(t)

∥∥
Ḣ s

(‖w‖Hs+1 + ‖v‖Hs
)(‖v‖Hs + ‖w‖Hs

)p−2
.

Similar estimates hold for ‖v(t) − w(t)‖L2 , whence

∥∥v(t) − w(t)
∥∥

Hs � C
(
s, p,‖w‖Hs+1 ,‖v‖Hs

)∥∥v(0) − w(0)
∥∥

Hs

up to the time t of joint existence for both v, w . This of course implies the Lipschitz property of the
solution map in the sense of Definition 1.

As one can see from the last inequality, the uniqueness statement is rather weak, in the sense that
the solution map is Lipschitz only from Hs+1 → Hs . This is a standard loss of smoothness issue with
quasilinear wave equations of this form, see for example Chapter II in the book [19], where similar
issues are discussed in great detail.

Thus, to complete the proof of Theorem 1, it remains to prove Lemma 1. Before we dispense with
that, we shall need

2.1. Some Fourier analysis preliminaries

Define the Fourier transform F (and its inverse respectively) acting on a function f ∈ S (S is the
Schwartz class of test functions)

3 Recalling s > 3/2+.
4 Which become strong limits on bounded sets, after subsequences, in Hs′ , s′ < s.
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f̂ (ξ) =
∫
Rn

f (x)e−2π ix·ξ dx,

f (x) =
∫
Rn

f̂ (ξ)e2π ix·ξ dξ.

The (homogeneous) Sobolev space Ḣ s is defined as the completion of all Schwartz functions in the
norm

‖ f ‖Ḣ s =
(∫

Rn

∣∣ f̂ (ξ)
∣∣2|ξ |2s dξ

)1/2

.

We will also use the inhomogeneous version Hs , defined by the norm

‖ f ‖Hs =
(∫

Rn

∣∣ f̂ (ξ)
∣∣2(

1 + |ξ |2)s
)

. (10)

Next, we introduce the Littlewood–Paley decompositions of a given function f . Let ψ ∈ C∞
0 (Rn) be

such that supp ψ ⊂ (0,2) and ψ(ξ) = 1 for all |ξ | � 1. Let ϕ(ξ) = ψ(ξ) − ψ(2ξ). Clearly∑
j∈Z

ϕ
(
2− jξ

) ≡ 1 for all ξ �= 0,

which gives rise to the Littlewood–Paley operators, defined by the multipliers ϕ(2−k·), namely

P̂k f (ξ) := ϕ
(
2−kξ

)
f̂ (ξ).

The Littlewood–Paley operators are, roughly speaking, projections with range all functions having
Fourier support in the annulus {ξ : 2k−1 � |ξ | � 2k+1}. We will very often write fk instead of Pk f
and P<k := ∑

l<k Pl . Note that

f =
∑
k∈Z

fk = lim
k→∞

P<k f .

We also define the related operators P∼k = Pk−2 + · · · + Pk+2, as well as P�k = Id − P∼k =
P<k−2 + P>k+2 both of which will be useful. We wish also to make use of the following elemen-
tary observation. Since supp f̂ g ⊂ supp f̂ + supp ĝ , we have in particular that Pk[u�k−3 v�k−3] = 05

and Pk[u�k+3 v�k−3] = 0 and hence

Pk[uv�k−3] = Pk[uk−2�·�k+2 v�k−3]. (11)

Similarly, since Pk[uv�k+3] = ∑
l�k+3 Pk[uvl] and Pk[u�l−3 vl] = 0, Pk[u�l+3 vl] = 0, we have

Pk[uv�k+3] =
∑

l�k+3

Pk[ul−2�·�l+2 vl]. (12)

5 Here the Fourier support of u�k−3 v�k−3 is inside {|ξ | � 2k−2}, according to the rule supp f̂ g ⊂ supp f̂ + supp ĝ and hence
the Littlewood–Paley operator Pk annihilates it.
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We recall the standard definition of the L p Sobolev spaces W s,p with integer s

‖ f ‖W s,p =
∑

λ: |α|�s

∥∥∂α f
∥∥

L p .

However, for noninteger s, one has to resort to the fractional derivatives, defined in terms of the
Fourier transform ̂|∇|s f (ξ) = |ξ |s f̂ (ξ) and then set

‖ f ‖W s,p := ‖ f ‖L p + ∥∥|∇|s f
∥∥

L p .

An equivalent way to define a norm is given via the Littlewood–Paley square function characterization
of L p (or more generally W s,p spaces), namely for all 1 < p < ∞,

‖ f ‖Ẇ s,p := ∥∥|∇|s f
∥∥

L p ∼
∥∥∥∥(∑

k

22ks| fk|2
)1/2∥∥∥∥

L p
. (13)

This will be very useful in what follows. Due to (13) and the inclusion lp ⊂ lq for all 1 � p < q � ∞,
we obtain the useful formulae

‖ f ‖Ẇ s,p � C p

(∑
k

22ks‖ fk‖2
Lp

)1/2

, 2 � p < ∞, (14)

(∑
k

22ks‖ fk‖2
L p

)1/2

� C p‖ f ‖Ẇ s,p , 1 < p � 2. (15)

We also note that since Pk (and P<k) is given by a convolution with 2knϕ̌(2k·), we have ‖Pk‖Lp→Lp �
‖2knϕ̌(2k·)‖L1 � 1 for all 1 � p � ∞. A useful observation along the same lines is

∥∥|∇|s fk
∥∥

L p ∼ 2ks‖ fk‖L p . (16)

Indeed, the smooth function ϕ̃ := ψ(ξ/8) − ψ(8ξ) is identically one on the support of ϕ and thus,

∥∥|∇|s fk
∥∥

L p = 2ks‖ P̃k fk‖L p � 2ks‖ fk‖L p ,

where ̂̃Pk g := 2−ks|ξ |sϕ̃(2−kξ)ĝ(ξ) is a bounded6 operator on L p . The reverse inequality can be seen
in a similar way. The following lemma gives a useful estimate, when one needs to estimate commu-
tators of the Littlewood–Paley operators Pk with smooth functions. Although it is a standard fact, we
present it in the form of Lemma 2.1 of [15].

Lemma 2. (See Lemma 2.1 of [15].) Let f , g be Schwartz functions and 1 � p,q, r � ∞: 1/r = 1/p + 1/q.
Then, there exists a constant C = Cd, so that

∥∥[Pk, f ]g
∥∥

Lr(Rd)
� C2−k‖∇ f ‖L p ‖g‖Lq .

6 With a B(Lp) norm bounded independent of k.
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In particular,

∥∥[Pk, u]∂v∼k
∥∥

Lr � C‖∇u‖L p ‖v∼k‖Lq .

The following lemma (due to Christ–Weinstein and Kato–Ponce), widely known as the Fractional
Leibnitz’s rule, will be used repeatedly in our arguments.

Lemma 3. Let s > 0, 1 < r � p1, p2 < ∞, r � q1,q2 � ∞, so that 1/r = 1/p1 + 1/q1 = 1/p2 + 1/q2 . Then
there exists C = Cs,p1,p2,q1,q2 , so that for every pair of functions f ∈ W s,p1 ∩ Lq2 , g ∈ Lq1 ∩ W s,p2 ,

‖ f g‖W s,r � Cs,p1,p2,q1,q2

(‖ f ‖W s,p1 ‖g‖Lq1 + ‖g‖W s,p2 ‖ f ‖Lq2

)
.

2.2. Proof of Lemma 1

We are now ready to proceed with the presentation of Lemma 1. Let us make the following nota-
tional convention – we will use the notation h′ to denote a spatial derivative, unless the function h
depends explicitly only on time and then, it will denote the time derivative. We turn back on our
energy estimates. Take the Littlewood–Paley projection Pk of (6)

∂t(uk)x = uk + (F uxx)k + Gk.

Next, take a dot product with (uk)x

1

2
∂t‖∂xuk‖2

L2 =
∫

(F uxx)k∂xuk dx +
∫

Gk∂xuk dx. (17)

For the second term on the right-hand side, we just apply the Cauchy–Schwartz inequality
| ∫ Gk∂xuk dx| � ‖Gk‖L2‖∂xuk‖L2 . For the first term, we need to perform more careful analysis. Write

(F uxx)k = Pk[F∂xxu∼k] + (F∂xxu�k)k.

Furthermore, write

Pk[F∂xxu∼k] = F∂xxuk + [Pk, F ]∂xxu∼k.

Denote Errk := [Pk, F ]∂xxu∼k + (F∂xxu�k)k . Thus, an integration by parts yields∫
(F uxx)k∂xuk dx =

∫
F∂xxuk∂xuk dx +

∫
Errk(t, x)∂xuk dx

= −1

2

∫
Fx(∂xuk)

2 dx +
∫

Errk(t, x)∂xuk dx.

Hence, we estimate ∣∣∣∣ ∫ (F uxx)k∂xuk dx

∣∣∣∣ � ‖Fx‖L∞‖∂xuk‖2
L2 + ∥∥Errk

∥∥
L2‖∂xuk‖L2 .

Next, recall that by (16), we have ‖∂xuk‖L2 ∼ 2k‖uk‖L2 , whence (17) and the subsequent estimates
may be rewritten (after multiplication by 22k(s−1)) as follows
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∂t22ks‖uk‖2
L2 �

∥∥Fx(t, ·)
∥∥

L∞ 22ks‖uk‖2
L2 + 22k(s−1)

(‖Gk‖L2 + ∥∥Errk
∥∥

L2

)
2k‖uk‖L2 .

Taking a sum in k and denoting Is := ∑
k 22ks‖uk‖2

L2 , we conclude by Cauchy–Schwartz

I ′s(t) �
∥∥Fx(t, ·)

∥∥
L∞ Is(t) + 2

√
Is(t)

(
‖G‖Ḣ s−1 +

(∑
k

22k(s−1)
∥∥Errk

∥∥2
L2

)1/2)
.

It thus remains to suitably estimate
∑

k 22k(s−1)‖Errk‖2
L2 . There are two terms to deal with. For the

commutator term, we have by Lemma 2

∑
k

22k(s−1)
∥∥[Pk, F ]∂xxu∼k

∥∥2
L2 � C

∥∥F ′∥∥2
L∞

∑
k

22k(s−1)‖∂xu∼k‖2
L2 � C

∥∥F ′∥∥2
L∞

∥∥u(t, ·)∥∥2
Ḣ s .

For the term
∑

k 22k(s−1)‖(F∂xxu�k)k‖2
L2 , observe that by (11) and (12), we have the representation

(F∂xxu�k)k = (F∂xxu�k−3)k + (F∂xxu�k+3)k

= (Fk−2�·�k+2∂xxu�k−3)k +
∑

l�k+3

(Fl−2�·�l+2∂xxul)k

and hence, we need to estimate the two new terms separately. We have

∑
k

22k(s−1)
∥∥(Fk−2�·�k+2∂xxu�k−3)k

∥∥2
L2 � C

∥∥u′∥∥2
L∞

∑
k

22ks‖Fk−2�·�k+2‖2
L2

� C
∥∥u′∥∥2

L∞‖F‖2
Ḣ s .

For the other term, we have

∑
k

22k(s−1)

( ∑
l�k+3

∥∥(Fl−2�·�l+2∂xxul)k
∥∥

L2

)2

� Cs
∥∥F ′∥∥2

L∞
∑

k

22k(s−1)

( ∑
l�k+3

‖∂xul‖L2

)2

.

It now remains to appropriately estimate the last double sum for s > 1. We have

∑
k

22k(s−1)

( ∑
l�k+3

‖∂xul‖L2

)2

=
∑

k

22k(s−1)
∑

l1,l2�k+3

‖∂xul1‖L2‖∂xul2‖L2

� Cs

∑
l1,l2

22 min(l1,l2)(s−1)‖∂xul1‖L2‖∂xul2‖L2 � 10Cs‖u‖2
Ḣ s ,

where Cs = ∑
j<0 22 j(s−1) .

All in all, entering all the estimates that we have obtained

I ′s(t) � Cs
∥∥F ′(t, ·)∥∥L∞ Is(t) + 2

√
Is(t)

(∥∥G(t, ·)∥∥Ḣ s−1 + C
∥∥u′∥∥

L∞
∥∥F (t, ·)∥∥Ḣ s

)
,

as claimed.
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3. Dispersive estimates for the free Ostrovsky equation

In this section, we show that an appropriate decay and Strichartz estimates hold for the initial
value problem for the free Ostrovsky evolution∣∣∣∣∣utx = u + F (t, x), (t, x) ∈ R1+ × R1,

u(0, x) = f (x).
(18)

We have the following

Theorem 3 (Decay and Strichartz estimates for the linear Ostrovsky equation). For the homogeneous Ostrovsky
equation (i.e. F = 0), we have:

• (Energy conservation) For every s, ∥∥u(t, ·)∥∥Ḣ s = ‖ f ‖Ḣ s . (19)

• (Decay estimates) For 2 < p < ∞, there exists C p , so that for all initial data7 f ,∥∥u(t, ·)∥∥L p(R1)
� C pt−(1/2−1/p)‖ f ‖Ẇ 3/2−3/p,p′ . (20)

As a consequence, the solutions to the inhomogeneous Ostrovsky equation (18) obey Strichartz estimates.
More precisely, there exists an absolute constant C , so that whenever 2 � q, r, q̃, r̃ < ∞, and 2/q + 1/r �
1/2; 2/q̃ + 1/r̃ � 1/2, then

‖u‖Lq
t Ẇ α,r

x
� C

(‖ f ‖Ḣ1/2+1/q−1/r+α + ‖F‖
Lq̃′

t Ẇ 1/r+1/r̃−1/q−1/q̃+α,r̃′
x

)
,

for all α.

Proof. For the proof of Theorem 3, it suffices to restrict to the case f , F ∈ S , since the general case
follows by density. Next, we point out that it is a classical result by now,8 that the Strichartz estimates
are a direct consequence of the decay and energy estimates, such as (19), (20). We thus concentrate
on those for the rest of the section.

We use the Fourier transform to solve the homogeneous Ostrovsky equation. Namely ∂t ûx(t, ξ) =
û(t, ξ), whence one integrates the ODE in t to the formula

û(t, ξ) = f̂ (ξ)exp

(
−i

t

2πξ

)
:= T (t) f (ξ). (21)

We have to point out that such a formula holds in a classical sense for ξ �= 0, but note that we may
still define it rigorously via (21) for all f ∈ S , so that f̂ (0) = 0 (which is still a dense subspace in L p ,
where 1 < p < ∞).

The energy conservation is obvious, since |exp(−i t
2πξ

)| = 1 and hence by Plancherel’s

∥∥u(t)
∥∥

L2 = ∥∥û(t)
∥∥

L2 =
∥∥∥∥ f̂ (·)exp

(
−i

t

2π ·
)∥∥∥∥

L2
= ‖ f̂ ‖L2 = ‖ f ‖L2 ,

7 From now, we will make the following assignment p′: 1
p + 1

p′ = 1.
8 Of Keel and Tao in [14].
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and similarly ‖u(t)‖Ḣ s = ‖ f ‖Ḣ s . In particular, formula (21) is well defined for L2 data f . The decay
estimate (20) is more complicated. We need a series of reductions. First, note that by (14) and (15),
we may reduce (20) to the proof of∥∥uk(t, ·)

∥∥
L p � C pt−(1/2−1/p)2(3/2−3/p)k‖ fk‖L p′ , (22)

for all integer k, where uk = Pku, fk = Pk f . Indeed, note that (22) is just an instance of (20) for
frequency localized data fk . On the other hand, assuming (22) for all k (and with a constant C p ,
independent on k), we have, after squaring and summing,

‖u‖L p �
(∑

k

∥∥uk(t, ·)
∥∥2

L p

)1/2

� C pt−(1/2−1/p)

(∑
k

22(3/2−3/p)k‖ fk‖2
Lp′

)1/2

� C pt−(1/2−1/p)‖ f ‖Ẇ 3/2−3/p,p′ ,

where we have used (14) in the first step above and (15) at the last step above.9

Thus, it remains to show (22). However, note that the decay estimate (20) (and hence (22), which
is just a particular case of it) is a scale invariant estimate, which respects the natural scaling of the
problem u → uλ = u(λt, x/λ). Thus, (22) itself is reduced to the case k = 0∥∥u0(t, ·)

∥∥
L p � C pt−(1/2−1/p)‖ f0‖L p′ . (23)

Note that (23) follows by interpolation from the energy conservation (i.e. p = 2, which holds with
C p = 1) and an L1 → L∞ estimate (i.e. the case p = ∞), which reads

∥∥u0(t, ·)
∥∥

L∞ � C√
t
‖ f0‖L1 . (24)

For the rest of the section, we will be concerned with (24). Using the inverse Fourier transform, we
obtain from (21) the following explicit form

u0(x) =
∫

f̂ (ξ)e2π ixξ e−it/(2πξ)ϕ(ξ)dξ =
∫ (∫

e2π i(x−y)ξ e−it/(2πξ)ϕ(ξ)dξ

)
f (y)dy.

It is now clear that for the proof of (24), it suffices to check

sup
x

∣∣∣∣ ∫ e2π ixξ e−it/(2πξ)ϕ(ξ)dξ

∣∣∣∣ � Ct−1/2 (25)

for t > 0. Rewrite the oscillatory integral as∫
e−it(1/2πξ+x̃ξ)ϕ(ξ)dξ,

where x̃ := −2πx/t . We are now in a position to apply the Van Der Corput lemma with k = 2 (see
Lemma 4 in Appendix A) with a phase function μ(ξ) = 1/(2πξ) + x̃ξ . We clearly have μ′′(ξ) =

1
πξ3 , which implies that on the support of ϕ(ξ) ⊂ {ξ : 1/2 < |ξ | < 2}, we have that |μ′′(ξ)| � 1 and

hence (25) holds, as a consequence of (31). �
9 Recall p′ < 2 < p.
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4. Proof of Theorem 2

Before we proceed with the specifics of the proof, let us outline our strategy. The first step will
be to use Lemma 1 to produce a bound on (any!) Sobolev norms of the solution. Such a bound will
be dependent upon a mixed Lq

t W s,r
x norm (for appropriate q, r, s) of the solution, see (26) below.

The next step will be to control the mixed norm described above, by using the decay estimates of
Theorem 3, back in terms of Sobolev norms of the solution and the initial data. In conclusion, we run
a persistence argument that states that all norms remain small (if we start with small data) for all
times.

4.1. Energy estimates for the solution of (1)

We have essentially performed this argument after the proof of Lemma 1. Indeed, for a classical
solution of (1), the L2 estimate (4) applies as well (with uN = uN−1 = u), so we get

∂t
∥∥u(t)

∥∥2
L2 � 2p(p − 1)

∥∥u(t)
∥∥2

L2

∥∥u(t)
∥∥p−2

L∞
∥∥u′(t)

∥∥
L∞ .

Next, we may apply Lemma 1 with F = pup−1 and G = p(p − 1)up−2u2
x . We have

‖F‖Ḣ s � C p‖u‖Ḣ s ‖u‖p−2
L∞ ,

∥∥F ′∥∥
L∞ �

∥∥u′∥∥
L∞‖u‖p−2

L∞ ,∥∥G(t, ·)∥∥Ḣ s−1 � C p
(‖u‖Ḣ s

∥∥u′∥∥
L∞‖u‖p−2

L∞ + ∥∥u′∥∥2
L∞‖u‖Ḣ s−1‖u‖p−3

L∞
)
.

We have for Is(t) = ‖u(t)‖2
Ḣ s ,

I ′s(t) � Cs
∥∥u′∥∥

L∞‖u‖p−2
L∞ Is(t) + C p,s

√
Is

(‖u‖Ḣ s

∥∥u′∥∥
L∞‖u‖p−2

L∞ + ∥∥u′∥∥2
L∞‖u‖Ḣ s−1‖u‖p−3

L∞
)

+ C p,s

√
Is

∥∥u′∥∥
L∞‖u‖Ḣ s ‖u‖p−2

L∞ .

Thus, we get the following estimate for the time derivative of J s(u) = ‖u(t)‖2
Ḣ s + ‖u(t)‖2

L2 ,

J ′
s(t) � C p,s J s(t)

(∥∥u′(t)
∥∥p−1

L∞
x

+ ∥∥u(t)
∥∥p−1

L∞
x

)
.

By Gronwall’s inequality

J s(T ) � J s(0)exp

( T∫
0

(∥∥u′(t)
∥∥p−1

L∞ + ∥∥u(t)
∥∥p−1

L∞
)

dt

)
� J s(0)exp

(
cp‖u‖p−1

Lp−1
t (0,T )W 1,∞

x

)
. (26)

In particular, we will have

‖u‖L∞
T Hs � 3‖ f ‖Hs (27)

as long as ‖u‖p−1

Lp−1 W 1,∞ < 1/cp .

T x
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4.2. Decay estimates for (1)

In this section, we show how to control certain mixed norms of the solution in terms of the
Sobolev norms. Write the solution to (1) in the equivalent integral formulation

u = T (t) f +
t∫

0

T (t − s)∂xx
[
up(s)

]
ds, (28)

where T (t) is the semigroup generator for the linear Ostrovsky equation utx − u = 0. At this point,
we use the estimates that we have proved for the operator T (t) in Theorem 3. Fix 0 < δ < 1/100. We
will consider a set of indices A, which will consist of all q, r ∈ (2,∞), so that

A = {
(q, r): 1/q + 1/r � 1/2 − δ; 1/q < 1/2 − 3δ; r < (p − 1)/δ

}
.

For any (q, r) ∈ A, we will now proceed to show that one can control ‖u‖Lq
t (0,T )W α,r in terms of

Sobolev norms ‖u‖L∞
t (0,T )Hγ and other norms in the form ‖u‖

Lq̃
t (0,T )W α̃,r̃ , where (q̃, r̃) ∈ A. The

smoothness index α will be chosen judiciously in the course of the argument. We first estimate
the (more straightforward) time-local norm ‖u‖Lq

t (0,min(1,T ))W α,r . We have by (28)

‖u‖Lq
t (0,min(1,T ))W α,r � sup

t

∥∥T (t) f
∥∥

W α,r + sup
0<s<t<T

∥∥T (t − s)∂xx
[
up(s)

]∥∥
W α,r .

The Sobolev embedding10 Hα+1 ↪→ W α,r and the energy estimate (19) yield

sup
t

∥∥T (t) f
∥∥

W α,r � C sup
t

∥∥T (t) f
∥∥

Hα+1 = C‖ f ‖Hα+1 ;

sup
0<s<t<T

∥∥T (t − s)∂xx
[
up(s)

]∥∥
W α,r � C sup

0<s<T

∥∥∂xx
[
up(s)

]∥∥
Hα+1 � C‖u‖L∞

T Hα+3
x

‖u‖p−1
L∞

T L∞
x

,

where in the last inequality, we have used the Leibnitz rule in Lemma 3.
If T > 1, we also wish to have an estimate for the norm ‖u‖Lq

t (1,T )W α,r . For that, we first use the
decay estimate (20)

∥∥u(t)
∥∥

W α,r � Cr |t|−(1/2−1/r)‖ f ‖W α+3/2−3/r,r′ + Cr

t∫
0

‖∂xx[up(s)]‖W α+3/2−3/r,r′

|t − s|1/2−1/r
ds.

Taking Lq
t (1, T ) norm and applying the Young’s inequality Ls1,∞ ∗ Ls2 ↪→ Ls whenever 1 < s, s1, s2 < ∞

and 1 + 1/s = 1/s1 + 1/s2 yields∥∥u(t)
∥∥

Lq
t (1,T )W α,r � C

∥∥| · |−(1/2−1/r)
∥∥

Lq
t (1,T )

‖ f ‖W α+3/2−3/r,r′

+ ∥∥| · |−(1/2−1/r)
∥∥

L2r/(r−2),∞
t

∥∥∂xx
[
up]∥∥

Lβ
t (0,T )W α+3/2−3/r,r′ ,

where 1 + 1
q = r−2

2r + 1
β

.

10 Of course, in our setting of one space dimension, one can use the sharper Sobolev embedding Hα+1/2 ↪→ W α,r , but then
the constant incurred in that embedding may blow up in r → ∞.
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Note that since 1/q + 1/r < 1/2, it follows that q > 2r/(r − 2) and thus ‖| · |−(1/2−1/r)‖Lq
t (1,T ) �

‖| · |−(1/2−1/r)‖Lq
t (1,∞) � 1. Also, ‖| · |−(1/2−1/r)‖

L2r/(r−2),∞
t

� 1. Finally, by the Leibnitz rule in Lemma 3

and Hölder’s inequality in time,

∥∥∂xx
[
up]∥∥

Lβ
t (0,T )W α+3/2−3/r,r′ � C‖u‖L∞

t (0,T )Hα+2+3/2−3/r

∥∥up−1
∥∥

Lβ
t (1,T )L

2r
r−2
x

� C‖u‖L∞
t (0,T )Hα+2+3/2−3/r ‖u‖p−1

L(p−1)β
t (1,T )L

(p−1) 2r
r−2

x

.

Let us now check that the pair ((p − 1)β, (p − 1) 2r
r−2 ) belongs to the class of indices A, at least for

p � 4. Indeed,

1

(p − 1)β
+ 1

(p − 1) 2r
r−2

= 1

p − 1

(
1 + 1

q

)
� 1

2
− δ,

where in the last line, we have used 1/(p − 1) � 1/3 and 1/q < 1/2 − 3δ. Next,

1

(p − 1) 2r
r−2

� 1

2(p − 1)
� 1

2
− 3δ

since δ < 1/100. Finally,

(p − 1)
2r

r − 2
� p − 1

δ
,

since 1/2 − 1/r � 1/q + δ � δ by the restrictions of A.
Introduce the norm

‖u‖T ,A,α := sup
(q,r)∈A

‖u‖Lq
t (0,T )W α,r ,

which measures the time decay rate of various spatial Sobolev norms of the solution. If we com-
bine the estimates for the local norm ‖u‖Lq

t (0,min(1,T ))W α,r of the solution with our estimate for
‖u‖Lq

t (1,T )W α,r , we obtain

‖u‖T ,A,α � C p,δ

(
‖ f ‖Hα+1 + sup

(q,r)∈A
‖ f ‖W α+3/2,r′

)
+ C p,δ‖u‖L∞

t (0,T )Hα+7/2

(‖u‖p−1
L∞

T L∞
x

+ ‖u‖p−1

L(p−1)β
t (1,T )L

(p−1) 2r
r−2

x

)
.

We have already checked that ((p − 1)β, (p − 1) 2r
r−2 ) ∈ A, whence

‖u‖
L(p−1)β

t (1,T )L
(p−1) 2r

r−2
x

� ‖u‖T ,A,α.

By Sobolev embedding

‖u‖L∞L∞ � ‖u‖L∞W 1/2,4 � ‖u‖T ,A,α,

T x T
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if α � 1/2, since (∞,4) ∈ A. All in all,

‖u‖T ,A,α � C p,δ

(‖ f ‖Hα+3/2 + ‖ f ‖W α+3/2,1 + ‖u‖L∞
t (0,T )Hα+7/2‖u‖p−1

T ,A,α

)
. (29)

Clearly, this estimate would be crucial in establishing the global scattering for the Ostrovsky equation.

4.3. Conclusion of the proof

Let us recapitulate what we have shown so far. On one hand, we have a local solution (up to
some nontrivial time T0), in accordance to Theorem 1. In this interval of existence, we have shown
the energy estimate (19) and the decay estimate (29). Set α = 3/2 and assume ‖ f ‖H5 + ‖ f ‖W 3,1 < ε.
We will show that the solution is classical and global. As a consequence, we will also show that the
solution stays small as well.

To show that the solution with initial data f is global, we need to show that ‖u(t)‖H5

stays bounded for all t . We argue by contradiction, which implies that T0 < ∞ and
lim supt→T0

‖u(t)‖H5 = ∞. Then, there is

T ∗ = inf
t>0

{
t:

∥∥u(t)
∥∥

H5 = 4ε
}
, T ∗ < T0 < ∞.

Clearly T ∗ > 0 and ‖u‖L∞
t (0,T ∗)H5 � 4ε. From (29), we have the a priori estimate for all 0 < T < T ∗

‖u‖T ,A,α � C p,δ

(‖ f ‖Hα+3/2 + ‖ f ‖W α+3/2,1 + ‖u‖L∞
t (0,T )Hα+7/2‖u‖p−1

T ,A,α

)
� C p,δ

(
ε + ε‖u‖p−1

T ,A,α

)
.

The last estimate implies that ‖u‖T ,A,α � 2C p,δε provided, ε: C p,δε < 1, which will be one restriction
on ε that we will require. In particular, by Sobolev embedding

‖u‖p−1

Lp−1
T W 1,∞

x
� C p‖u‖p−1

Lp−1
T W 3/2,8

x
� C p‖u‖p−1

T ,A,α � C p(2C p,δε)p−1.

Now, if we select ε: C p(2C p,δε)p−1 � 1/cp , where11 cp is the constant on the right-hand side of (26),

we see that ‖u‖p−1

Lp−1
T W 1,∞

x
� 1/cp . Hence, by (27), we must have

∥∥u(t)
∥∥

L∞
t (0,T ∗)H5 � 3‖ f ‖H5 � 3ε

– a contradiction with the definition of T ∗ . All of this shows that T ∗ = ∞, in particular the solution
is defined for all times and

sup
0<t<∞

∥∥u(t)
∥∥

H5 � 4ε.

11 This is the second and last restriction for the choice of ε, which turns out to depend on δ and p. Since δ is at our disposition
and it can generally be fixed, say at δ = 0.001, ε ultimately depends only on p.
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Fig. 1. For the case of p = 4, the figure illustrates the evolution of initial data given by Eq. (30) in a domain of size 800 with
periodic boundary conditions (only a fraction of the domain is shown). The left panels indicate the decay of ‖u‖L3 (top left),
‖u‖L4 (top right), ‖u‖L5 (bottom left) and ‖u‖L∞ (bottom right). The dashed lines illustrate the theoretically expected power
law rates of decay over the same time scales. The right panel shows the space–time evolution of the absolute value of the field,
illustrating the scattering of the initial data with a = 0.1.

5. Numerical results

In the present section, we incorporate some scattering results for the cases of p = 4 and p = 5
for which it was heuristically argued above that a decay of Lr norms with r > 2 should be expected,
according to ‖u‖Lr ∼ t−(r−2)/(2r) . Our numerical method consisted of Fourier transforming the gO
equation with respect to x, then solving the ensuing first-order ODE in t (for each wavenumber) for a
short time-increment dt , via a fourth-order Runge–Kutta scheme, and then Fourier transforming back
to obtain u(x, t + dt). The boundary conditions were periodic by the nature of the spectral approach
used, while as initial conditions we used

u(x,0) = a
(
1 − 2bx2)exp

(−bx2) (30)

motivated by this choice in [16], which ensures exponentially localized initial data but satisfying∫
u dx = 0, as is necessitated by the dynamics [our experience with initial data that did not satisfy

this condition indicated that they develop substantially larger amplitude oscillations for early times].
We chose b = 0.5 and tried (small) values of a, such as 0.1 or 0.01 with essentially similar results.

We illustrate the results for a = 0.1 in what follows, for the cases of p = 4 and p = 5; see Figs. 1
and 2, respectively. The figures show the decay [via solid (red in the web version) lines] of the norms
‖u‖L3 , ‖u‖L4 , ‖u‖L5 and ‖u‖Linf , during the clearly observed scattering (see the right panel of both
figures) of the initial data. For comparison, the heuristically indicated decay of t−(r−2)/(2r) is also
shown [by means of dashed (blue in the web version) lines]. Clearly, after a short transient stage in
the dynamics, the evolution of the relevant norms, very accurately follows the corresponding decay
predictions with exponents −1/6, −1/4, −3/10 and −1/2, respectively. Indeed, also, this result seems
to be independent of p, as the agreement is excellent both in the case of p = 4, as well as in that
of p = 5.

Given these results for small amplitude data, and the global well-posedness of the gO equation
established above, it would be interesting to examine the type of solitary wave solutions that can
robustly exist for these higher-p generalizations of the Ostrovsky equation. Naturally, the techniques
would have to be different than the ones used herein, but it would, for instance, be of interest to
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Fig. 2. The figure shows the same diagnostics as Fig. 1 but for the case with p = 5. Once again the scattering of the initial data
is found to follow the theoretically expected decay rates, after an initial transient stage of the dynamics.

examine whether the breather-like structures of the p = 3 case (due to the analogy with the sine-
Gordon equation [12,16,18]) would persist in the case of higher p or not. Furthermore, it would
certainly be of interest and physical relevance to examine appropriate generalizations of this type of
models in higher dimensional settings. Such themes would constitute interesting subjects for future
work.

Appendix A. Van Der Corput lemma

Lemma 4 (Van Der Corput). (See p. 334 in [20].) Suppose μ is a real-valued function, smooth in (a,b), so that
|μ(k)(x)| � 1 for some integer k. (If k = 1, we also assume that μ′(x) is monotonic.) Then,

∣∣∣∣∣
b∫

a

eiλμ(x)ψ(x)dx

∣∣∣∣∣ � Ckλ
−1/k

[
ψ(b) +

b∫
a

∣∣ψ ′(x)
∣∣dx

]
, (31)

for some constant Ck, depending only on k.
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